Properties

Label 4788.2.i.h.3457.14
Level $4788$
Weight $2$
Character 4788.3457
Analytic conductor $38.232$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(3457,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.3457");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.i (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 48x^{14} + 860x^{12} + 7192x^{10} + 28448x^{8} + 45264x^{6} + 12088x^{4} + 784x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3457.14
Root \(2.82448i\) of defining polynomial
Character \(\chi\) \(=\) 4788.3457
Dual form 4788.2.i.h.3457.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.32685i q^{5} +(-0.414214 - 2.61313i) q^{7} +2.51856 q^{11} +5.77180 q^{13} -5.61750i q^{17} +(4.08128 - 1.53073i) q^{19} -6.08034 q^{23} -0.414214 q^{25} -3.93358i q^{29} -2.39076 q^{31} +(6.08034 - 0.963811i) q^{35} -6.24735i q^{37} -10.2790 q^{41} +8.24264 q^{43} +2.89143i q^{47} +(-6.65685 + 2.16478i) q^{49} -9.49651i q^{53} +5.86030i q^{55} -14.5366 q^{59} +3.69552i q^{61} +13.4301i q^{65} -8.83509i q^{67} -9.49651i q^{71} +13.2513i q^{73} +(-1.04322 - 6.58132i) q^{77} -6.24735i q^{79} -6.98054i q^{83} +13.0711 q^{85} +10.2790 q^{89} +(-2.39076 - 15.0824i) q^{91} +(3.56178 + 9.49651i) q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{7} + 16 q^{25} + 64 q^{43} - 16 q^{49} + 96 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4788\mathbb{Z}\right)^\times\).

\(n\) \(533\) \(1009\) \(2395\) \(4105\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.32685i 1.04060i 0.853984 + 0.520299i \(0.174179\pi\)
−0.853984 + 0.520299i \(0.825821\pi\)
\(6\) 0 0
\(7\) −0.414214 2.61313i −0.156558 0.987669i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.51856 0.759374 0.379687 0.925115i \(-0.376032\pi\)
0.379687 + 0.925115i \(0.376032\pi\)
\(12\) 0 0
\(13\) 5.77180 1.60081 0.800405 0.599460i \(-0.204618\pi\)
0.800405 + 0.599460i \(0.204618\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.61750i 1.36244i −0.732077 0.681222i \(-0.761449\pi\)
0.732077 0.681222i \(-0.238551\pi\)
\(18\) 0 0
\(19\) 4.08128 1.53073i 0.936310 0.351174i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.08034 −1.26784 −0.633920 0.773399i \(-0.718555\pi\)
−0.633920 + 0.773399i \(0.718555\pi\)
\(24\) 0 0
\(25\) −0.414214 −0.0828427
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.93358i 0.730448i −0.930920 0.365224i \(-0.880992\pi\)
0.930920 0.365224i \(-0.119008\pi\)
\(30\) 0 0
\(31\) −2.39076 −0.429393 −0.214696 0.976681i \(-0.568876\pi\)
−0.214696 + 0.976681i \(0.568876\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.08034 0.963811i 1.02777 0.162914i
\(36\) 0 0
\(37\) 6.24735i 1.02706i −0.858072 0.513529i \(-0.828338\pi\)
0.858072 0.513529i \(-0.171662\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −10.2790 −1.60530 −0.802651 0.596449i \(-0.796578\pi\)
−0.802651 + 0.596449i \(0.796578\pi\)
\(42\) 0 0
\(43\) 8.24264 1.25699 0.628495 0.777813i \(-0.283671\pi\)
0.628495 + 0.777813i \(0.283671\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.89143i 0.421759i 0.977512 + 0.210879i \(0.0676328\pi\)
−0.977512 + 0.210879i \(0.932367\pi\)
\(48\) 0 0
\(49\) −6.65685 + 2.16478i −0.950979 + 0.309255i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.49651i 1.30445i −0.758027 0.652223i \(-0.773836\pi\)
0.758027 0.652223i \(-0.226164\pi\)
\(54\) 0 0
\(55\) 5.86030i 0.790203i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −14.5366 −1.89251 −0.946254 0.323424i \(-0.895166\pi\)
−0.946254 + 0.323424i \(0.895166\pi\)
\(60\) 0 0
\(61\) 3.69552i 0.473163i 0.971612 + 0.236581i \(0.0760270\pi\)
−0.971612 + 0.236581i \(0.923973\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 13.4301i 1.66580i
\(66\) 0 0
\(67\) 8.83509i 1.07938i −0.841864 0.539689i \(-0.818542\pi\)
0.841864 0.539689i \(-0.181458\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.49651i 1.12703i −0.826106 0.563514i \(-0.809449\pi\)
0.826106 0.563514i \(-0.190551\pi\)
\(72\) 0 0
\(73\) 13.2513i 1.55095i 0.631377 + 0.775476i \(0.282490\pi\)
−0.631377 + 0.775476i \(0.717510\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.04322 6.58132i −0.118886 0.750010i
