Properties

Label 48.17.g.a.31.1
Level $48$
Weight $17$
Character 48.31
Analytic conductor $77.916$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [48,17,Mod(31,48)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(48, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 17, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("48.31");
 
S:= CuspForms(chi, 17);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 17 \)
Character orbit: \([\chi]\) \(=\) 48.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(77.9157810512\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 379501x^{2} + 379500x + 144020250000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 31.1
Root \(308.268 + 533.936i\) of defining polynomial
Character \(\chi\) \(=\) 48.31
Dual form 48.17.g.a.31.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3788.00i q^{3} -360373. q^{5} -5.22136e6i q^{7} -1.43489e7 q^{9} +O(q^{10})\) \(q-3788.00i q^{3} -360373. q^{5} -5.22136e6i q^{7} -1.43489e7 q^{9} +8.78416e7i q^{11} -6.19491e8 q^{13} +1.36509e9i q^{15} -6.62095e9 q^{17} -3.53050e9i q^{19} -1.97785e10 q^{21} -5.95950e10i q^{23} -2.27192e10 q^{25} +5.43536e10i q^{27} -2.15437e11 q^{29} +1.08591e12i q^{31} +3.32744e11 q^{33} +1.88164e12i q^{35} +2.55550e12 q^{37} +2.34663e12i q^{39} -1.08366e13 q^{41} -8.66774e12i q^{43} +5.17096e12 q^{45} -1.07301e13i q^{47} +5.97034e12 q^{49} +2.50801e13i q^{51} -2.35418e11 q^{53} -3.16557e13i q^{55} -1.33735e13 q^{57} +2.62648e13i q^{59} +3.38835e14 q^{61} +7.49208e13i q^{63} +2.23248e14 q^{65} -4.91860e14i q^{67} -2.25746e14 q^{69} +1.07798e15i q^{71} -2.37507e14 q^{73} +8.60603e13i q^{75} +4.58653e14 q^{77} +1.62935e15i q^{79} +2.05891e14 q^{81} +3.26625e14i q^{83} +2.38601e15 q^{85} +8.16075e14i q^{87} +7.39996e15 q^{89} +3.23459e15i q^{91} +4.11341e15 q^{93} +1.27229e15i q^{95} +1.26360e16 q^{97} -1.26043e15i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 140424 q^{5} - 57395628 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 140424 q^{5} - 57395628 q^{9} - 586685528 q^{13} - 571005336 q^{17} - 8495392752 q^{21} - 182227446772 q^{25} - 585621416424 q^{29} - 176071520880 q^{33} - 2770470511096 q^{37} - 9744697113624 q^{41} + 2014930916568 q^{45} + 44786525712964 q^{49} + 93950973394200 q^{53} + 40139973246384 q^{57} + 374162346312392 q^{61} + 635766937476528 q^{65} + 165370244765184 q^{69} + 13\!\cdots\!20 q^{73}+ \cdots + 45\!\cdots\!40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3788.00i − 0.577350i
\(4\) 0 0
\(5\) −360373. −0.922555 −0.461277 0.887256i \(-0.652609\pi\)
−0.461277 + 0.887256i \(0.652609\pi\)
\(6\) 0 0
\(7\) − 5.22136e6i − 0.905731i −0.891579 0.452865i \(-0.850402\pi\)
0.891579 0.452865i \(-0.149598\pi\)
\(8\) 0 0
\(9\) −1.43489e7 −0.333333
\(10\) 0 0
\(11\) 8.78416e7i 0.409788i 0.978784 + 0.204894i \(0.0656849\pi\)
−0.978784 + 0.204894i \(0.934315\pi\)
\(12\) 0 0
\(13\) −6.19491e8 −0.759431 −0.379716 0.925103i \(-0.623978\pi\)
−0.379716 + 0.925103i \(0.623978\pi\)
\(14\) 0 0
\(15\) 1.36509e9i 0.532637i
\(16\) 0 0
\(17\) −6.62095e9 −0.949136 −0.474568 0.880219i \(-0.657396\pi\)
−0.474568 + 0.880219i \(0.657396\pi\)
\(18\) 0 0
\(19\) − 3.53050e9i − 0.207877i −0.994584 0.103939i \(-0.966855\pi\)
0.994584 0.103939i \(-0.0331445\pi\)
\(20\) 0 0
\(21\) −1.97785e10 −0.522924
\(22\) 0 0
\(23\) − 5.95950e10i − 0.761005i −0.924780 0.380502i \(-0.875751\pi\)
0.924780 0.380502i \(-0.124249\pi\)
\(24\) 0 0
\(25\) −2.27192e10 −0.148893
\(26\) 0 0
\(27\) 5.43536e10i 0.192450i
\(28\) 0 0
\(29\) −2.15437e11 −0.430662 −0.215331 0.976541i \(-0.569083\pi\)
−0.215331 + 0.976541i \(0.569083\pi\)
\(30\) 0 0
\(31\) 1.08591e12i 1.27321i 0.771191 + 0.636603i \(0.219661\pi\)
−0.771191 + 0.636603i \(0.780339\pi\)
\(32\) 0 0
\(33\) 3.32744e11 0.236591
\(34\) 0 0
\(35\) 1.88164e12i 0.835586i
\(36\) 0 0
\(37\) 2.55550e12 0.727549 0.363774 0.931487i \(-0.381488\pi\)
0.363774 + 0.931487i \(0.381488\pi\)
\(38\) 0 0
\(39\) 2.34663e12i 0.438458i
\(40\) 0 0
\(41\) −1.08366e13 −1.35713 −0.678566 0.734540i \(-0.737398\pi\)
−0.678566 + 0.734540i \(0.737398\pi\)
\(42\) 0 0
\(43\) − 8.66774e12i − 0.741580i −0.928717 0.370790i \(-0.879087\pi\)
0.928717 0.370790i \(-0.120913\pi\)
\(44\) 0 0
\(45\) 5.17096e12 0.307518
\(46\) 0 0
\(47\) − 1.07301e13i − 0.450631i −0.974286 0.225316i \(-0.927659\pi\)
0.974286 0.225316i \(-0.0723414\pi\)
\(48\) 0 0
\(49\) 5.97034e12 0.179651
\(50\) 0 0
\(51\) 2.50801e13i 0.547984i
\(52\) 0 0
\(53\) −2.35418e11 −0.00378122 −0.00189061 0.999998i \(-0.500602\pi\)
−0.00189061 + 0.999998i \(0.500602\pi\)
