Properties

Label 4788.2.w.i
Level 47884788
Weight 22
Character orbit 4788.w
Analytic conductor 38.23238.232
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(505,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.505");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4788=2232719 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4788.w (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 38.232372487838.2323724878
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x126x11+43x10160x9+520x81186x7+2131x62848x5+2893x4++48 x^{12} - 6 x^{11} + 43 x^{10} - 160 x^{9} + 520 x^{8} - 1186 x^{7} + 2131 x^{6} - 2848 x^{5} + 2893 x^{4} + \cdots + 48 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 223 2^{2}\cdot 3
Twist minimal: no (minimal twist has level 1596)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β5β3)q5q7+(β7β4+β1+1)q11+(β11+β10+β3)q13+(β6+β2)q17+(β11β10β8++1)q19++(β11+β7+3β2)q97+O(q100) q + (\beta_{5} - \beta_{3}) q^{5} - q^{7} + ( - \beta_{7} - \beta_{4} + \beta_1 + 1) q^{11} + ( - \beta_{11} + \beta_{10} + \cdots - \beta_{3}) q^{13} + (\beta_{6} + \beta_{2}) q^{17} + (\beta_{11} - \beta_{10} - \beta_{8} + \cdots + 1) q^{19}+ \cdots + (\beta_{11} + \beta_{7} + \cdots - 3 \beta_{2}) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q12q7+4q11+4q13+5q17+5q19+7q2312q253q2914q312q3713q41+3q43+q47+12q49+21q539q55+4q5911q61+11q97+O(q100) 12 q - 12 q^{7} + 4 q^{11} + 4 q^{13} + 5 q^{17} + 5 q^{19} + 7 q^{23} - 12 q^{25} - 3 q^{29} - 14 q^{31} - 2 q^{37} - 13 q^{41} + 3 q^{43} + q^{47} + 12 q^{49} + 21 q^{53} - 9 q^{55} + 4 q^{59} - 11 q^{61}+ \cdots - 11 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x126x11+43x10160x9+520x81186x7+2131x62848x5+2893x4++48 x^{12} - 6 x^{11} + 43 x^{10} - 160 x^{9} + 520 x^{8} - 1186 x^{7} + 2131 x^{6} - 2848 x^{5} + 2893 x^{4} + \cdots + 48 : Copy content Toggle raw display

β1\beta_{1}== (175ν11+544ν105012ν9+9591ν832704ν7+31412ν6++7404)/648 ( - 175 \nu^{11} + 544 \nu^{10} - 5012 \nu^{9} + 9591 \nu^{8} - 32704 \nu^{7} + 31412 \nu^{6} + \cdots + 7404 ) / 648 Copy content Toggle raw display
β2\beta_{2}== (64ν11352ν10+2414ν98223ν8+23296ν745626ν6+58248ν5++2280)/324 ( 64 \nu^{11} - 352 \nu^{10} + 2414 \nu^{9} - 8223 \nu^{8} + 23296 \nu^{7} - 45626 \nu^{6} + 58248 \nu^{5} + \cdots + 2280 ) / 324 Copy content Toggle raw display
β3\beta_{3}== (169ν11+682ν105477ν9+14208ν844380ν7+67310ν6++1752)/432 ( - 169 \nu^{11} + 682 \nu^{10} - 5477 \nu^{9} + 14208 \nu^{8} - 44380 \nu^{7} + 67310 \nu^{6} + \cdots + 1752 ) / 432 Copy content Toggle raw display