\(78\) 0 0
\(79\) 6.24735i 0.702882i −0.936210 0.351441i \(-0.885692\pi\)
0.936210 0.351441i \(-0.114308\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.98054i 0.766214i −0.923704 0.383107i \(-0.874854\pi\)
0.923704 0.383107i \(-0.125146\pi\)
\(84\) 0 0
\(85\) 13.0711 1.41776
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.2790 1.08957 0.544783 0.838577i \(-0.316612\pi\)
0.544783 + 0.838577i \(0.316612\pi\)
\(90\) 0 0
\(91\) −2.39076 15.0824i −0.250620 1.58107i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.56178 + 9.49651i 0.365431 + 0.974322i
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.54513i 0.750768i 0.926869 + 0.375384i \(0.122489\pi\)
−0.926869 + 0.375384i \(0.877511\pi\)
\(102\) 0 0
\(103\) −8.16256 −0.804281 −0.402141 0.915578i \(-0.631734\pi\)
−0.402141 + 0.915578i \(0.631734\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.0594i 1.45585i 0.685656 + 0.727926i \(0.259515\pi\)
−0.685656 + 0.727926i \(0.740485\pi\)
\(108\) 0 0
\(109\) 8.83509i 0.846248i 0.906072 + 0.423124i \(0.139067\pi\)
−0.906072 + 0.423124i \(0.860933\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.93358i 0.370041i 0.982735 + 0.185020i \(0.0592351\pi\)
−0.982735 + 0.185020i \(0.940765\pi\)
\(114\) 0 0
\(115\) 14.1480i 1.31931i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −14.6792 + 2.32685i −1.34564 + 0.213302i
\(120\) 0 0
\(121\) −4.65685 −0.423350
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.6704i 0.954391i
\(126\) 0 0
\(127\) 12.4947i 1.10873i −0.832275 0.554363i \(-0.812962\pi\)
0.832275 0.554363i \(-0.187038\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.6342i 1.01649i −0.861213 0.508244i \(-0.830295\pi\)
0.861213 0.508244i \(-0.169705\pi\)
\(132\) 0 0
\(133\) −5.69052 10.0309i −0.493431 0.869785i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.51246 −0.556397 −0.278198 0.960524i \(-0.589737\pi\)
−0.278198 + 0.960524i \(0.589737\pi\)
\(138\) 0 0
\(139\) 3.69552i 0.313450i −0.987642 0.156725i \(-0.949906\pi\)
0.987642 0.156725i \(-0.0500936\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 14.5366 1.21561
\(144\) 0 0
\(145\) 9.15285 0.760103
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.1607 0.996242 0.498121 0.867108i \(-0.334024\pi\)
0.498121 + 0.867108i \(0.334024\pi\)
\(150\) 0 0
\(151\) 23.9175i 1.94638i −0.229999 0.973191i \(-0.573872\pi\)
0.229999 0.973191i \(-0.426128\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.56293i 0.446825i
\(156\) 0 0
\(157\) 19.3743i 1.54624i −0.634263 0.773118i \(-0.718696\pi\)
0.634263 0.773118i \(-0.281304\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.51856 + 15.8887i 0.198490 + 1.25220i
\(162\) 0 0
\(163\) 19.0711 1.49376 0.746881 0.664958i \(-0.231551\pi\)
0.746881 + 0.664958i \(0.231551\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 20.3137 1.56259
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 24.8156 1.88669 0.943347 0.331808i \(-0.107659\pi\)
0.943347 + 0.331808i \(0.107659\pi\)
\(174\) 0 0
\(175\) 0.171573 + 1.08239i 0.0129697 + 0.0818212i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 15.0594i 1.12560i −0.826595 0.562798i \(-0.809725\pi\)
0.826595 0.562798i \(-0.190275\pi\)
\(180\) 0 0
\(181\) −3.38104 −0.251311 −0.125656 0.992074i \(-0.540103\pi\)
−0.125656 + 0.992074i \(0.540103\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 14.5366 1.06875
\(186\) 0 0
\(187\) 14.1480i 1.03461i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.16679 −0.590928 −0.295464 0.955354i \(-0.595474\pi\)
−0.295464 + 0.955354i \(0.595474\pi\)
\(192\) 0 0
\(193\) 15.0824i 1.08566i −0.839843 0.542829i \(-0.817353\pi\)
0.839843 0.542829i \(-0.182647\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.1607 0.866413 0.433206 0.901295i \(-0.357382\pi\)
0.433206 + 0.901295i \(0.357382\pi\)
\(198\) 0 0
\(199\) 8.65914i 0.613830i 0.951737 + 0.306915i \(0.0992967\pi\)
−0.951737 + 0.306915i \(0.900703\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −10.2790 + 1.62934i −0.721441 + 0.114358i
\(204\) 0 0
\(205\) 23.9175i 1.67047i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.2790 3.85525i 0.711010 0.266673i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 19.1794i 1.30802i