\(54\) 0 0
\(55\) − 3.16557e13i − 0.378052i
\(56\) 0 0
\(57\) −1.33735e13 −0.120018
\(58\) 0 0
\(59\) 2.62648e13i 0.178878i 0.995992 + 0.0894392i \(0.0285075\pi\)
−0.995992 + 0.0894392i \(0.971493\pi\)
\(60\) 0 0
\(61\) 3.38835e14 1.76746 0.883731 0.467995i \(-0.155024\pi\)
0.883731 + 0.467995i \(0.155024\pi\)
\(62\) 0 0
\(63\) 7.49208e13i 0.301910i
\(64\) 0 0
\(65\) 2.23248e14 0.700617
\(66\) 0 0
\(67\) − 4.91860e14i − 1.21128i −0.795740 0.605638i \(-0.792918\pi\)
0.795740 0.605638i \(-0.207082\pi\)
\(68\) 0 0
\(69\) −2.25746e14 −0.439366
\(70\) 0 0
\(71\) 1.07798e15i 1.66934i 0.550753 + 0.834668i \(0.314341\pi\)
−0.550753 + 0.834668i \(0.685659\pi\)
\(72\) 0 0
\(73\) −2.37507e14 −0.294505 −0.147253 0.989099i \(-0.547043\pi\)
−0.147253 + 0.989099i \(0.547043\pi\)
\(74\) 0 0
\(75\) 8.60603e13i 0.0859632i
\(76\) 0 0
\(77\) 4.58653e14 0.371157
\(78\) 0 0
\(79\) 1.62935e15i 1.07398i 0.843588 + 0.536991i \(0.180439\pi\)
−0.843588 + 0.536991i \(0.819561\pi\)
\(80\) 0 0
\(81\) 2.05891e14 0.111111
\(82\) 0 0
\(83\) 3.26625e14i 0.145019i 0.997368 + 0.0725094i \(0.0231007\pi\)
−0.997368 + 0.0725094i \(0.976899\pi\)
\(84\) 0 0
\(85\) 2.38601e15 0.875630
\(86\) 0 0
\(87\) 8.16075e14i 0.248643i
\(88\) 0 0
\(89\) 7.39996e15 1.87979 0.939895 0.341464i \(-0.110923\pi\)
0.939895 + 0.341464i \(0.110923\pi\)
\(90\) 0 0
\(91\) 3.23459e15i 0.687840i
\(92\) 0 0
\(93\) 4.11341e15 0.735086
\(94\) 0 0
\(95\) 1.27229e15i 0.191778i
\(96\) 0 0
\(97\) 1.26360e16 1.61226 0.806132 0.591735i \(-0.201557\pi\)
0.806132 + 0.591735i \(0.201557\pi\)
\(98\) 0 0
\(99\) − 1.26043e15i − 0.136596i
\(100\) 0 0
\(101\) −7.85837e14 −0.0725707 −0.0362853 0.999341i \(-0.511553\pi\)
−0.0362853 + 0.999341i \(0.511553\pi\)
\(102\) 0 0
\(103\) 1.58920e16i 1.25453i 0.778807 + 0.627264i \(0.215825\pi\)
−0.778807 + 0.627264i \(0.784175\pi\)
\(104\) 0 0
\(105\) 7.12763e15 0.482426
\(106\) 0 0
\(107\) − 2.80800e15i − 0.163428i −0.996656 0.0817141i \(-0.973961\pi\)
0.996656 0.0817141i \(-0.0260394\pi\)
\(108\) 0 0
\(109\) 5.39528e15 0.270771 0.135385 0.990793i \(-0.456773\pi\)
0.135385 + 0.990793i \(0.456773\pi\)
\(110\) 0 0
\(111\) − 9.68022e15i − 0.420050i
\(112\) 0 0
\(113\) 3.50564e16 1.31868 0.659340 0.751845i \(-0.270836\pi\)
0.659340 + 0.751845i \(0.270836\pi\)
\(114\) 0 0
\(115\) 2.14764e16i 0.702068i
\(116\) 0 0
\(117\) 8.88902e15 0.253144
\(118\) 0 0
\(119\) 3.45703e16i 0.859662i
\(120\) 0 0
\(121\) 3.82336e16 0.832074
\(122\) 0 0
\(123\) 4.10490e16i 0.783540i
\(124\) 0 0
\(125\) 6.31759e16 1.05992
\(126\) 0 0
\(127\) − 1.12415e16i − 0.166110i −0.996545 0.0830550i \(-0.973532\pi\)
0.996545 0.0830550i \(-0.0264677\pi\)
\(128\) 0 0
\(129\) −3.28334e16 −0.428152
\(130\) 0 0
\(131\) 9.97967e16i 1.15066i 0.817923 + 0.575328i \(0.195126\pi\)
−0.817923 + 0.575328i \(0.804874\pi\)
\(132\) 0 0
\(133\) −1.84340e16 −0.188281
\(134\) 0 0
\(135\) − 1.95876e16i − 0.177546i
\(136\) 0 0
\(137\) −4.85606e16 −0.391308 −0.195654 0.980673i \(-0.562683\pi\)
−0.195654 + 0.980673i \(0.562683\pi\)
\(138\) 0 0
\(139\) − 7.44929e16i − 0.534560i −0.963619 0.267280i \(-0.913875\pi\)
0.963619 0.267280i \(-0.0861249\pi\)
\(140\) 0 0
\(141\) −4.06456e16 −0.260172
\(142\) 0 0
\(143\) − 5.44171e16i − 0.311205i
\(144\) 0 0
\(145\) 7.76377e16 0.397309
\(146\) 0 0
\(147\) − 2.26156e16i − 0.103722i
\(148\) 0 0
\(149\) −2.86718e17 −1.18023 −0.590113 0.807320i \(-0.700917\pi\)
−0.590113 + 0.807320i \(0.700917\pi\)
\(150\) 0 0
\(151\) − 3.85192e17i − 1.42515i −0.701594 0.712577i \(-0.747528\pi\)
0.701594 0.712577i \(-0.252472\pi\)
\(152\) 0 0
\(153\) 9.50033e16 0.316379
\(154\) 0 0
\(155\) − 3.91331e17i − 1.17460i
\(156\) 0 0
\(157\) −2.55142e17 −0.691169 −0.345585 0.938388i \(-0.612319\pi\)
−0.345585 + 0.938388i \(0.612319\pi\)
\(158\) 0 0
\(159\) 8.91761e14i 0.00218309i
\(160\) 0 0
\(161\) −3.11167e17 −0.689265
\(162\) 0 0
\(163\) 2.33321e17i 0.468223i 0.972210 + 0.234111i \(0.0752180\pi\)
−0.972210 + 0.234111i \(0.924782\pi\)
\(164\) 0 0
\(165\) −1.19912e17 −0.218268
\(166\) 0 0
\(167\) 3.51040e17i 0.580262i 0.956987 + 0.290131i \(0.0936989\pi\)
−0.956987 + 0.290131i \(0.906301\pi\)
\(168\) 0 0
\(169\) −2.81647e17 −0.423264
\(170\) 0 0
\(171\) 5.06587e16i 0.0692924i
\(172\) 0 0
\(173\) −6.54566e17 −0.815801 −0.407901 0.913026i \(-0.633739\pi\)
−0.407901 + 0.913026i \(0.633739\pi\)
\(174\) 0 0
\(175\) 1.18625e17i 0.134857i
\(176\) 0 0
\(177\) 9.94909e16 0.103276
\(178\) 0 0
\(179\) − 1.27709e18i − 1.21170i −0.795578 0.605851i \(-0.792833\pi\)
0.795578 0.605851i \(-0.207167\pi\)
\(180\) 0 0