β4\beta_{4}== (178ν111897ν10+11309ν956130ν8+170362ν7439586ν6+11256)/1296 ( 178 \nu^{11} - 1897 \nu^{10} + 11309 \nu^{9} - 56130 \nu^{8} + 170362 \nu^{7} - 439586 \nu^{6} + \cdots - 11256 ) / 1296 Copy content Toggle raw display
β5\beta_{5}== (55ν10+275ν92008ν8+6382ν719238ν6+36532ν5+2496)/48 ( - 55 \nu^{10} + 275 \nu^{9} - 2008 \nu^{8} + 6382 \nu^{7} - 19238 \nu^{6} + 36532 \nu^{5} + \cdots - 2496 ) / 48 Copy content Toggle raw display
β6\beta_{6}== (167ν112120ν10+12871ν967602ν8+218360ν7586330ν6+56208)/1296 ( 167 \nu^{11} - 2120 \nu^{10} + 12871 \nu^{9} - 67602 \nu^{8} + 218360 \nu^{7} - 586330 \nu^{6} + \cdots - 56208 ) / 1296 Copy content Toggle raw display
β7\beta_{7}== (176ν11+941ν106841ν9+23160ν872434ν7+149434ν6++6960)/432 ( - 176 \nu^{11} + 941 \nu^{10} - 6841 \nu^{9} + 23160 \nu^{8} - 72434 \nu^{7} + 149434 \nu^{6} + \cdots + 6960 ) / 432 Copy content Toggle raw display
β8\beta_{8}== (34ν10170ν9+1231ν83904ν7+11564ν621742ν5+29854ν4++756)/24 ( 34 \nu^{10} - 170 \nu^{9} + 1231 \nu^{8} - 3904 \nu^{7} + 11564 \nu^{6} - 21742 \nu^{5} + 29854 \nu^{4} + \cdots + 756 ) / 24 Copy content Toggle raw display
β9\beta_{9}== (319ν11+1291ν1010016ν9+25530ν873006ν7+98300ν6+7824)/432 ( - 319 \nu^{11} + 1291 \nu^{10} - 10016 \nu^{9} + 25530 \nu^{8} - 73006 \nu^{7} + 98300 \nu^{6} + \cdots - 7824 ) / 432 Copy content Toggle raw display
β10\beta_{10}== (89ν10+445ν93230ν8+10250ν730514ν6+57536ν5+2616)/48 ( - 89 \nu^{10} + 445 \nu^{9} - 3230 \nu^{8} + 10250 \nu^{7} - 30514 \nu^{6} + 57536 \nu^{5} + \cdots - 2616 ) / 48 Copy content Toggle raw display
β11\beta_{11}== (319ν111606ν10+11591ν936996ν8+109420ν7207362ν6+1032)/432 ( 319 \nu^{11} - 1606 \nu^{10} + 11591 \nu^{9} - 36996 \nu^{8} + 109420 \nu^{7} - 207362 \nu^{6} + \cdots - 1032 ) / 432 Copy content Toggle raw display
ν\nu== (β11+2β10+β9+β8β74β6+β5+β4++2)/6 ( - \beta_{11} + 2 \beta_{10} + \beta_{9} + \beta_{8} - \beta_{7} - 4 \beta_{6} + \beta_{5} + \beta_{4} + \cdots + 2 ) / 6 Copy content Toggle raw display
ν2\nu^{2}== (4β11+β10+5β9+2β8+4β72β6β5+14)/3 ( 4 \beta_{11} + \beta_{10} + 5 \beta_{9} + 2 \beta_{8} + 4 \beta_{7} - 2 \beta_{6} - \beta_{5} + \cdots - 14 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (35β1116β108β920β8+29β7+32β617β5+10)/6 ( 35 \beta_{11} - 16 \beta_{10} - 8 \beta_{9} - 20 \beta_{8} + 29 \beta_{7} + 32 \beta_{6} - 17 \beta_{5} + \cdots - 10 ) / 6 Copy content Toggle raw display
ν4\nu^{4}== (41β1138β1085β967β856β7+34β6++193)/3 ( - 41 \beta_{11} - 38 \beta_{10} - 85 \beta_{9} - 67 \beta_{8} - 56 \beta_{7} + 34 \beta_{6} + \cdots + 193 ) / 3 Copy content Toggle raw display
ν5\nu^{5}== (670β11+68β105β9+109β8610β7346β6++308)/6 ( - 670 \beta_{11} + 68 \beta_{10} - 5 \beta_{9} + 109 \beta_{8} - 610 \beta_{7} - 346 \beta_{6} + \cdots + 308 ) / 6 Copy content Toggle raw display