\(216\) 0 0
\(217\) 0.990285 + 6.24735i 0.0672249 + 0.424098i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 32.4231i 2.18102i
\(222\) 0 0
\(223\) 9.15285 0.612920 0.306460 0.951884i \(-0.400855\pi\)
0.306460 + 0.951884i \(0.400855\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −14.5366 −0.964830 −0.482415 0.875943i \(-0.660240\pi\)
−0.482415 + 0.875943i \(0.660240\pi\)
\(228\) 0 0
\(229\) 5.22625i 0.345360i 0.984978 + 0.172680i \(0.0552427\pi\)
−0.984978 + 0.172680i \(0.944757\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −17.1978 −1.12667 −0.563333 0.826230i \(-0.690481\pi\)
−0.563333 + 0.826230i \(0.690481\pi\)
\(234\) 0 0
\(235\) −6.72792 −0.438881
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.6792 0.949521 0.474761 0.880115i \(-0.342535\pi\)
0.474761 + 0.880115i \(0.342535\pi\)
\(240\) 0 0
\(241\) −12.9441 −0.833801 −0.416901 0.908952i \(-0.636884\pi\)
−0.416901 + 0.908952i \(0.636884\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −5.03712 15.4895i −0.321810 0.989586i
\(246\) 0 0
\(247\) 23.5563 8.83509i 1.49885 0.562164i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.81906i 0.304176i −0.988367 0.152088i \(-0.951400\pi\)
0.988367 0.152088i \(-0.0485997\pi\)
\(252\) 0 0
\(253\) −15.3137 −0.962765
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.25768 −0.265587 −0.132793 0.991144i \(-0.542395\pi\)
−0.132793 + 0.991144i \(0.542395\pi\)
\(258\) 0 0
\(259\) −16.3251 + 2.58774i −1.01439 + 0.160794i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 28.9264 1.78368 0.891838 0.452354i \(-0.149416\pi\)
0.891838 + 0.452354i \(0.149416\pi\)
\(264\) 0 0
\(265\) 22.0969 1.35740
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.8156 1.51303 0.756516 0.653975i \(-0.226900\pi\)
0.756516 + 0.653975i \(0.226900\pi\)
\(270\) 0 0
\(271\) 19.7457i 1.19947i 0.800200 + 0.599733i \(0.204726\pi\)
−0.800200 + 0.599733i \(0.795274\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.04322 −0.0629086
\(276\) 0 0
\(277\) 7.41421 0.445477 0.222738 0.974878i \(-0.428500\pi\)
0.222738 + 0.974878i \(0.428500\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 28.4895i 1.69954i 0.527151 + 0.849772i \(0.323260\pi\)
−0.527151 + 0.849772i \(0.676740\pi\)
\(282\) 0 0
\(283\) 10.8239i 0.643415i 0.946839 + 0.321708i \(0.104257\pi\)
−0.946839 + 0.321708i \(0.895743\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.25768 + 26.8602i 0.251323 + 1.58551i
\(288\) 0 0
\(289\) −14.5563 −0.856256
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.2790 −0.600503 −0.300251 0.953860i \(-0.597071\pi\)
−0.300251 + 0.953860i \(0.597071\pi\)
\(294\) 0 0
\(295\) 33.8245i 1.96934i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −35.0945 −2.02957
\(300\) 0 0
\(301\) −3.41421 21.5391i −0.196792 1.24149i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.59890 −0.492372
\(306\) 0 0
\(307\) 25.4780 1.45410 0.727052 0.686582i \(-0.240890\pi\)
0.727052 + 0.686582i \(0.240890\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.0373i 0.569165i −0.958652 0.284583i \(-0.908145\pi\)
0.958652 0.284583i \(-0.0918550\pi\)
\(312\) 0 0
\(313\) 22.8072i 1.28914i 0.764547 + 0.644568i \(0.222963\pi\)
−0.764547 + 0.644568i \(0.777037\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.8008i 0.662796i 0.943491 + 0.331398i \(0.107520\pi\)
−0.943491 + 0.331398i \(0.892480\pi\)
\(318\) 0 0
\(319\) 9.90697i 0.554684i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.59890 22.9266i −0.478456 1.27567i
\(324\) 0 0
\(325\) −2.39076 −0.132615
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7.55568 1.19767i 0.416558 0.0660297i
\(330\) 0 0
\(331\) 6.24735i 0.343386i −0.985151 0.171693i \(-0.945076\pi\)
0.985151 0.171693i \(-0.0549237\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 20.5579 1.12320
\(336\) 0 0
\(337\) 21.3298i 1.16191i 0.813936 + 0.580954i \(0.197320\pi\)
−0.813936 + 0.580954i \(0.802680\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.02127 −0.326070
\(342\) 0 0