\(181\) −2.13681e18 −1.85497 −0.927486 0.373858i \(-0.878035\pi\)
−0.927486 + 0.373858i \(0.878035\pi\)
\(182\) 0 0
\(183\) − 1.28351e18i − 1.02044i
\(184\) 0 0
\(185\) −9.20933e17 −0.671203
\(186\) 0 0
\(187\) − 5.81595e17i − 0.388944i
\(188\) 0 0
\(189\) 2.83800e17 0.174308
\(190\) 0 0
\(191\) 1.99687e18i 1.12741i 0.825976 + 0.563706i \(0.190625\pi\)
−0.825976 + 0.563706i \(0.809375\pi\)
\(192\) 0 0
\(193\) −1.72651e17 −0.0896832 −0.0448416 0.998994i \(-0.514278\pi\)
−0.0448416 + 0.998994i \(0.514278\pi\)
\(194\) 0 0
\(195\) − 8.45662e17i − 0.404501i
\(196\) 0 0
\(197\) 9.90654e17 0.436709 0.218354 0.975870i \(-0.429931\pi\)
0.218354 + 0.975870i \(0.429931\pi\)
\(198\) 0 0
\(199\) − 2.53456e17i − 0.103057i −0.998672 0.0515286i \(-0.983591\pi\)
0.998672 0.0515286i \(-0.0164093\pi\)
\(200\) 0 0
\(201\) −1.86316e18 −0.699331
\(202\) 0 0
\(203\) 1.12487e18i 0.390064i
\(204\) 0 0
\(205\) 3.90522e18 1.25203
\(206\) 0 0
\(207\) 8.55123e17i 0.253668i
\(208\) 0 0
\(209\) 3.10124e17 0.0851855
\(210\) 0 0
\(211\) − 1.56670e18i − 0.398773i −0.979921 0.199386i \(-0.936105\pi\)
0.979921 0.199386i \(-0.0638948\pi\)
\(212\) 0 0
\(213\) 4.08338e18 0.963792
\(214\) 0 0
\(215\) 3.12362e18i 0.684148i
\(216\) 0 0
\(217\) 5.66991e18 1.15318
\(218\) 0 0
\(219\) 8.99674e17i 0.170033i
\(220\) 0 0
\(221\) 4.10162e18 0.720804
\(222\) 0 0
\(223\) − 3.77973e18i − 0.618047i −0.951054 0.309023i \(-0.899998\pi\)
0.951054 0.309023i \(-0.100002\pi\)
\(224\) 0 0
\(225\) 3.25996e17 0.0496309
\(226\) 0 0
\(227\) 5.04768e18i 0.715953i 0.933731 + 0.357977i \(0.116533\pi\)
−0.933731 + 0.357977i \(0.883467\pi\)
\(228\) 0 0
\(229\) 1.53931e18 0.203536 0.101768 0.994808i \(-0.467550\pi\)
0.101768 + 0.994808i \(0.467550\pi\)
\(230\) 0 0
\(231\) − 1.73737e18i − 0.214288i
\(232\) 0 0
\(233\) −1.07934e19 −1.24254 −0.621269 0.783597i \(-0.713383\pi\)
−0.621269 + 0.783597i \(0.713383\pi\)
\(234\) 0 0
\(235\) 3.86684e18i 0.415732i
\(236\) 0 0
\(237\) 6.17196e18 0.620064
\(238\) 0 0
\(239\) 1.56042e19i 1.46575i 0.680365 + 0.732874i \(0.261821\pi\)
−0.680365 + 0.732874i \(0.738179\pi\)
\(240\) 0 0
\(241\) 1.65950e19 1.45828 0.729141 0.684363i \(-0.239920\pi\)
0.729141 + 0.684363i \(0.239920\pi\)
\(242\) 0 0
\(243\) − 7.79915e17i − 0.0641500i
\(244\) 0 0
\(245\) −2.15155e18 −0.165738
\(246\) 0 0
\(247\) 2.18711e18i 0.157868i
\(248\) 0 0
\(249\) 1.23725e18 0.0837266
\(250\) 0 0
\(251\) 2.87255e19i 1.82338i 0.410878 + 0.911690i \(0.365222\pi\)
−0.410878 + 0.911690i \(0.634778\pi\)
\(252\) 0 0
\(253\) 5.23492e18 0.311850
\(254\) 0 0
\(255\) − 9.03819e18i − 0.505545i
\(256\) 0 0
\(257\) 1.31331e19 0.690085 0.345042 0.938587i \(-0.387865\pi\)
0.345042 + 0.938587i \(0.387865\pi\)
\(258\) 0 0
\(259\) − 1.33432e19i − 0.658963i
\(260\) 0 0
\(261\) 3.09129e18 0.143554
\(262\) 0 0
\(263\) − 4.65385e18i − 0.203314i −0.994820 0.101657i \(-0.967586\pi\)
0.994820 0.101657i \(-0.0324144\pi\)
\(264\) 0 0
\(265\) 8.48381e16 0.00348838
\(266\) 0 0
\(267\) − 2.80310e19i − 1.08530i
\(268\) 0 0
\(269\) 6.70644e18 0.244610 0.122305 0.992493i \(-0.460971\pi\)
0.122305 + 0.992493i \(0.460971\pi\)
\(270\) 0 0
\(271\) 1.37433e19i 0.472428i 0.971701 + 0.236214i \(0.0759067\pi\)
−0.971701 + 0.236214i \(0.924093\pi\)
\(272\) 0 0
\(273\) 1.22526e19 0.397125
\(274\) 0 0
\(275\) − 1.99569e18i − 0.0610144i
\(276\) 0 0
\(277\) −3.77201e19 −1.08827 −0.544133 0.838999i \(-0.683141\pi\)
−0.544133 + 0.838999i \(0.683141\pi\)
\(278\) 0 0
\(279\) − 1.55816e19i − 0.424402i
\(280\) 0 0
\(281\) −5.98631e19 −1.53996 −0.769979 0.638069i \(-0.779733\pi\)
−0.769979 + 0.638069i \(0.779733\pi\)
\(282\) 0 0
\(283\) − 6.75587e19i − 1.64206i −0.570883 0.821031i \(-0.693399\pi\)
0.570883 0.821031i \(-0.306601\pi\)
\(284\) 0 0
\(285\) 4.81945e18 0.110723
\(286\) 0 0
\(287\) 5.65818e19i 1.22920i
\(288\) 0 0
\(289\) −4.82427e18 −0.0991400
\(290\) 0 0
\(291\) − 4.78652e19i − 0.930841i
\(292\) 0 0
\(293\) −7.68743e19 −1.41527 −0.707637 0.706576i \(-0.750239\pi\)
−0.707637 + 0.706576i \(0.750239\pi\)
\(294\) 0 0
\(295\) − 9.46513e18i − 0.165025i
\(296\) 0 0
\(297\) −4.77451e18 −0.0788637
\(298\) 0 0
\(299\) 3.69186e19i 0.577931i
\(300\) 0 0
\(301\) −4.52574e19 −0.671672
\(302\) 0 0
\(303\) 2.97674e18i 0.0418987i
\(304\) 0 0
\(305\) −1.22107e20 −1.63058
\(306\) 0 0
\(307\) − 1.35153e20i − 1.71284i −0.516276 0.856422i \(-0.672682\pi\)
0.516276 0.856422i \(-0.327318\pi\)
\(308\) 0 0
\(309\) 6.01988e19 0.724302
\(310\) 0 0
\(311\) 1.07981e20i 1.23386i 0.787020 + 0.616928i \(0.211623\pi\)
−0.787020 + 0.616928i \(0.788377\pi\)
\(312\) 0 0
