Properties

Label 4761.2.a.bd
Level $4761$
Weight $2$
Character orbit 4761.a
Self dual yes
Analytic conductor $38.017$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4761,2,Mod(1,4761)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4761, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4761.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4761 = 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4761.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.0167764023\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1587)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + q^{4} + (2 \beta_{3} + \beta_1) q^{5} + 2 \beta_{3} q^{7} + \beta_{2} q^{8} + 3 \beta_{3} q^{10} + (2 \beta_{3} - 2 \beta_1) q^{11} - 3 q^{13} + (4 \beta_{3} + 2 \beta_1) q^{14}+ \cdots + ( - \beta_{2} + 12) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 12 q^{13} - 20 q^{16} + 4 q^{25} + 24 q^{29} + 24 q^{35} - 12 q^{41} + 4 q^{49} + 36 q^{50} - 12 q^{52} + 24 q^{55} - 12 q^{58} + 24 q^{59} + 24 q^{62} + 4 q^{64} + 48 q^{70} + 48 q^{77}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{24} + \zeta_{24}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.93185
1.93185
0.517638
−0.517638
−1.73205 0 1.00000 −0.896575 0 1.03528 1.73205 0 1.55291
1.2 −1.73205 0 1.00000 0.896575 0 −1.03528 1.73205 0 −1.55291
1.3 1.73205 0 1.00000 −3.34607 0 −3.86370 −1.73205 0 −5.79555
1.4 1.73205 0 1.00000 3.34607 0 3.86370 −1.73205 0 5.79555
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(23\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4761.2.a.bd 4
3.b odd 2 1 1587.2.a.n 4
23.b odd 2 1 inner 4761.2.a.bd 4
69.c even 2 1 1587.2.a.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1587.2.a.n 4 3.b odd 2 1
1587.2.a.n 4 69.c even 2 1
4761.2.a.bd 4 1.a even 1 1 trivial
4761.2.a.bd 4 23.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4761))\):

\( T_{2}^{2} - 3 \) Copy content Toggle raw display
\( T_{5}^{4} - 12T_{5}^{2} + 9 \) Copy content Toggle raw display
\( T_{7}^{4} - 16T_{7}^{2} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 12T^{2} + 9 \) Copy content Toggle raw display
$7$ \( T^{4} - 16T^{2} + 16 \) Copy content Toggle raw display
$11$ \( (T^{2} - 24)^{2} \) Copy content Toggle raw display
$13$ \( (T + 3)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 16T^{2} + 16 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} - 12 T + 33)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 196T^{2} + 8836 \) Copy content Toggle raw display
$41$ \( (T^{2} + 6 T - 3)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 112T^{2} + 2704 \) Copy content Toggle raw display
$47$ \( (T^{2} - 48)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - 12T^{2} + 9 \) Copy content Toggle raw display
$59$ \( (T^{2} - 12 T - 12)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} - 52T^{2} + 1 \) Copy content Toggle raw display
$67$ \( T^{4} - 64T^{2} + 256 \) Copy content Toggle raw display
$71$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 147)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 256T^{2} + 4096 \) Copy content Toggle raw display
$83$ \( T^{4} - 48T^{2} + 144 \) Copy content Toggle raw display
$89$ \( T^{4} - 12T^{2} + 9 \) Copy content Toggle raw display
$97$ \( T^{4} - 628 T^{2} + 96721 \) Copy content Toggle raw display
show more
show less