\(343\) 8.41421 + 16.4985i 0.454325 + 0.890836i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −28.9264 −1.55285 −0.776425 0.630210i \(-0.782969\pi\)
−0.776425 + 0.630210i \(0.782969\pi\)
\(348\) 0 0
\(349\) 9.18440i 0.491630i 0.969317 + 0.245815i \(0.0790555\pi\)
−0.969317 + 0.245815i \(0.920944\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 32.5074i 1.73019i 0.501607 + 0.865096i \(0.332743\pi\)
−0.501607 + 0.865096i \(0.667257\pi\)
\(354\) 0 0
\(355\) 22.0969 1.17278
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.99390 −0.210790 −0.105395 0.994430i \(-0.533611\pi\)
−0.105395 + 0.994430i \(0.533611\pi\)
\(360\) 0 0
\(361\) 14.3137 12.4947i 0.753353 0.657616i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −30.8338 −1.61392
\(366\) 0 0
\(367\) 9.18440i 0.479422i −0.970844 0.239711i \(-0.922947\pi\)
0.970844 0.239711i \(-0.0770527\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −24.8156 + 3.93358i −1.28836 + 0.204222i
\(372\) 0 0
\(373\) 30.1649i 1.56188i 0.624607 + 0.780940i \(0.285259\pi\)
−0.624607 + 0.780940i \(0.714741\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 22.7039i 1.16931i
\(378\) 0 0
\(379\) 36.4122i 1.87037i −0.354157 0.935186i \(-0.615232\pi\)
0.354157 0.935186i \(-0.384768\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.02127 0.307673 0.153836 0.988096i \(-0.450837\pi\)
0.153836 + 0.988096i \(0.450837\pi\)
\(384\) 0 0
\(385\) 15.3137 2.42742i 0.780459 0.123713i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 30.8338 1.56334 0.781669 0.623694i \(-0.214369\pi\)
0.781669 + 0.623694i \(0.214369\pi\)
\(390\) 0 0
\(391\) 34.1563i 1.72736i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 14.5366 0.731417
\(396\) 0 0
\(397\) 16.9469i 0.850538i −0.905067 0.425269i \(-0.860179\pi\)
0.905067 0.425269i \(-0.139821\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 25.2309i 1.25997i −0.776608 0.629984i \(-0.783061\pi\)
0.776608 0.629984i \(-0.216939\pi\)
\(402\) 0 0
\(403\) −13.7990 −0.687377
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 15.7343i 0.779922i
\(408\) 0 0
\(409\) 10.5533 0.521828 0.260914 0.965362i \(-0.415976\pi\)
0.260914 + 0.965362i \(0.415976\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.02127 + 37.9861i 0.296287 + 1.86917i
\(414\) 0 0
\(415\) 16.2426 0.797320
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 17.9817i 0.878463i 0.898374 + 0.439231i \(0.144749\pi\)
−0.898374 + 0.439231i \(0.855251\pi\)
\(420\) 0 0
\(421\) 2.58774i 0.126119i −0.998010 0.0630593i \(-0.979914\pi\)
0.998010 0.0630593i \(-0.0200857\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.32685i 0.112869i
\(426\) 0 0
\(427\) 9.65685 1.53073i 0.467328 0.0740774i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 22.9266i 1.10434i −0.833733 0.552168i \(-0.813801\pi\)
0.833733 0.552168i \(-0.186199\pi\)
\(432\) 0 0
\(433\) 29.2692 1.40659 0.703294 0.710899i \(-0.251712\pi\)
0.703294 + 0.710899i \(0.251712\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −24.8156 + 9.30739i −1.18709 + 0.445233i
\(438\) 0 0
\(439\) 9.15285 0.436842 0.218421 0.975855i \(-0.429909\pi\)
0.218421 + 0.975855i \(0.429909\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 21.1917 1.00685 0.503424 0.864039i \(-0.332073\pi\)
0.503424 + 0.864039i \(0.332073\pi\)
\(444\) 0 0
\(445\) 23.9175i 1.13380i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 25.2309i 1.19072i 0.803460 + 0.595359i \(0.202990\pi\)
−0.803460 + 0.595359i \(0.797010\pi\)
\(450\) 0 0
\(451\) −25.8882 −1.21903
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 35.0945 5.56293i 1.64526 0.260794i
\(456\) 0 0
\(457\) −32.3848 −1.51490 −0.757448 0.652896i \(-0.773554\pi\)
−0.757448 + 0.652896i \(0.773554\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.4004i 0.530968i −0.964115 0.265484i \(-0.914468\pi\)
0.964115 0.265484i \(-0.0855318\pi\)
\(462\) 0 0
\(463\) −32.2843 −1.50038 −0.750189 0.661224i \(-0.770037\pi\)
−0.750189 + 0.661224i \(0.770037\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.7969i 1.14746i −0.819044 0.573731i \(-0.805496\pi\)
0.819044 0.573731i \(-0.194504\pi\)
\(468\) 0 0
\(469\) −23.0872 + 3.65962i −1.06607 + 0.168985i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 20.7596 0.954527