\(313\) 1.37030e20 1.48752 0.743759 0.668448i \(-0.233041\pi\)
0.743759 + 0.668448i \(0.233041\pi\)
\(314\) 0 0
\(315\) − 2.69994e19i − 0.278529i
\(316\) 0 0
\(317\) −1.08994e20 −1.06888 −0.534439 0.845207i \(-0.679477\pi\)
−0.534439 + 0.845207i \(0.679477\pi\)
\(318\) 0 0
\(319\) − 1.89243e19i − 0.176480i
\(320\) 0 0
\(321\) −1.06367e19 −0.0943553
\(322\) 0 0
\(323\) 2.33752e19i 0.197304i
\(324\) 0 0
\(325\) 1.40744e19 0.113074
\(326\) 0 0
\(327\) − 2.04373e19i − 0.156330i
\(328\) 0 0
\(329\) −5.60258e19 −0.408151
\(330\) 0 0
\(331\) − 3.08309e18i − 0.0213975i −0.999943 0.0106987i \(-0.996594\pi\)
0.999943 0.0106987i \(-0.00340558\pi\)
\(332\) 0 0
\(333\) −3.66686e19 −0.242516
\(334\) 0 0
\(335\) 1.77253e20i 1.11747i
\(336\) 0 0
\(337\) −1.44317e20 −0.867520 −0.433760 0.901029i \(-0.642813\pi\)
−0.433760 + 0.901029i \(0.642813\pi\)
\(338\) 0 0
\(339\) − 1.32793e20i − 0.761340i
\(340\) 0 0
\(341\) −9.53878e19 −0.521744
\(342\) 0 0
\(343\) − 2.04694e20i − 1.06845i
\(344\) 0 0
\(345\) 8.13526e19 0.405339
\(346\) 0 0
\(347\) 1.64935e20i 0.784654i 0.919826 + 0.392327i \(0.128330\pi\)
−0.919826 + 0.392327i \(0.871670\pi\)
\(348\) 0 0
\(349\) 2.35205e20 1.06867 0.534333 0.845274i \(-0.320563\pi\)
0.534333 + 0.845274i \(0.320563\pi\)
\(350\) 0 0
\(351\) − 3.36716e19i − 0.146153i
\(352\) 0 0
\(353\) 3.33026e20 1.38127 0.690637 0.723201i \(-0.257330\pi\)
0.690637 + 0.723201i \(0.257330\pi\)
\(354\) 0 0
\(355\) − 3.88475e20i − 1.54005i
\(356\) 0 0
\(357\) 1.30952e20 0.496326
\(358\) 0 0
\(359\) 4.21282e20i 1.52692i 0.645853 + 0.763462i \(0.276502\pi\)
−0.645853 + 0.763462i \(0.723498\pi\)
\(360\) 0 0
\(361\) 2.75977e20 0.956787
\(362\) 0 0
\(363\) − 1.44829e20i − 0.480398i
\(364\) 0 0
\(365\) 8.55910e19 0.271697
\(366\) 0 0
\(367\) 6.13373e20i 1.86379i 0.362732 + 0.931894i \(0.381844\pi\)
−0.362732 + 0.931894i \(0.618156\pi\)
\(368\) 0 0
\(369\) 1.55493e20 0.452377
\(370\) 0 0
\(371\) 1.22920e18i 0.00342477i
\(372\) 0 0
\(373\) 2.17396e20 0.580203 0.290102 0.956996i \(-0.406311\pi\)
0.290102 + 0.956996i \(0.406311\pi\)
\(374\) 0 0
\(375\) − 2.39310e20i − 0.611943i
\(376\) 0 0
\(377\) 1.33461e20 0.327058
\(378\) 0 0
\(379\) 4.69384e20i 1.10259i 0.834310 + 0.551296i \(0.185866\pi\)
−0.834310 + 0.551296i \(0.814134\pi\)
\(380\) 0 0
\(381\) −4.25829e19 −0.0959037
\(382\) 0 0
\(383\) 6.41933e20i 1.38644i 0.720728 + 0.693218i \(0.243807\pi\)
−0.720728 + 0.693218i \(0.756193\pi\)
\(384\) 0 0
\(385\) −1.65286e20 −0.342413
\(386\) 0 0
\(387\) 1.24373e20i 0.247193i
\(388\) 0 0
\(389\) 3.55635e19 0.0678278 0.0339139 0.999425i \(-0.489203\pi\)
0.0339139 + 0.999425i \(0.489203\pi\)
\(390\) 0 0
\(391\) 3.94575e20i 0.722297i
\(392\) 0 0
\(393\) 3.78029e20 0.664332
\(394\) 0 0
\(395\) − 5.87173e20i − 0.990808i
\(396\) 0 0
\(397\) 5.57406e20 0.903333 0.451666 0.892187i \(-0.350830\pi\)
0.451666 + 0.892187i \(0.350830\pi\)
\(398\) 0 0
\(399\) 6.98278e19i 0.108704i
\(400\) 0 0
\(401\) −7.48750e20 −1.11991 −0.559953 0.828524i \(-0.689181\pi\)
−0.559953 + 0.828524i \(0.689181\pi\)
\(402\) 0 0
\(403\) − 6.72710e20i − 0.966913i
\(404\) 0 0
\(405\) −7.41976e19 −0.102506
\(406\) 0 0
\(407\) 2.24479e20i 0.298140i
\(408\) 0 0
\(409\) −7.57698e20 −0.967631 −0.483816 0.875170i \(-0.660749\pi\)
−0.483816 + 0.875170i \(0.660749\pi\)
\(410\) 0 0
\(411\) 1.83947e20i 0.225922i
\(412\) 0 0
\(413\) 1.37138e20 0.162016
\(414\) 0 0
\(415\) − 1.17707e20i − 0.133788i
\(416\) 0 0
\(417\) −2.82179e20 −0.308628
\(418\) 0 0
\(419\) − 9.76317e20i − 1.02773i −0.857871 0.513864i \(-0.828213\pi\)
0.857871 0.513864i \(-0.171787\pi\)
\(420\) 0 0
\(421\) 1.18650e21 1.20230 0.601148 0.799138i \(-0.294710\pi\)
0.601148 + 0.799138i \(0.294710\pi\)
\(422\) 0 0
\(423\) 1.53965e20i 0.150210i
\(424\) 0 0
\(425\) 1.50423e20 0.141319
\(426\) 0 0
\(427\) − 1.76918e21i − 1.60084i
\(428\) 0 0
\(429\) −2.06132e20 −0.179675
\(430\) 0 0
\(431\) 1.90027e21i 1.59587i 0.602743 + 0.797935i \(0.294074\pi\)
−0.602743 + 0.797935i \(0.705926\pi\)
\(432\) 0 0
\(433\) −6.21560e20 −0.503014 −0.251507 0.967856i \(-0.580926\pi\)
−0.251507 + 0.967856i \(0.580926\pi\)
\(434\) 0 0
\(435\) − 2.94091e20i − 0.229387i
\(436\) 0 0
\(437\) −2.10400e20 −0.158195
\(438\) 0 0
\(439\) 1.04264e21i 0.755819i 0.925842 + 0.377910i \(0.123357\pi\)
−0.925842 + 0.377910i \(0.876643\pi\)
\(440\) 0 0
\(441\) −8.56679e19 −0.0598838
\(442\) 0 0
\(443\) − 2.89989e21i − 1.95502i −0.210889 0.977510i \(-0.567636\pi\)
0.210889 0.977510i \(-0.432364\pi\)
\(444\) 0 0
\(445\) −2.66675e21 −1.73421
\(446\) 0 0
\(447\) 1.08609e21i 0.681404i
\(448\) 0 0
