Properties

Label 4761.2.a.bi
Level $4761$
Weight $2$
Character orbit 4761.a
Self dual yes
Analytic conductor $38.017$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4761,2,Mod(1,4761)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4761, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4761.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4761 = 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4761.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.0167764023\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 9x^{2} + 10x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 529)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} + (\beta_{3} + 1) q^{4} - \beta_1 q^{5} + ( - \beta_{2} - \beta_1) q^{7} + 3 q^{8} + (3 \beta_{2} - \beta_1) q^{10} + \beta_1 q^{11} + (2 \beta_{3} - 3) q^{13} + 3 \beta_{2} q^{14}+ \cdots + ( - \beta_{3} - 6) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 6 q^{4} + 12 q^{8} - 8 q^{13} - 6 q^{16} + 8 q^{25} + 22 q^{26} + 16 q^{29} - 8 q^{31} - 14 q^{32} + 24 q^{35} + 16 q^{41} + 16 q^{47} + 30 q^{50} + 14 q^{52} - 28 q^{55} + 34 q^{58} + 12 q^{59}+ \cdots - 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 9x^{2} + 10x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + \nu^{2} - 11\nu - 8 ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{3} + 3\nu^{2} + 17\nu - 9 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{3} + 3\nu^{2} + 22\nu - 9 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_{3} - \beta_{2} \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 2\beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 10\beta_{3} - 11\beta_{2} + 3\beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.71699
0.111438
3.71699
0.888562
−1.30278 0 −0.302776 −1.84240 0 −3.25662 3.00000 0 2.40024
1.2 −1.30278 0 −0.302776 1.84240 0 3.25662 3.00000 0 −2.40024
1.3 2.30278 0 3.30278 −3.25662 0 −1.84240 3.00000 0 −7.49926
1.4 2.30278 0 3.30278 3.25662 0 1.84240 3.00000 0 7.49926
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(23\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4761.2.a.bi 4
3.b odd 2 1 529.2.a.h 4
12.b even 2 1 8464.2.a.bp 4
23.b odd 2 1 inner 4761.2.a.bi 4
69.c even 2 1 529.2.a.h 4
69.g even 22 10 529.2.c.q 40
69.h odd 22 10 529.2.c.q 40
276.h odd 2 1 8464.2.a.bp 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
529.2.a.h 4 3.b odd 2 1
529.2.a.h 4 69.c even 2 1
529.2.c.q 40 69.g even 22 10
529.2.c.q 40 69.h odd 22 10
4761.2.a.bi 4 1.a even 1 1 trivial
4761.2.a.bi 4 23.b odd 2 1 inner
8464.2.a.bp 4 12.b even 2 1
8464.2.a.bp 4 276.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4761))\):

\( T_{2}^{2} - T_{2} - 3 \) Copy content Toggle raw display
\( T_{5}^{4} - 14T_{5}^{2} + 36 \) Copy content Toggle raw display
\( T_{7}^{4} - 14T_{7}^{2} + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T - 3)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 14T^{2} + 36 \) Copy content Toggle raw display
$7$ \( T^{4} - 14T^{2} + 36 \) Copy content Toggle raw display
$11$ \( T^{4} - 14T^{2} + 36 \) Copy content Toggle raw display
$13$ \( (T^{2} + 4 T - 9)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 38T^{2} + 36 \) Copy content Toggle raw display
$19$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} - 8 T + 3)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 4 T - 9)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 38T^{2} + 36 \) Copy content Toggle raw display
$41$ \( (T^{2} - 8 T + 3)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 104)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 8 T + 3)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - 68T^{2} + 324 \) Copy content Toggle raw display
$59$ \( (T^{2} - 6 T - 108)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} - 68T^{2} + 324 \) Copy content Toggle raw display
$67$ \( T^{4} - 62T^{2} + 324 \) Copy content Toggle raw display
$71$ \( (T - 9)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} - 4 T - 9)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 196T^{2} + 2116 \) Copy content Toggle raw display
$83$ \( T^{4} - 62T^{2} + 324 \) Copy content Toggle raw display
$89$ \( T^{4} - 152T^{2} + 576 \) Copy content Toggle raw display
$97$ \( T^{4} - 286T^{2} + 676 \) Copy content Toggle raw display
show more
show less