ν6\nu^{6}== (307β11+712β10+1415β9+1241β8+601β7605β6+2975)/3 ( 307 \beta_{11} + 712 \beta_{10} + 1415 \beta_{9} + 1241 \beta_{8} + 601 \beta_{7} - 605 \beta_{6} + \cdots - 2975 ) / 3 Copy content Toggle raw display
ν7\nu^{7}== (11711β11+1238β10+2737β9+1501β8+11279β7+3992β6+9430)/6 ( 11711 \beta_{11} + 1238 \beta_{10} + 2737 \beta_{9} + 1501 \beta_{8} + 11279 \beta_{7} + 3992 \beta_{6} + \cdots - 9430 ) / 6 Copy content Toggle raw display
ν8\nu^{8}== (979β1111105β1022243β919876β84181β7+10888β6++44944)/3 ( 979 \beta_{11} - 11105 \beta_{10} - 22243 \beta_{9} - 19876 \beta_{8} - 4181 \beta_{7} + 10888 \beta_{6} + \cdots + 44944 ) / 3 Copy content Toggle raw display
ν9\nu^{9}== (192037β1149348β1088916β970532β8194779β7++235634)/6 ( - 192037 \beta_{11} - 49348 \beta_{10} - 88916 \beta_{9} - 70532 \beta_{8} - 194779 \beta_{7} + \cdots + 235634 ) / 6 Copy content Toggle raw display
ν10\nu^{10}== (113567β11+155884β10+326378β9+292052β828484β7+635975)/3 ( - 113567 \beta_{11} + 155884 \beta_{10} + 326378 \beta_{9} + 292052 \beta_{8} - 28484 \beta_{7} + \cdots - 635975 ) / 3 Copy content Toggle raw display
ν11\nu^{11}== (2957654β11+1171160β10+2125171β9+1791721β8+3171470β7+5123224)/6 ( 2957654 \beta_{11} + 1171160 \beta_{10} + 2125171 \beta_{9} + 1791721 \beta_{8} + 3171470 \beta_{7} + \cdots - 5123224 ) / 6 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4788Z)×\left(\mathbb{Z}/4788\mathbb{Z}\right)^\times.

nn 533533 10091009 23952395 41054105
χ(n)\chi(n) 11 1+β2-1 + \beta_{2} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
505.1
0.500000 + 0.164209i
0.500000 1.20417i
0.500000 + 2.63232i
0.500000 4.04612i
0.500000 + 1.21594i
0.500000 0.494229i
0.500000 0.164209i
0.500000 + 1.20417i
0.500000 2.63232i
0.500000 + 4.04612i
0.500000 1.21594i
0.500000 + 0.494229i
0 0 0 −2.09059 + 3.62100i 0 −1.00000 0 0 0
505.2 0 0 0 −0.722028 + 1.25059i 0 −1.00000 0 0 0
505.3 0 0 0 −0.270998 + 0.469382i 0 −1.00000 0 0 0
505.4 0 0 0 −0.140828 + 0.243922i 0 −1.00000 0 0 0
505.5 0 0 0 1.21452 2.10361i 0 −1.00000 0 0 0
505.6 0 0 0 2.00992 3.48129i 0 −1.00000 0 0 0
1261.1 0 0 0 −2.09059 3.62100i 0 −1.00000 0 0 0
1261.2 0 0 0 −0.722028 1.25059i 0 −1.00000 0 0 0
1261.3 0 0 0 −0.270998 0.469382i 0 −1.00000 0 0 0
1261.4 0 0 0 −0.140828 0.243922i 0 −1.00000 0 0 0
1261.5 0 0 0 1.21452 + 2.10361i 0 −1.00000 0 0 0
1261.6 0 0 0 2.00992 + 3.48129i 0 −1.00000 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 505.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4788.2.w.i 12
3.b odd 2 1 1596.2.s.f 12
19.c even 3 1 inner 4788.2.w.i 12