\(449\) −2.46046e20 −0.148952 −0.0744760 0.997223i \(-0.523728\pi\)
−0.0744760 + 0.997223i \(0.523728\pi\)
\(450\) 0 0
\(451\) − 9.51904e20i − 0.556136i
\(452\) 0 0
\(453\) −1.45911e21 −0.822813
\(454\) 0 0
\(455\) − 1.16566e21i − 0.634570i
\(456\) 0 0
\(457\) 1.72123e19 0.00904711 0.00452355 0.999990i \(-0.498560\pi\)
0.00452355 + 0.999990i \(0.498560\pi\)
\(458\) 0 0
\(459\) − 3.59872e20i − 0.182661i
\(460\) 0 0
\(461\) 5.03857e20 0.247002 0.123501 0.992344i \(-0.460588\pi\)
0.123501 + 0.992344i \(0.460588\pi\)
\(462\) 0 0
\(463\) 3.86309e20i 0.182931i 0.995808 + 0.0914655i \(0.0291551\pi\)
−0.995808 + 0.0914655i \(0.970845\pi\)
\(464\) 0 0
\(465\) −1.48236e21 −0.678157
\(466\) 0 0
\(467\) − 7.69940e20i − 0.340347i −0.985414 0.170173i \(-0.945567\pi\)
0.985414 0.170173i \(-0.0544328\pi\)
\(468\) 0 0
\(469\) −2.56818e21 −1.09709
\(470\) 0 0
\(471\) 9.66476e20i 0.399047i
\(472\) 0 0
\(473\) 7.61388e20 0.303890
\(474\) 0 0
\(475\) 8.02101e19i 0.0309514i
\(476\) 0 0
\(477\) 3.37798e18 0.00126041
\(478\) 0 0
\(479\) − 4.90335e21i − 1.76933i −0.466228 0.884664i \(-0.654388\pi\)
0.466228 0.884664i \(-0.345612\pi\)
\(480\) 0 0
\(481\) −1.58311e21 −0.552523
\(482\) 0 0
\(483\) 1.17870e21i 0.397948i
\(484\) 0 0
\(485\) −4.55368e21 −1.48740
\(486\) 0 0
\(487\) 5.33875e21i 1.68736i 0.536845 + 0.843681i \(0.319616\pi\)
−0.536845 + 0.843681i \(0.680384\pi\)
\(488\) 0 0
\(489\) 8.83817e20 0.270328
\(490\) 0 0
\(491\) − 2.05807e21i − 0.609268i −0.952469 0.304634i \(-0.901466\pi\)
0.952469 0.304634i \(-0.0985342\pi\)
\(492\) 0 0
\(493\) 1.42640e21 0.408757
\(494\) 0 0
\(495\) 4.54225e20i 0.126017i
\(496\) 0 0
\(497\) 5.62852e21 1.51197
\(498\) 0 0
\(499\) 3.99610e21i 1.03952i 0.854313 + 0.519759i \(0.173978\pi\)
−0.854313 + 0.519759i \(0.826022\pi\)
\(500\) 0 0
\(501\) 1.32974e21 0.335015
\(502\) 0 0
\(503\) 1.54278e21i 0.376497i 0.982121 + 0.188248i \(0.0602810\pi\)
−0.982121 + 0.188248i \(0.939719\pi\)
\(504\) 0 0
\(505\) 2.83194e20 0.0669504
\(506\) 0 0
\(507\) 1.06688e21i 0.244372i
\(508\) 0 0
\(509\) 6.53591e21 1.45065 0.725326 0.688405i \(-0.241689\pi\)
0.725326 + 0.688405i \(0.241689\pi\)
\(510\) 0 0
\(511\) 1.24011e21i 0.266742i
\(512\) 0 0
\(513\) 1.91895e20 0.0400060
\(514\) 0 0
\(515\) − 5.72704e21i − 1.15737i
\(516\) 0 0
\(517\) 9.42551e20 0.184663
\(518\) 0 0
\(519\) 2.47949e21i 0.471003i
\(520\) 0 0
\(521\) 3.84224e21 0.707755 0.353878 0.935292i \(-0.384863\pi\)
0.353878 + 0.935292i \(0.384863\pi\)
\(522\) 0 0
\(523\) 1.05856e21i 0.189104i 0.995520 + 0.0945522i \(0.0301419\pi\)
−0.995520 + 0.0945522i \(0.969858\pi\)
\(524\) 0 0
\(525\) 4.49352e20 0.0778595
\(526\) 0 0
\(527\) − 7.18973e21i − 1.20845i
\(528\) 0 0
\(529\) 2.58104e21 0.420872
\(530\) 0 0
\(531\) − 3.76871e20i − 0.0596262i
\(532\) 0 0
\(533\) 6.71318e21 1.03065
\(534\) 0 0
\(535\) 1.01193e21i 0.150771i
\(536\) 0 0
\(537\) −4.83759e21 −0.699576
\(538\) 0 0
\(539\) 5.24445e20i 0.0736189i
\(540\) 0 0
\(541\) 2.76090e21 0.376247 0.188124 0.982145i \(-0.439759\pi\)
0.188124 + 0.982145i \(0.439759\pi\)
\(542\) 0 0
\(543\) 8.09423e21i 1.07097i
\(544\) 0 0
\(545\) −1.94431e21 −0.249801
\(546\) 0 0
\(547\) − 4.11011e20i − 0.0512808i −0.999671 0.0256404i \(-0.991838\pi\)
0.999671 0.0256404i \(-0.00816248\pi\)
\(548\) 0 0
\(549\) −4.86192e21 −0.589154
\(550\) 0 0
\(551\) 7.60600e20i 0.0895248i
\(552\) 0 0
\(553\) 8.50741e21 0.972739
\(554\) 0 0
\(555\) 3.48849e21i 0.387519i
\(556\) 0 0
\(557\) 9.57546e21 1.03352 0.516759 0.856131i \(-0.327138\pi\)
0.516759 + 0.856131i \(0.327138\pi\)
\(558\) 0 0
\(559\) 5.36959e21i 0.563179i
\(560\) 0 0
\(561\) −2.20308e21 −0.224557
\(562\) 0 0
\(563\) 1.65058e22i 1.63519i 0.575791 + 0.817597i \(0.304694\pi\)
−0.575791 + 0.817597i \(0.695306\pi\)
\(564\) 0 0
\(565\) −1.26334e22 −1.21655
\(566\) 0 0
\(567\) − 1.07503e21i − 0.100637i
\(568\) 0 0
\(569\) 7.25823e21 0.660591 0.330295 0.943878i \(-0.392852\pi\)
0.330295 + 0.943878i \(0.392852\pi\)
\(570\) 0 0
\(571\) 2.38406e21i 0.210974i 0.994421 + 0.105487i \(0.0336401\pi\)
−0.994421 + 0.105487i \(0.966360\pi\)
\(572\) 0 0
\(573\) 7.56413e21 0.650912
\(574\) 0 0
\(575\) 1.35395e21i 0.113308i
\(576\) 0 0
\(577\) 4.77664e21 0.388791 0.194395 0.980923i \(-0.437726\pi\)
0.194395 + 0.980923i \(0.437726\pi\)
\(578\) 0 0
\(579\) 6.54002e20i 0.0517786i
\(580\) 0 0
\(581\) 1.70542e21 0.131348
\(582\) 0 0
\(583\) − 2.06795e19i − 0.00154950i
\(584\) 0 0
\(585\) −3.20336e21 −0.233539
\(586\) 0 0
\(587\) − 2.61793e22i − 1.85717i −0.371115 0.928587i \(-0.621024\pi\)
0.371115 0.928587i \(-0.378976\pi\)
\(588\) 0 0