\(474\) 0 0
\(475\) −1.69052 + 0.634051i −0.0775665 + 0.0290922i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 30.8136i 1.40791i −0.710245 0.703954i \(-0.751416\pi\)
0.710245 0.703954i \(-0.248584\pi\)
\(480\) 0 0
\(481\) 36.0585i 1.64413i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8.83509i 0.400356i −0.979760 0.200178i \(-0.935848\pi\)
0.979760 0.200178i \(-0.0641521\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 28.9264 1.30543 0.652714 0.757604i \(-0.273630\pi\)
0.652714 + 0.757604i \(0.273630\pi\)
\(492\) 0 0
\(493\) −22.0969 −0.995196
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −24.8156 + 3.93358i −1.11313 + 0.176445i
\(498\) 0 0
\(499\) −2.34315 −0.104894 −0.0524468 0.998624i \(-0.516702\pi\)
−0.0524468 + 0.998624i \(0.516702\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.18209i 0.275646i 0.990457 + 0.137823i \(0.0440105\pi\)
−0.990457 + 0.137823i \(0.955990\pi\)
\(504\) 0 0
\(505\) −17.5563 −0.781247
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −24.8156 −1.09993 −0.549966 0.835187i \(-0.685359\pi\)
−0.549966 + 0.835187i \(0.685359\pi\)
\(510\) 0 0
\(511\) 34.6274 5.48888i 1.53183 0.242814i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 18.9930i 0.836933i
\(516\) 0 0
\(517\) 7.28225i 0.320273i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −18.7943 −0.823394 −0.411697 0.911321i \(-0.635064\pi\)
−0.411697 + 0.911321i \(0.635064\pi\)
\(522\) 0 0
\(523\) 32.2401 1.40976 0.704880 0.709327i \(-0.251001\pi\)
0.704880 + 0.709327i \(0.251001\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13.4301i 0.585024i
\(528\) 0 0
\(529\) 13.9706 0.607416
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −59.3281 −2.56978
\(534\) 0 0
\(535\) −35.0410 −1.51495
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −16.7657 + 5.45214i −0.722149 + 0.234840i
\(540\) 0 0
\(541\) 26.6274 1.14480 0.572401 0.819974i \(-0.306012\pi\)
0.572401 + 0.819974i \(0.306012\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −20.5579 −0.880604
\(546\) 0 0
\(547\) 9.90697i 0.423591i 0.977314 + 0.211796i \(0.0679311\pi\)
−0.977314 + 0.211796i \(0.932069\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.02127 16.0541i −0.256515 0.683926i
\(552\) 0 0
\(553\) −16.3251 + 2.58774i −0.694215 + 0.110042i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17.8089 0.754588 0.377294 0.926094i \(-0.376855\pi\)
0.377294 + 0.926094i \(0.376855\pi\)
\(558\) 0 0
\(559\) 47.5749 2.01220
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20.5579 −0.866412 −0.433206 0.901295i \(-0.642618\pi\)
−0.433206 + 0.901295i \(0.642618\pi\)
\(564\) 0 0
\(565\) −9.15285 −0.385063
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 25.2309i 1.05773i −0.848705 0.528866i \(-0.822617\pi\)
0.848705 0.528866i \(-0.177383\pi\)
\(570\) 0 0
\(571\) −12.8284 −0.536853 −0.268426 0.963300i \(-0.586504\pi\)
−0.268426 + 0.963300i \(0.586504\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.51856 0.105031
\(576\) 0 0
\(577\) 24.9719i 1.03960i −0.854289 0.519798i \(-0.826007\pi\)
0.854289 0.519798i \(-0.173993\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −18.2410 + 2.89143i −0.756765 + 0.119957i
\(582\) 0 0
\(583\) 23.9175i 0.990563i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 42.3793i 1.74918i 0.484861 + 0.874591i \(0.338870\pi\)
−0.484861 + 0.874591i \(0.661130\pi\)
\(588\) 0 0
\(589\) −9.75736 + 3.65962i −0.402045 + 0.150792i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.6910i 0.603288i −0.953421 0.301644i \(-0.902465\pi\)
0.953421 0.301644i \(-0.0975354\pi\)
\(594\) 0 0
\(595\) −5.41421 34.1563i −0.221961 1.40027i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 30.7938i 1.25820i 0.777324 + 0.629100i \(0.216576\pi\)
−0.777324 + 0.629100i \(0.783424\pi\)
\(600\) 0 0
\(601\) 9.56304 0.390084 0.195042 0.980795i \(-0.437516\pi\)
0.195042 + 0.980795i \(0.437516\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.8358i 0.440537i
\(606\) 0 0
\(607\) −13.5242 −0.548929 −0.274465 0.961597i \(-0.588501\pi\)
−0.274465 + 0.961597i \(0.588501\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16.6888i 0.675156i
