Properties

Label 48.17.g.a.31.1
Level 4848
Weight 1717
Character 48.31
Analytic conductor 77.91677.916
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [48,17,Mod(31,48)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(48, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 17, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("48.31");
 
S:= CuspForms(chi, 17);
 
N := Newforms(S);
 
Level: N N == 48=243 48 = 2^{4} \cdot 3
Weight: k k == 17 17
Character orbit: [χ][\chi] == 48.g (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 77.915781051277.9157810512
Analytic rank: 00
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+379501x2+379500x+144020250000 x^{4} - x^{3} + 379501x^{2} + 379500x + 144020250000 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 21032 2^{10}\cdot 3^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 31.1
Root 308.268+533.936i308.268 + 533.936i of defining polynomial
Character χ\chi == 48.31
Dual form 48.17.g.a.31.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q3788.00iq3360373.q55.22136e6iq71.43489e7q9+8.78416e7iq116.19491e8q13+1.36509e9iq156.62095e9q173.53050e9iq191.97785e10q215.95950e10iq232.27192e10q25+5.43536e10iq272.15437e11q29+1.08591e12iq31+3.32744e11q33+1.88164e12iq35+2.55550e12q37+2.34663e12iq391.08366e13q418.66774e12iq43+5.17096e12q451.07301e13iq47+5.97034e12q49+2.50801e13iq512.35418e11q533.16557e13iq551.33735e13q57+2.62648e13iq59+3.38835e14q61+7.49208e13iq63+2.23248e14q654.91860e14iq672.25746e14q69+1.07798e15iq712.37507e14q73+8.60603e13iq75+4.58653e14q77+1.62935e15iq79+2.05891e14q81+3.26625e14iq83+2.38601e15q85+8.16075e14iq87+7.39996e15q89+3.23459e15iq91+4.11341e15q93+1.27229e15iq95+1.26360e16q971.26043e15iq99+O(q100)q-3788.00i q^{3} -360373. q^{5} -5.22136e6i q^{7} -1.43489e7 q^{9} +8.78416e7i q^{11} -6.19491e8 q^{13} +1.36509e9i q^{15} -6.62095e9 q^{17} -3.53050e9i q^{19} -1.97785e10 q^{21} -5.95950e10i q^{23} -2.27192e10 q^{25} +5.43536e10i q^{27} -2.15437e11 q^{29} +1.08591e12i q^{31} +3.32744e11 q^{33} +1.88164e12i q^{35} +2.55550e12 q^{37} +2.34663e12i q^{39} -1.08366e13 q^{41} -8.66774e12i q^{43} +5.17096e12 q^{45} -1.07301e13i q^{47} +5.97034e12 q^{49} +2.50801e13i q^{51} -2.35418e11 q^{53} -3.16557e13i q^{55} -1.33735e13 q^{57} +2.62648e13i q^{59} +3.38835e14 q^{61} +7.49208e13i q^{63} +2.23248e14 q^{65} -4.91860e14i q^{67} -2.25746e14 q^{69} +1.07798e15i q^{71} -2.37507e14 q^{73} +8.60603e13i q^{75} +4.58653e14 q^{77} +1.62935e15i q^{79} +2.05891e14 q^{81} +3.26625e14i q^{83} +2.38601e15 q^{85} +8.16075e14i q^{87} +7.39996e15 q^{89} +3.23459e15i q^{91} +4.11341e15 q^{93} +1.27229e15i q^{95} +1.26360e16 q^{97} -1.26043e15i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q140424q557395628q9586685528q13571005336q178495392752q21182227446772q25585621416424q29176071520880q332770470511096q379744697113624q41++45 ⁣ ⁣40q97+O(q100) 4 q - 140424 q^{5} - 57395628 q^{9} - 586685528 q^{13} - 571005336 q^{17} - 8495392752 q^{21} - 182227446772 q^{25} - 585621416424 q^{29} - 176071520880 q^{33} - 2770470511096 q^{37} - 9744697113624 q^{41}+ \cdots + 45\!\cdots\!40 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/48Z)×\left(\mathbb{Z}/48\mathbb{Z}\right)^\times.