\(589\) 3.83379e21 0.264671
\(590\) 0 0
\(591\) − 3.75259e21i − 0.252134i
\(592\) 0 0
\(593\) −2.14609e22 −1.40349 −0.701747 0.712427i \(-0.747596\pi\)
−0.701747 + 0.712427i \(0.747596\pi\)
\(594\) 0 0
\(595\) − 1.24582e22i − 0.793086i
\(596\) 0 0
\(597\) −9.60091e20 −0.0595001
\(598\) 0 0
\(599\) 2.55608e21i 0.154227i 0.997022 + 0.0771135i \(0.0245704\pi\)
−0.997022 + 0.0771135i \(0.975430\pi\)
\(600\) 0 0
\(601\) −6.44355e21 −0.378555 −0.189278 0.981924i \(-0.560615\pi\)
−0.189278 + 0.981924i \(0.560615\pi\)
\(602\) 0 0
\(603\) 7.05766e21i 0.403759i
\(604\) 0 0
\(605\) −1.37783e22 −0.767634
\(606\) 0 0
\(607\) − 6.83436e21i − 0.370842i −0.982659 0.185421i \(-0.940635\pi\)
0.982659 0.185421i \(-0.0593648\pi\)
\(608\) 0 0
\(609\) 4.26102e21 0.225203
\(610\) 0 0
\(611\) 6.64721e21i 0.342224i
\(612\) 0 0
\(613\) −1.83424e22 −0.919968 −0.459984 0.887927i \(-0.652145\pi\)
−0.459984 + 0.887927i \(0.652145\pi\)
\(614\) 0 0
\(615\) − 1.47929e22i − 0.722859i
\(616\) 0 0
\(617\) −1.23087e22 −0.586043 −0.293022 0.956106i \(-0.594661\pi\)
−0.293022 + 0.956106i \(0.594661\pi\)
\(618\) 0 0
\(619\) 1.45935e22i 0.677073i 0.940953 + 0.338537i \(0.109932\pi\)
−0.940953 + 0.338537i \(0.890068\pi\)
\(620\) 0 0
\(621\) 3.23920e21 0.146455
\(622\) 0 0
\(623\) − 3.86378e22i − 1.70258i
\(624\) 0 0
\(625\) −1.93002e22 −0.828938
\(626\) 0 0
\(627\) − 1.17475e21i − 0.0491819i
\(628\) 0 0
\(629\) −1.69198e22 −0.690543
\(630\) 0 0
\(631\) − 3.34572e22i − 1.33124i −0.746292 0.665618i \(-0.768168\pi\)
0.746292 0.665618i \(-0.231832\pi\)
\(632\) 0 0
\(633\) −5.93464e21 −0.230231
\(634\) 0 0
\(635\) 4.05115e21i 0.153246i
\(636\) 0 0
\(637\) −3.69858e21 −0.136433
\(638\) 0 0
\(639\) − 1.54678e22i − 0.556445i
\(640\) 0 0
\(641\) −1.92372e21 −0.0674958 −0.0337479 0.999430i \(-0.510744\pi\)
−0.0337479 + 0.999430i \(0.510744\pi\)
\(642\) 0 0
\(643\) 3.52972e22i 1.20796i 0.797000 + 0.603979i \(0.206419\pi\)
−0.797000 + 0.603979i \(0.793581\pi\)
\(644\) 0 0
\(645\) 1.18323e22 0.394993
\(646\) 0 0
\(647\) 1.78800e22i 0.582281i 0.956680 + 0.291141i \(0.0940347\pi\)
−0.956680 + 0.291141i \(0.905965\pi\)
\(648\) 0 0
\(649\) −2.30714e21 −0.0733022
\(650\) 0 0
\(651\) − 2.14776e22i − 0.665790i
\(652\) 0 0
\(653\) −1.59480e22 −0.482393 −0.241196 0.970476i \(-0.577540\pi\)
−0.241196 + 0.970476i \(0.577540\pi\)
\(654\) 0 0
\(655\) − 3.59640e22i − 1.06154i
\(656\) 0 0
\(657\) 3.40796e21 0.0981684
\(658\) 0 0
\(659\) 5.67794e22i 1.59627i 0.602476 + 0.798137i \(0.294181\pi\)
−0.602476 + 0.798137i \(0.705819\pi\)
\(660\) 0 0
\(661\) 5.15514e22 1.41458 0.707292 0.706921i \(-0.249916\pi\)
0.707292 + 0.706921i \(0.249916\pi\)
\(662\) 0 0
\(663\) − 1.55369e22i − 0.416156i
\(664\) 0 0
\(665\) 6.64311e21 0.173699
\(666\) 0 0
\(667\) 1.28390e22i 0.327736i
\(668\) 0 0
\(669\) −1.43176e22 −0.356830
\(670\) 0 0
\(671\) 2.97638e22i 0.724284i
\(672\) 0 0
\(673\) −6.12492e22 −1.45539 −0.727696 0.685900i \(-0.759409\pi\)
−0.727696 + 0.685900i \(0.759409\pi\)
\(674\) 0 0
\(675\) − 1.23487e21i − 0.0286544i
\(676\) 0 0
\(677\) −1.46668e22 −0.332374 −0.166187 0.986094i \(-0.553146\pi\)
−0.166187 + 0.986094i \(0.553146\pi\)
\(678\) 0 0
\(679\) − 6.59772e22i − 1.46028i
\(680\) 0 0
\(681\) 1.91206e22 0.413356
\(682\) 0 0
\(683\) 8.91229e22i 1.88202i 0.338383 + 0.941009i \(0.390120\pi\)
−0.338383 + 0.941009i \(0.609880\pi\)
\(684\) 0 0
\(685\) 1.74999e22 0.361004
\(686\) 0 0
\(687\) − 5.83088e21i − 0.117511i
\(688\) 0 0
\(689\) 1.45839e20 0.00287158
\(690\) 0 0
\(691\) − 2.26063e22i − 0.434916i −0.976070 0.217458i \(-0.930224\pi\)
0.976070 0.217458i \(-0.0697764\pi\)
\(692\) 0 0
\(693\) −6.58116e21 −0.123719
\(694\) 0 0
\(695\) 2.68452e22i 0.493161i
\(696\) 0 0
\(697\) 7.17485e22 1.28810
\(698\) 0 0
\(699\) 4.08852e22i 0.717380i
\(700\) 0 0
\(701\) −6.45959e22 −1.10780 −0.553899 0.832584i \(-0.686861\pi\)
−0.553899 + 0.832584i \(0.686861\pi\)
\(702\) 0 0
\(703\) − 9.02218e21i − 0.151241i
\(704\) 0 0
\(705\) 1.46476e22 0.240023
\(706\) 0 0
\(707\) 4.10313e21i 0.0657295i
\(708\) 0 0
\(709\) 4.64290e22 0.727142 0.363571 0.931567i \(-0.381557\pi\)
0.363571 + 0.931567i \(0.381557\pi\)
\(710\) 0 0
\(711\) − 2.33794e22i − 0.357994i
\(712\) 0 0
\(713\) 6.47146e22 0.968916
\(714\) 0 0
\(715\) 1.96105e22i 0.287104i
\(716\) 0 0
\(717\) 5.91087e22 0.846250
\(718\) 0 0
\(719\) 2.18704e22i 0.306215i 0.988210 + 0.153108i \(0.0489281\pi\)
−0.988210 + 0.153108i \(0.951072\pi\)
\(720\) 0 0
\(721\) 8.29777e22 1.13626
\(722\) 0 0
\(723\) − 6.28619e22i − 0.841940i
\(724\) 0 0
\(725\) 4.89456e21 0.0641224
\(726\) 0 0