57.h odd 6 1 1596.2.s.f 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1596.2.s.f 12 3.b odd 2 1
1596.2.s.f 12 57.h odd 6 1
4788.2.w.i 12 1.a even 1 1 trivial
4788.2.w.i 12 19.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(4788,[χ])S_{2}^{\mathrm{new}}(4788, [\chi]):

T512+21T510+2T59+372T58+72T57+1468T56+2073T55++81 T_{5}^{12} + 21 T_{5}^{10} + 2 T_{5}^{9} + 372 T_{5}^{8} + 72 T_{5}^{7} + 1468 T_{5}^{6} + 2073 T_{5}^{5} + \cdots + 81 Copy content Toggle raw display
T1162T11528T114+76T113+158T112656T11+523 T_{11}^{6} - 2T_{11}^{5} - 28T_{11}^{4} + 76T_{11}^{3} + 158T_{11}^{2} - 656T_{11} + 523 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12+21T10++81 T^{12} + 21 T^{10} + \cdots + 81 Copy content Toggle raw display
77 (T+1)12 (T + 1)^{12} Copy content Toggle raw display
1111 (T62T5++523)2 (T^{6} - 2 T^{5} + \cdots + 523)^{2} Copy content Toggle raw display
1313 T124T11++20736 T^{12} - 4 T^{11} + \cdots + 20736 Copy content Toggle raw display
1717 T125T11++81 T^{12} - 5 T^{11} + \cdots + 81 Copy content Toggle raw display
1919 T125T11++47045881 T^{12} - 5 T^{11} + \cdots + 47045881 Copy content Toggle raw display
2323 T12++116294656 T^{12} + \cdots + 116294656 Copy content Toggle raw display
2929 T12+3T11++186624 T^{12} + 3 T^{11} + \cdots + 186624 Copy content Toggle raw display
3131 (T6+7T5+42048)2 (T^{6} + 7 T^{5} + \cdots - 42048)^{2} Copy content Toggle raw display
3737 (T6+T5125T4++2319)2 (T^{6} + T^{5} - 125 T^{4} + \cdots + 2319)^{2} Copy content Toggle raw display
4141 T12++2099380761 T^{12} + \cdots + 2099380761 Copy content Toggle raw display
4343 T12++4032758016 T^{12} + \cdots + 4032758016 Copy content Toggle raw display
4747 T12++526427136 T^{12} + \cdots + 526427136 Copy content Toggle raw display
5353 T1221T11++79709184 T^{12} - 21 T^{11} + \cdots + 79709184 Copy content Toggle raw display
5959 T12++1451305216 T^{12} + \cdots + 1451305216 Copy content Toggle raw display
6161 T12++4310185104 T^{12} + \cdots + 4310185104 Copy content Toggle raw display
6767 T12++879952896 T^{12} + \cdots + 879952896 Copy content Toggle raw display
7171 T12++24501014784 T^{12} + \cdots + 24501014784 Copy content Toggle raw display
7373 T12++155650576 T^{12} + \cdots + 155650576 Copy content Toggle raw display
7979 T129T11++15968016 T^{12} - 9 T^{11} + \cdots + 15968016 Copy content Toggle raw display
8383 (T619T5+26644)2 (T^{6} - 19 T^{5} + \cdots - 26644)^{2} Copy content Toggle raw display
8989 T12++217149696 T^{12} + \cdots + 217149696 Copy content Toggle raw display
9797 T12++1195750998016 T^{12} + \cdots + 1195750998016 Copy content Toggle raw display
show more
show less