\(612\) 0 0
\(613\) 22.5269 0.909853 0.454927 0.890529i \(-0.349665\pi\)
0.454927 + 0.890529i \(0.349665\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −0.611105 −0.0246022 −0.0123011 0.999924i \(-0.503916\pi\)
−0.0123011 + 0.999924i \(0.503916\pi\)
\(618\) 0 0
\(619\) 10.1899i 0.409566i 0.978807 + 0.204783i \(0.0656488\pi\)
−0.978807 + 0.204783i \(0.934351\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.25768 26.8602i −0.170580 1.07613i
\(624\) 0 0
\(625\) −26.8995 −1.07598
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −35.0945 −1.39931
\(630\) 0 0
\(631\) −13.2132 −0.526009 −0.263005 0.964795i \(-0.584713\pi\)
−0.263005 + 0.964795i \(0.584713\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 29.0733 1.15374
\(636\) 0 0
\(637\) −38.4221 + 12.4947i −1.52234 + 0.495058i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 34.0525i 1.34499i −0.740101 0.672496i \(-0.765222\pi\)
0.740101 0.672496i \(-0.234778\pi\)
\(642\) 0 0
\(643\) 5.59767i 0.220751i −0.993890 0.110375i \(-0.964795\pi\)
0.993890 0.110375i \(-0.0352053\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 36.2657i 1.42575i 0.701290 + 0.712876i \(0.252608\pi\)
−0.701290 + 0.712876i \(0.747392\pi\)
\(648\) 0 0
\(649\) −36.6114 −1.43712
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 15.1114 0.591353 0.295677 0.955288i \(-0.404455\pi\)
0.295677 + 0.955288i \(0.404455\pi\)
\(654\) 0 0
\(655\) 27.0711 1.05775
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.49651i 0.369932i 0.982745 + 0.184966i \(0.0592174\pi\)
−0.982745 + 0.184966i \(0.940783\pi\)
\(660\) 0 0
\(661\) −7.75237 −0.301532 −0.150766 0.988569i \(-0.548174\pi\)
−0.150766 + 0.988569i \(0.548174\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 23.3402 13.2410i 0.905096 0.513463i
\(666\) 0 0
\(667\) 23.9175i 0.926091i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 9.30739i 0.359308i
\(672\) 0 0
\(673\) 11.4228i 0.440318i 0.975464 + 0.220159i \(0.0706576\pi\)
−0.975464 + 0.220159i \(0.929342\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −30.8369 −1.18516 −0.592578 0.805513i \(-0.701890\pi\)
−0.592578 + 0.805513i \(0.701890\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.19227i 0.275205i 0.990488 + 0.137602i \(0.0439396\pi\)
−0.990488 + 0.137602i \(0.956060\pi\)
\(684\) 0 0
\(685\) 15.1535i 0.578985i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 54.8120i 2.08817i
\(690\) 0 0
\(691\) 25.4972i 0.969960i 0.874525 + 0.484980i \(0.161173\pi\)
−0.874525 + 0.484980i \(0.838827\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.59890 0.326175
\(696\) 0 0
\(697\) 57.7421i 2.18714i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 47.1674 1.78149 0.890744 0.454505i \(-0.150184\pi\)
0.890744 + 0.454505i \(0.150184\pi\)
\(702\) 0 0
\(703\) −9.56304 25.4972i −0.360677 0.961645i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 19.7164 3.12529i 0.741510 0.117539i
\(708\) 0 0
\(709\) −33.0711 −1.24201 −0.621005 0.783807i \(-0.713275\pi\)
−0.621005 + 0.783807i \(0.713275\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.5366 0.544401
\(714\) 0 0
\(715\) 33.8245i 1.26496i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.8358i 0.404107i 0.979375 + 0.202053i \(0.0647614\pi\)
−0.979375 + 0.202053i \(0.935239\pi\)
\(720\) 0 0
\(721\) 3.38104 + 21.3298i 0.125917 + 0.794363i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.62934i 0.0605123i
\(726\) 0 0
\(727\) 19.7457i 0.732327i −0.930550 0.366164i \(-0.880671\pi\)
0.930550 0.366164i \(-0.119329\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 46.3031i 1.71258i
\(732\) 0 0
\(733\) 22.0643i 0.814964i 0.913213 + 0.407482i \(0.133593\pi\)
−0.913213 + 0.407482i \(0.866407\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 22.2517i 0.819652i
\(738\) 0 0
\(739\) 19.5563 0.719392 0.359696 0.933070i \(-0.382880\pi\)
0.359696 + 0.933070i \(0.382880\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.19227i 0.263859i −0.991259 0.131929i \(-0.957883\pi\)
0.991259 0.131929i \(-0.0421172\pi\)
\(744\) 0 0