\(727\) − 4.68917e22i − 0.600925i −0.953794 0.300463i \(-0.902859\pi\)
0.953794 0.300463i \(-0.0971411\pi\)
\(728\) 0 0
\(729\) −2.95431e21 −0.0370370
\(730\) 0 0
\(731\) 5.73886e22i 0.703861i
\(732\) 0 0
\(733\) 6.19965e22 0.743936 0.371968 0.928246i \(-0.378683\pi\)
0.371968 + 0.928246i \(0.378683\pi\)
\(734\) 0 0
\(735\) 8.15006e21i 0.0956890i
\(736\) 0 0
\(737\) 4.32058e22 0.496366
\(738\) 0 0
\(739\) 2.15220e22i 0.241950i 0.992656 + 0.120975i \(0.0386022\pi\)
−0.992656 + 0.120975i \(0.961398\pi\)
\(740\) 0 0
\(741\) 8.28477e21 0.0911454
\(742\) 0 0
\(743\) 9.74537e21i 0.104927i 0.998623 + 0.0524636i \(0.0167073\pi\)
−0.998623 + 0.0524636i \(0.983293\pi\)
\(744\) 0 0
\(745\) 1.03326e23 1.08882
\(746\) 0 0
\(747\) − 4.68671e21i − 0.0483396i
\(748\) 0 0
\(749\) −1.46616e22 −0.148022
\(750\) 0 0
\(751\) 1.20764e23i 1.19349i 0.802432 + 0.596744i \(0.203539\pi\)
−0.802432 + 0.596744i \(0.796461\pi\)
\(752\) 0 0
\(753\) 1.08812e23 1.05273
\(754\) 0 0
\(755\) 1.38813e23i 1.31478i
\(756\) 0 0
\(757\) −1.13124e22 −0.104903 −0.0524515 0.998623i \(-0.516704\pi\)
−0.0524515 + 0.998623i \(0.516704\pi\)
\(758\) 0 0
\(759\) − 1.98299e22i − 0.180047i
\(760\) 0 0
\(761\) −1.10144e23 −0.979228 −0.489614 0.871939i \(-0.662862\pi\)
−0.489614 + 0.871939i \(0.662862\pi\)
\(762\) 0 0
\(763\) − 2.81707e22i − 0.245246i
\(764\) 0 0
\(765\) −3.42366e22 −0.291877
\(766\) 0 0
\(767\) − 1.62708e22i − 0.135846i
\(768\) 0 0
\(769\) −1.93201e23 −1.57979 −0.789893 0.613245i \(-0.789864\pi\)
−0.789893 + 0.613245i \(0.789864\pi\)
\(770\) 0 0
\(771\) − 4.97481e22i − 0.398421i
\(772\) 0 0
\(773\) −6.85136e22 −0.537453 −0.268727 0.963216i \(-0.586603\pi\)
−0.268727 + 0.963216i \(0.586603\pi\)
\(774\) 0 0
\(775\) − 2.46710e22i − 0.189571i
\(776\) 0 0
\(777\) −5.05439e22 −0.380453
\(778\) 0 0
\(779\) 3.82585e22i 0.282117i
\(780\) 0 0
\(781\) −9.46915e22 −0.684073
\(782\) 0 0
\(783\) − 1.17098e22i − 0.0828809i
\(784\) 0 0
\(785\) 9.19462e22 0.637642
\(786\) 0 0
\(787\) − 9.28055e22i − 0.630632i −0.948987 0.315316i \(-0.897890\pi\)
0.948987 0.315316i \(-0.102110\pi\)
\(788\) 0 0
\(789\) −1.76288e22 −0.117383
\(790\) 0 0
\(791\) − 1.83042e23i − 1.19437i
\(792\) 0 0
\(793\) −2.09906e23 −1.34227
\(794\) 0 0
\(795\) − 3.21366e20i − 0.00201402i
\(796\) 0 0
\(797\) 9.87144e22 0.606337 0.303168 0.952937i \(-0.401956\pi\)
0.303168 + 0.952937i \(0.401956\pi\)
\(798\) 0 0
\(799\) 7.10435e22i 0.427711i
\(800\) 0 0
\(801\) −1.06181e23 −0.626597
\(802\) 0 0
\(803\) − 2.08630e22i − 0.120685i
\(804\) 0 0
\(805\) 1.12136e23 0.635885
\(806\) 0 0
\(807\) − 2.54040e22i − 0.141226i
\(808\) 0 0
\(809\) 3.73633e22 0.203637 0.101819 0.994803i \(-0.467534\pi\)
0.101819 + 0.994803i \(0.467534\pi\)
\(810\) 0 0
\(811\) 1.25266e23i 0.669369i 0.942330 + 0.334685i \(0.108630\pi\)
−0.942330 + 0.334685i \(0.891370\pi\)
\(812\) 0 0
\(813\) 5.20594e22 0.272757
\(814\) 0 0
\(815\) − 8.40824e22i − 0.431961i
\(816\) 0 0
\(817\) −3.06014e22 −0.154158
\(818\) 0 0
\(819\) − 4.64128e22i − 0.229280i
\(820\) 0 0
\(821\) −2.55103e23 −1.23586 −0.617931 0.786232i \(-0.712029\pi\)
−0.617931 + 0.786232i \(0.712029\pi\)
\(822\) 0 0
\(823\) − 1.17112e23i − 0.556421i −0.960520 0.278210i \(-0.910259\pi\)
0.960520 0.278210i \(-0.0897413\pi\)
\(824\) 0 0
\(825\) −7.55968e21 −0.0352267
\(826\) 0 0
\(827\) − 3.30491e23i − 1.51048i −0.655446 0.755242i \(-0.727519\pi\)
0.655446 0.755242i \(-0.272481\pi\)
\(828\) 0 0
\(829\) −1.31366e23 −0.588907 −0.294454 0.955666i \(-0.595138\pi\)
−0.294454 + 0.955666i \(0.595138\pi\)
\(830\) 0 0
\(831\) 1.42884e23i 0.628311i
\(832\) 0 0
\(833\) −3.95293e22 −0.170514
\(834\) 0 0
\(835\) − 1.26505e23i − 0.535324i
\(836\) 0 0
\(837\) −5.90229e22 −0.245029
\(838\) 0 0
\(839\) 2.42312e23i 0.986914i 0.869770 + 0.493457i \(0.164267\pi\)
−0.869770 + 0.493457i \(0.835733\pi\)
\(840\) 0 0
\(841\) −2.03833e23 −0.814530
\(842\) 0 0
\(843\) 2.26761e23i 0.889095i
\(844\) 0 0
\(845\) 1.01498e23 0.390485
\(846\) 0 0
\(847\) − 1.99631e23i − 0.753635i
\(848\) 0 0
\(849\) −2.55912e23 −0.948045
\(850\) 0 0
\(851\) − 1.52295e23i − 0.553668i
\(852\) 0 0
\(853\) 3.34753e23 1.19435 0.597176 0.802110i \(-0.296289\pi\)
0.597176 + 0.802110i \(0.296289\pi\)
\(854\) 0 0
\(855\) − 1.82560e22i − 0.0639260i
\(856\) 0 0
\(857\) −3.53238e23 −1.21400 −0.607002 0.794700i \(-0.707628\pi\)
−0.607002 + 0.794700i \(0.707628\pi\)
\(858\) 0 0
\(859\) − 2.25702e23i − 0.761361i −0.924707 0.380680i \(-0.875690\pi\)
0.924707 0.380680i \(-0.124310\pi\)
\(860\) 0 0
\(861\) 2.14331e23 0.709677
\(862\) 0 0