nn 1717 3131 3737
χ(n)\chi(n) 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 3788.00i − 0.577350i
44 0 0
55 −360373. −0.922555 −0.461277 0.887256i 0.652609π-0.652609\pi
−0.461277 + 0.887256i 0.652609π0.652609\pi
66 0 0
77 − 5.22136e6i − 0.905731i −0.891579 0.452865i 0.850402π-0.850402\pi
0.891579 0.452865i 0.149598π-0.149598\pi
88 0 0
99 −1.43489e7 −0.333333
1010 0 0
1111 8.78416e7i 0.409788i 0.978784 + 0.204894i 0.0656849π0.0656849\pi
−0.978784 + 0.204894i 0.934315π0.934315\pi
1212 0 0
1313 −6.19491e8 −0.759431 −0.379716 0.925103i 0.623978π-0.623978\pi
−0.379716 + 0.925103i 0.623978π0.623978\pi
1414 0 0
1515 1.36509e9i 0.532637i
1616 0 0
1717 −6.62095e9 −0.949136 −0.474568 0.880219i 0.657396π-0.657396\pi
−0.474568 + 0.880219i 0.657396π0.657396\pi
1818 0 0
1919 − 3.53050e9i − 0.207877i −0.994584 0.103939i 0.966855π-0.966855\pi
0.994584 0.103939i 0.0331445π-0.0331445\pi
2020 0 0
2121 −1.97785e10 −0.522924
2222 0 0
2323 − 5.95950e10i − 0.761005i −0.924780 0.380502i 0.875751π-0.875751\pi
0.924780 0.380502i 0.124249π-0.124249\pi
2424 0 0
2525 −2.27192e10 −0.148893
2626 0 0
2727 5.43536e10i 0.192450i
2828 0 0
2929 −2.15437e11 −0.430662 −0.215331 0.976541i 0.569083π-0.569083\pi
−0.215331 + 0.976541i 0.569083π0.569083\pi
3030 0 0
3131 1.08591e12i 1.27321i 0.771191 + 0.636603i 0.219661π0.219661\pi
−0.771191 + 0.636603i 0.780339π0.780339\pi
3232 0 0
3333 3.32744e11 0.236591
3434 0 0
3535 1.88164e12i 0.835586i
3636 0 0
3737 2.55550e12 0.727549 0.363774 0.931487i 0.381488π-0.381488\pi
0.363774 + 0.931487i 0.381488π0.381488\pi
3838 0 0
3939 2.34663e12i 0.438458i
4040 0 0
4141 −1.08366e13 −1.35713 −0.678566 0.734540i 0.737398π-0.737398\pi
−0.678566 + 0.734540i 0.737398π0.737398\pi
4242 0 0
4343 − 8.66774e12i − 0.741580i −0.928717 0.370790i 0.879087π-0.879087\pi
0.928717 0.370790i 0.120913π-0.120913\pi
4444 0 0
4545 5.17096e12 0.307518
4646 0 0
4747 − 1.07301e13i − 0.450631i −0.974286 0.225316i 0.927659π-0.927659\pi
0.974286 0.225316i 0.0723414π-0.0723414\pi
4848 0 0
4949 5.97034e12 0.179651
5050 0 0
5151 2.50801e13i 0.547984i
5252 0 0
5353 −2.35418e11 −0.00378122 −0.00189061 0.999998i 0.500602π-0.500602\pi
−0.00189061 + 0.999998i 0.500602π0.500602\pi
5454 0 0
5555 − 3.16557e13i − 0.378052i
5656 0 0
5757 −1.33735e13 −0.120018
5858 0 0
5959 2.62648e13i 0.178878i 0.995992 + 0.0894392i 0.0285075π0.0285075\pi
−0.995992 + 0.0894392i 0.971493π0.971493\pi
6060 0 0
6161 3.38835e14 1.76746 0.883731 0.467995i 0.155024π-0.155024\pi
0.883731 + 0.467995i 0.155024π0.155024\pi
6262 0 0
6363 7.49208e13i 0.301910i
6464 0 0
6565 2.23248e14 0.700617
6666 0 0
6767 − 4.91860e14i − 1.21128i −0.795740 0.605638i 0.792918π-0.792918\pi
0.795740 0.605638i 0.207082π-0.207082\pi
6868 0 0
6969 −2.25746e14 −0.439366
7070 0 0
7171 1.07798e15i 1.66934i 0.550753 + 0.834668i 0.314341π0.314341\pi
−0.550753 + 0.834668i 0.685659π0.685659\pi
7272 0 0
7373 −2.37507e14 −0.294505 −0.147253 0.989099i 0.547043π-0.547043\pi
−0.147253 + 0.989099i 0.547043π0.547043\pi
7474 0 0
7575 8.60603e13i 0.0859632i
7676 0 0
7777 4.58653e14 0.371157
7878 0 0
7979 1.62935e15i 1.07398i 0.843588 + 0.536991i 0.180439π0.180439\pi