\(745\) 28.2960i 1.03669i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 39.3522 6.23783i 1.43790 0.227925i
\(750\) 0 0
\(751\) 27.5772i 1.00630i −0.864198 0.503152i \(-0.832173\pi\)
0.864198 0.503152i \(-0.167827\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 55.6524 2.02540
\(756\) 0 0
\(757\) −37.6569 −1.36866 −0.684331 0.729172i \(-0.739906\pi\)
−0.684331 + 0.729172i \(0.739906\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.52840i 0.0554044i −0.999616 0.0277022i \(-0.991181\pi\)
0.999616 0.0277022i \(-0.00881901\pi\)
\(762\) 0 0
\(763\) 23.0872 3.65962i 0.835813 0.132487i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −83.9026 −3.02955
\(768\) 0 0
\(769\) 29.4554i 1.06219i 0.847313 + 0.531094i \(0.178219\pi\)
−0.847313 + 0.531094i \(0.821781\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4.25768 −0.153138 −0.0765691 0.997064i \(-0.524397\pi\)
−0.0765691 + 0.997064i \(0.524397\pi\)
\(774\) 0 0
\(775\) 0.990285 0.0355721
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −41.9513 + 15.7343i −1.50306 + 0.563741i
\(780\) 0 0
\(781\) 23.9175i 0.855837i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 45.0810 1.60901
\(786\) 0 0
\(787\) −27.4585 −0.978791 −0.489396 0.872062i \(-0.662783\pi\)
−0.489396 + 0.872062i \(0.662783\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 10.2790 1.62934i 0.365477 0.0579328i
\(792\) 0 0
\(793\) 21.3298i 0.757443i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.3002 0.577384 0.288692 0.957422i \(-0.406780\pi\)
0.288692 + 0.957422i \(0.406780\pi\)
\(798\) 0 0
\(799\) 16.2426 0.574623
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 33.3743i 1.17775i
\(804\) 0 0
\(805\) −36.9706 + 5.86030i −1.30304 + 0.206549i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −15.7225 −0.552772 −0.276386 0.961047i \(-0.589137\pi\)
−0.276386 + 0.961047i \(0.589137\pi\)
\(810\) 0 0
\(811\) −5.36161 −0.188272 −0.0941359 0.995559i \(-0.530009\pi\)
−0.0941359 + 0.995559i \(0.530009\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 44.3754i 1.55440i
\(816\) 0 0
\(817\) 33.6405 12.6173i 1.17693 0.441423i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.59890 0.300104 0.150052 0.988678i \(-0.452056\pi\)
0.150052 + 0.988678i \(0.452056\pi\)
\(822\) 0 0
\(823\) −31.0711 −1.08307 −0.541535 0.840678i \(-0.682157\pi\)
−0.541535 + 0.840678i \(0.682157\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.4895i 0.990678i −0.868700 0.495339i \(-0.835044\pi\)
0.868700 0.495339i \(-0.164956\pi\)
\(828\) 0 0
\(829\) −6.76209 −0.234857 −0.117429 0.993081i \(-0.537465\pi\)
−0.117429 + 0.993081i \(0.537465\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 12.1607 + 37.3949i 0.421343 + 1.29566i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −6.02127 −0.207877 −0.103939 0.994584i \(-0.533145\pi\)
−0.103939 + 0.994584i \(0.533145\pi\)
\(840\) 0 0
\(841\) 13.5269 0.466445
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 47.2669i 1.62603i
\(846\) 0 0
\(847\) 1.92893 + 12.1689i 0.0662789 + 0.418130i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 37.9861i 1.30215i
\(852\) 0 0
\(853\) 54.4273i 1.86356i 0.363029 + 0.931778i \(0.381742\pi\)
−0.363029 + 0.931778i \(0.618258\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 10.2790 0.351122 0.175561 0.984469i \(-0.443826\pi\)
0.175561 + 0.984469i \(0.443826\pi\)
\(858\) 0 0
\(859\) 30.9861i 1.05723i 0.848861 + 0.528616i \(0.177289\pi\)
−0.848861 + 0.528616i \(0.822711\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 38.6609i 1.31603i 0.753003 + 0.658017i \(0.228605\pi\)
−0.753003 + 0.658017i \(0.771395\pi\)
\(864\) 0 0
\(865\) 57.7421i 1.96329i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 15.7343i 0.533751i
\(870\) 0 0
\(871\) 50.9944i 1.72788i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 27.8832 4.41983i 0.942623 0.149418i
\(876\) 0 0
\(877\) 33.8245i 1.14217i 0.820890 + 0.571086i \(0.193478\pi\)
−0.820890 + 0.571086i \(0.806522\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 5.38364i 0.181380i 0.995879 + 0.0906898i \(0.0289072\pi\)
−0.995879 + 0.0906898i \(0.971093\pi\)
\(882\) 0 0
\(883\) −22.6274 −0.761473 −0.380737 0.924684i \(-0.624330\pi\)
