Properties

Label 4788.2.w.b
Level 47884788
Weight 22
Character orbit 4788.w
Analytic conductor 38.23238.232
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(505,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.505");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4788=2232719 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4788.w (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 38.232372487838.2323724878
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 532)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3ζ63)q5+q75ζ6q13+(3ζ63)q17+(2ζ6+5)q193ζ6q234ζ6q25+3ζ6q29+8q31+(3ζ63)q35++(17ζ617)q97+O(q100) q + (3 \zeta_{6} - 3) q^{5} + q^{7} - 5 \zeta_{6} q^{13} + (3 \zeta_{6} - 3) q^{17} + ( - 2 \zeta_{6} + 5) q^{19} - 3 \zeta_{6} q^{23} - 4 \zeta_{6} q^{25} + 3 \zeta_{6} q^{29} + 8 q^{31} + (3 \zeta_{6} - 3) q^{35} + \cdots + (17 \zeta_{6} - 17) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q3q5+2q75q133q17+8q193q234q25+3q29+16q313q35+4q373q41+q439q47+2q49+3q53+9q59+7q61+30q65+17q97+O(q100) 2 q - 3 q^{5} + 2 q^{7} - 5 q^{13} - 3 q^{17} + 8 q^{19} - 3 q^{23} - 4 q^{25} + 3 q^{29} + 16 q^{31} - 3 q^{35} + 4 q^{37} - 3 q^{41} + q^{43} - 9 q^{47} + 2 q^{49} + 3 q^{53} + 9 q^{59} + 7 q^{61} + 30 q^{65}+ \cdots - 17 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4788Z)×\left(\mathbb{Z}/4788\mathbb{Z}\right)^\times.

nn 533533 10091009 23952395 41054105
χ(n)\chi(n) 11 ζ6-\zeta_{6} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
505.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −1.50000 + 2.59808i 0 1.00000 0 0 0
1261.1 0 0 0 −1.50000 2.59808i 0 1.00000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4788.2.w.b 2
3.b odd 2 1 532.2.j.a 2
19.c even 3 1 inner 4788.2.w.b 2
57.h odd 6 1 532.2.j.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
532.2.j.a 2 3.b odd 2 1
532.2.j.a 2 57.h odd 6 1
4788.2.w.b 2 1.a even 1 1 trivial
4788.2.w.b 2 19.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(4788,[χ])S_{2}^{\mathrm{new}}(4788, [\chi]):

T52+3T5+9 T_{5}^{2} + 3T_{5} + 9 Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
77 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
1717 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
1919 T28T+19 T^{2} - 8T + 19 Copy content Toggle raw display
2323 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
2929 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
3131 (T8)2 (T - 8)^{2} Copy content Toggle raw display
3737 (T2)2 (T - 2)^{2} Copy content Toggle raw display
4141 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
4343 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
4747 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
5353 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
5959 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
6161 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
6767 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
7171 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
7373 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
7979 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
8383 (T12)2 (T - 12)^{2} Copy content Toggle raw display
8989 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
9797 T2+17T+289 T^{2} + 17T + 289 Copy content Toggle raw display
show more
show less