−0.843588 + 0.536991i 0.819561π0.819561\pi
8080 0 0
8181 2.05891e14 0.111111
8282 0 0
8383 3.26625e14i 0.145019i 0.997368 + 0.0725094i 0.0231007π0.0231007\pi
−0.997368 + 0.0725094i 0.976899π0.976899\pi
8484 0 0
8585 2.38601e15 0.875630
8686 0 0
8787 8.16075e14i 0.248643i
8888 0 0
8989 7.39996e15 1.87979 0.939895 0.341464i 0.110923π-0.110923\pi
0.939895 + 0.341464i 0.110923π0.110923\pi
9090 0 0
9191 3.23459e15i 0.687840i
9292 0 0
9393 4.11341e15 0.735086
9494 0 0
9595 1.27229e15i 0.191778i
9696 0 0
9797 1.26360e16 1.61226 0.806132 0.591735i 0.201557π-0.201557\pi
0.806132 + 0.591735i 0.201557π0.201557\pi
9898 0 0
9999 − 1.26043e15i − 0.136596i
100100 0 0
101101 −7.85837e14 −0.0725707 −0.0362853 0.999341i 0.511553π-0.511553\pi
−0.0362853 + 0.999341i 0.511553π0.511553\pi
102102 0 0
103103 1.58920e16i 1.25453i 0.778807 + 0.627264i 0.215825π0.215825\pi
−0.778807 + 0.627264i 0.784175π0.784175\pi
104104 0 0
105105 7.12763e15 0.482426
106106 0 0
107107 − 2.80800e15i − 0.163428i −0.996656 0.0817141i 0.973961π-0.973961\pi
0.996656 0.0817141i 0.0260394π-0.0260394\pi
108108 0 0
109109 5.39528e15 0.270771 0.135385 0.990793i 0.456773π-0.456773\pi
0.135385 + 0.990793i 0.456773π0.456773\pi
110110 0 0
111111 − 9.68022e15i − 0.420050i
112112 0 0
113113 3.50564e16 1.31868 0.659340 0.751845i 0.270836π-0.270836\pi
0.659340 + 0.751845i 0.270836π0.270836\pi
114114 0 0
115115 2.14764e16i 0.702068i
116116 0 0
117117 8.88902e15 0.253144
118118 0 0
119119 3.45703e16i 0.859662i
120120 0 0
121121 3.82336e16 0.832074
122122 0 0
123123 4.10490e16i 0.783540i
124124 0 0
125125 6.31759e16 1.05992
126126 0 0
127127 − 1.12415e16i − 0.166110i −0.996545 0.0830550i 0.973532π-0.973532\pi
0.996545 0.0830550i 0.0264677π-0.0264677\pi
128128 0 0
129129 −3.28334e16 −0.428152
130130 0 0
131131 9.97967e16i 1.15066i 0.817923 + 0.575328i 0.195126π0.195126\pi
−0.817923 + 0.575328i 0.804874π0.804874\pi
132132 0 0
133133 −1.84340e16 −0.188281
134134 0 0
135135 − 1.95876e16i − 0.177546i
136136 0 0
137137 −4.85606e16 −0.391308 −0.195654 0.980673i 0.562683π-0.562683\pi
−0.195654 + 0.980673i 0.562683π0.562683\pi
138138 0 0
139139 − 7.44929e16i − 0.534560i −0.963619 0.267280i 0.913875π-0.913875\pi
0.963619 0.267280i 0.0861249π-0.0861249\pi
140140 0 0
141141 −4.06456e16 −0.260172
142142 0 0
143143 − 5.44171e16i − 0.311205i
144144 0 0
145145 7.76377e16 0.397309
146146 0 0
147147 − 2.26156e16i − 0.103722i
148148 0 0
149149 −2.86718e17 −1.18023 −0.590113 0.807320i 0.700917π-0.700917\pi
−0.590113 + 0.807320i 0.700917π0.700917\pi
150150 0 0
151151 − 3.85192e17i − 1.42515i −0.701594 0.712577i 0.747528π-0.747528\pi
0.701594 0.712577i 0.252472π-0.252472\pi
152152 0 0
153153 9.50033e16 0.316379
154154 0 0
155155 − 3.91331e17i − 1.17460i
156156 0 0
157157 −2.55142e17 −0.691169 −0.345585 0.938388i 0.612319π-0.612319\pi
−0.345585 + 0.938388i 0.612319π0.612319\pi
158158 0 0
159159 8.91761e14i 0.00218309i
160160 0 0
161161 −3.11167e17 −0.689265
162162 0 0
163163 2.33321e17i 0.468223i 0.972210 + 0.234111i 0.0752180π0.0752180\pi
−0.972210 + 0.234111i 0.924782π0.924782\pi
164164 0 0
165165 −1.19912e17 −0.218268
166166 0 0