−0.380737 + 0.924684i \(0.624330\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 55.6524 1.86863 0.934313 0.356454i \(-0.116014\pi\)
0.934313 + 0.356454i \(0.116014\pi\)
\(888\) 0 0
\(889\) −32.6502 + 5.17548i −1.09505 + 0.173580i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.42602 + 11.8008i 0.148111 + 0.394897i
\(894\) 0 0
\(895\) 35.0410 1.17129
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.40425i 0.313649i
\(900\) 0 0
\(901\) −53.3467 −1.77724
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7.86717i 0.261514i
\(906\) 0 0
\(907\) 8.83509i 0.293364i −0.989184 0.146682i \(-0.953141\pi\)
0.989184 0.146682i \(-0.0468595\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 44.2239i 1.46520i 0.680658 + 0.732601i \(0.261694\pi\)
−0.680658 + 0.732601i \(0.738306\pi\)
\(912\) 0 0
\(913\) 17.5809i 0.581843i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −30.4017 + 4.81906i −1.00395 + 0.159139i
\(918\) 0 0
\(919\) 7.17157 0.236568 0.118284 0.992980i \(-0.462261\pi\)
0.118284 + 0.992980i \(0.462261\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 54.8120i 1.80416i
\(924\) 0 0
\(925\) 2.58774i 0.0850843i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 5.61750i 0.184304i 0.995745 + 0.0921522i \(0.0293746\pi\)
−0.995745 + 0.0921522i \(0.970625\pi\)
\(930\) 0 0
\(931\) −23.8548 + 19.0250i −0.781809 + 0.623518i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 32.9203 1.07661
\(936\) 0 0
\(937\) 9.03056i 0.295015i −0.989061 0.147508i \(-0.952875\pi\)
0.989061 0.147508i \(-0.0471251\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.25768 0.138796 0.0693982 0.997589i \(-0.477892\pi\)
0.0693982 + 0.997589i \(0.477892\pi\)
\(942\) 0 0
\(943\) 62.4995 2.03527
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 16.7657 0.544812 0.272406 0.962182i \(-0.412181\pi\)
0.272406 + 0.962182i \(0.412181\pi\)
\(948\) 0 0
\(949\) 76.4841i 2.48278i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 9.49651i 0.307622i 0.988100 + 0.153811i \(0.0491547\pi\)
−0.988100 + 0.153811i \(0.950845\pi\)
\(954\) 0 0
\(955\) 19.0029i 0.614918i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.69755 + 17.0179i 0.0871084 + 0.549536i
\(960\) 0 0
\(961\) −25.2843 −0.815622
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 35.0945 1.12973
\(966\) 0 0
\(967\) 16.0416 0.515864 0.257932 0.966163i \(-0.416959\pi\)
0.257932 + 0.966163i \(0.416959\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6.02127 0.193232 0.0966159 0.995322i \(-0.469198\pi\)
0.0966159 + 0.995322i \(0.469198\pi\)
\(972\) 0 0
\(973\) −9.65685 + 1.53073i −0.309585 + 0.0490731i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 28.4895i 0.911461i 0.890118 + 0.455731i \(0.150622\pi\)
−0.890118 + 0.455731i \(0.849378\pi\)
\(978\) 0 0
\(979\) 25.8882 0.827389
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −6.02127 −0.192049 −0.0960244 0.995379i \(-0.530613\pi\)
−0.0960244 + 0.995379i \(0.530613\pi\)
\(984\) 0 0
\(985\) 28.2960i 0.901587i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −50.1181 −1.59366
\(990\) 0 0
\(991\) 8.83509i 0.280656i 0.990105 + 0.140328i \(0.0448157\pi\)
−0.990105 + 0.140328i \(0.955184\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −20.1485 −0.638750
\(996\) 0 0
\(997\) 38.4859i 1.21886i 0.792839 + 0.609431i \(0.208602\pi\)
−0.792839 + 0.609431i \(0.791398\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.i.h.3457.14 yes 16
3.2 odd 2 inner 4788.2.i.h.3457.2 yes 16
7.6 odd 2 inner 4788.2.i.h.3457.3 yes 16
19.18 odd 2 inner 4788.2.i.h.3457.13 yes 16
21.20 even 2 inner 4788.2.i.h.3457.15 yes 16
57.56 even 2 inner 4788.2.i.h.3457.1 16
133.132 even 2 inner 4788.2.i.h.3457.4 yes 16
399.398 odd 2 inner 4788.2.i.h.3457.16 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4788.2.i.h.3457.1 16 57.56 even 2 inner
4788.2.i.h.3457.2 yes 16 3.2 odd 2 inner
4788.2.i.h.3457.3 yes 16 7.6 odd 2 inner
4788.2.i.h.3457.4 yes 16 133.132 even 2 inner
4788.2.i.h.3457.13 yes 16 19.18 odd 2 inner
4788.2.i.h.3457.14 yes 16 1.1 even 1 trivial
4788.2.i.h.3457.15 yes 16 21.20 even 2 inner
4788.2.i.h.3457.16 yes 16 399.398 odd 2 inner