\(863\) − 4.65349e23i − 1.51249i −0.654288 0.756245i \(-0.727032\pi\)
0.654288 0.756245i \(-0.272968\pi\)
\(864\) 0 0
\(865\) 2.35888e23 0.752621
\(866\) 0 0
\(867\) 1.82743e22i 0.0572385i
\(868\) 0 0
\(869\) −1.43125e23 −0.440105
\(870\) 0 0
\(871\) 3.04703e23i 0.919881i
\(872\) 0 0
\(873\) −1.81313e23 −0.537422
\(874\) 0 0
\(875\) − 3.29864e23i − 0.959999i
\(876\) 0 0
\(877\) −5.03888e23 −1.43992 −0.719958 0.694018i \(-0.755839\pi\)
−0.719958 + 0.694018i \(0.755839\pi\)
\(878\) 0 0
\(879\) 2.91200e23i 0.817109i
\(880\) 0 0
\(881\) 5.94146e23 1.63714 0.818570 0.574407i \(-0.194767\pi\)
0.818570 + 0.574407i \(0.194767\pi\)
\(882\) 0 0
\(883\) 2.33388e23i 0.631528i 0.948838 + 0.315764i \(0.102261\pi\)
−0.948838 + 0.315764i \(0.897739\pi\)
\(884\) 0 0
\(885\) −3.58538e22 −0.0952773
\(886\) 0 0
\(887\) 4.85675e22i 0.126753i 0.997990 + 0.0633763i \(0.0201868\pi\)
−0.997990 + 0.0633763i \(0.979813\pi\)
\(888\) 0 0
\(889\) −5.86961e22 −0.150451
\(890\) 0 0
\(891\) 1.80858e22i 0.0455320i
\(892\) 0 0
\(893\) −3.78826e22 −0.0936760
\(894\) 0 0
\(895\) 4.60227e23i 1.11786i
\(896\) 0 0
\(897\) 1.39847e23 0.333668
\(898\) 0 0
\(899\) − 2.33945e23i − 0.548322i
\(900\) 0 0
\(901\) 1.55869e21 0.00358889
\(902\) 0 0
\(903\) 1.71435e23i 0.387790i
\(904\) 0 0
\(905\) 7.70049e23 1.71131
\(906\) 0 0
\(907\) 2.95630e23i 0.645492i 0.946486 + 0.322746i \(0.104606\pi\)
−0.946486 + 0.322746i \(0.895394\pi\)
\(908\) 0 0
\(909\) 1.12759e22 0.0241902
\(910\) 0 0
\(911\) 5.80586e23i 1.22383i 0.790925 + 0.611913i \(0.209600\pi\)
−0.790925 + 0.611913i \(0.790400\pi\)
\(912\) 0 0
\(913\) −2.86912e22 −0.0594269
\(914\) 0 0
\(915\) 4.62541e23i 0.941416i
\(916\) 0 0
\(917\) 5.21074e23 1.04219
\(918\) 0 0
\(919\) 6.73665e23i 1.32410i 0.749461 + 0.662049i \(0.230313\pi\)
−0.749461 + 0.662049i \(0.769687\pi\)
\(920\) 0 0
\(921\) −5.11958e23 −0.988911
\(922\) 0 0
\(923\) − 6.67799e23i − 1.26775i
\(924\) 0 0
\(925\) −5.80590e22 −0.108327
\(926\) 0 0
\(927\) − 2.28033e23i − 0.418176i
\(928\) 0 0
\(929\) 8.03203e23 1.44777 0.723885 0.689921i \(-0.242355\pi\)
0.723885 + 0.689921i \(0.242355\pi\)
\(930\) 0 0
\(931\) − 2.10783e22i − 0.0373454i
\(932\) 0 0
\(933\) 4.09032e23 0.712367
\(934\) 0 0
\(935\) 2.09591e23i 0.358823i
\(936\) 0 0
\(937\) 9.63691e23 1.62189 0.810945 0.585123i \(-0.198954\pi\)
0.810945 + 0.585123i \(0.198954\pi\)
\(938\) 0 0
\(939\) − 5.19070e23i − 0.858819i
\(940\) 0 0
\(941\) 3.57623e23 0.581712 0.290856 0.956767i \(-0.406060\pi\)
0.290856 + 0.956767i \(0.406060\pi\)
\(942\) 0 0
\(943\) 6.45807e23i 1.03278i
\(944\) 0 0
\(945\) −1.02274e23 −0.160809
\(946\) 0 0
\(947\) − 5.56883e23i − 0.860923i −0.902609 0.430461i \(-0.858351\pi\)
0.902609 0.430461i \(-0.141649\pi\)
\(948\) 0 0
\(949\) 1.47133e23 0.223656
\(950\) 0 0
\(951\) 4.12869e23i 0.617117i
\(952\) 0 0
\(953\) −3.29464e23 −0.484245 −0.242122 0.970246i \(-0.577844\pi\)
−0.242122 + 0.970246i \(0.577844\pi\)
\(954\) 0 0
\(955\) − 7.19618e23i − 1.04010i
\(956\) 0 0
\(957\) −7.16853e22 −0.101891
\(958\) 0 0
\(959\) 2.53552e23i 0.354420i
\(960\) 0 0
\(961\) −4.51770e23 −0.621056
\(962\) 0 0
\(963\) 4.02917e22i 0.0544761i
\(964\) 0 0
\(965\) 6.22188e22 0.0827377
\(966\) 0 0
\(967\) − 9.49275e22i − 0.124160i −0.998071 0.0620798i \(-0.980227\pi\)
0.998071 0.0620798i \(-0.0197733\pi\)
\(968\) 0 0
\(969\) 8.85452e22 0.113913
\(970\) 0 0
\(971\) − 1.21561e24i − 1.53829i −0.639073 0.769146i \(-0.720682\pi\)
0.639073 0.769146i \(-0.279318\pi\)
\(972\) 0 0
\(973\) −3.88954e23 −0.484168
\(974\) 0 0
\(975\) − 5.33136e22i − 0.0652831i
\(976\) 0 0
\(977\) 6.98630e23 0.841571 0.420785 0.907160i \(-0.361755\pi\)
0.420785 + 0.907160i \(0.361755\pi\)
\(978\) 0 0
\(979\) 6.50025e23i 0.770315i
\(980\) 0 0
\(981\) −7.74164e22 −0.0902570
\(982\) 0 0
\(983\) 2.91314e23i 0.334144i 0.985945 + 0.167072i \(0.0534312\pi\)
−0.985945 + 0.167072i \(0.946569\pi\)
\(984\) 0 0
\(985\) −3.57005e23 −0.402888
\(986\) 0 0
\(987\) 2.12225e23i 0.235646i
\(988\) 0 0
\(989\) −5.16554e23 −0.564346
\(990\) 0 0
\(991\) 1.29800e23i 0.139535i 0.997563 + 0.0697677i \(0.0222258\pi\)
−0.997563 + 0.0697677i \(0.977774\pi\)
\(992\) 0 0
\(993\) −1.16787e22 −0.0123538
\(994\) 0 0
\(995\) 9.13388e22i 0.0950759i
\(996\) 0 0
\(997\) 1.19324e24 1.22227 0.611133 0.791528i \(-0.290714\pi\)
0.611133 + 0.791528i \(0.290714\pi\)
\(998\) 0 0
\(999\) 1.38901e23i 0.140017i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 48.17.g.a.31.1 4
4.3 odd 2 inner 48.17.g.a.31.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.17.g.a.31.1 4 1.1 even 1 trivial
48.17.g.a.31.3 yes 4 4.3 odd 2 inner