167167 3.51040e17i 0.580262i 0.956987 + 0.290131i 0.0936989π0.0936989\pi
−0.956987 + 0.290131i 0.906301π0.906301\pi
168168 0 0
169169 −2.81647e17 −0.423264
170170 0 0
171171 5.06587e16i 0.0692924i
172172 0 0
173173 −6.54566e17 −0.815801 −0.407901 0.913026i 0.633739π-0.633739\pi
−0.407901 + 0.913026i 0.633739π0.633739\pi
174174 0 0
175175 1.18625e17i 0.134857i
176176 0 0
177177 9.94909e16 0.103276
178178 0 0
179179 − 1.27709e18i − 1.21170i −0.795578 0.605851i 0.792833π-0.792833\pi
0.795578 0.605851i 0.207167π-0.207167\pi
180180 0 0
181181 −2.13681e18 −1.85497 −0.927486 0.373858i 0.878035π-0.878035\pi
−0.927486 + 0.373858i 0.878035π0.878035\pi
182182 0 0
183183 − 1.28351e18i − 1.02044i
184184 0 0
185185 −9.20933e17 −0.671203
186186 0 0
187187 − 5.81595e17i − 0.388944i
188188 0 0
189189 2.83800e17 0.174308
190190 0 0
191191 1.99687e18i 1.12741i 0.825976 + 0.563706i 0.190625π0.190625\pi
−0.825976 + 0.563706i 0.809375π0.809375\pi
192192 0 0
193193 −1.72651e17 −0.0896832 −0.0448416 0.998994i 0.514278π-0.514278\pi
−0.0448416 + 0.998994i 0.514278π0.514278\pi
194194 0 0
195195 − 8.45662e17i − 0.404501i
196196 0 0
197197 9.90654e17 0.436709 0.218354 0.975870i 0.429931π-0.429931\pi
0.218354 + 0.975870i 0.429931π0.429931\pi
198198 0 0
199199 − 2.53456e17i − 0.103057i −0.998672 0.0515286i 0.983591π-0.983591\pi
0.998672 0.0515286i 0.0164093π-0.0164093\pi
200200 0 0
201201 −1.86316e18 −0.699331
202202 0 0
203203 1.12487e18i 0.390064i
204204 0 0
205205 3.90522e18 1.25203
206206 0 0
207207 8.55123e17i 0.253668i
208208 0 0
209209 3.10124e17 0.0851855
210210 0 0
211211 − 1.56670e18i − 0.398773i −0.979921 0.199386i 0.936105π-0.936105\pi
0.979921 0.199386i 0.0638948π-0.0638948\pi
212212 0 0
213213 4.08338e18 0.963792
214214 0 0
215215 3.12362e18i 0.684148i
216216 0 0
217217 5.66991e18 1.15318
218218 0 0
219219 8.99674e17i 0.170033i
220220 0 0
221221 4.10162e18 0.720804
222222 0 0
223223 − 3.77973e18i − 0.618047i −0.951054 0.309023i 0.899998π-0.899998\pi
0.951054 0.309023i 0.100002π-0.100002\pi
224224 0 0
225225 3.25996e17 0.0496309
226226 0 0
227227 5.04768e18i 0.715953i 0.933731 + 0.357977i 0.116533π0.116533\pi
−0.933731 + 0.357977i 0.883467π0.883467\pi
228228 0 0
229229 1.53931e18 0.203536 0.101768 0.994808i 0.467550π-0.467550\pi
0.101768 + 0.994808i 0.467550π0.467550\pi
230230 0 0
231231 − 1.73737e18i − 0.214288i
232232 0 0
233233 −1.07934e19 −1.24254 −0.621269 0.783597i 0.713383π-0.713383\pi
−0.621269 + 0.783597i 0.713383π0.713383\pi
234234 0 0
235235 3.86684e18i 0.415732i
236236 0 0
237237 6.17196e18 0.620064
238238 0 0
239239 1.56042e19i 1.46575i 0.680365 + 0.732874i 0.261821π0.261821\pi
−0.680365 + 0.732874i 0.738179π0.738179\pi
240240 0 0
241241 1.65950e19 1.45828 0.729141 0.684363i 0.239920π-0.239920\pi
0.729141 + 0.684363i 0.239920π0.239920\pi
242242 0 0
243243 − 7.79915e17i − 0.0641500i
244244 0 0
245245 −2.15155e18 −0.165738
246246 0 0
247247 2.18711e18i 0.157868i
248248 0 0
249249 1.23725e18 0.0837266
250250 0 0
251251 2.87255e19i 1.82338i 0.410878 + 0.911690i 0.365222π0.365222\pi
−0.410878 + 0.911690i 0.634778π0.634778\pi
252252 0 0
253253 5.23492e18 0.311850
254254 0 0
255255 − 9.03819e18i − 0.505545i
256256 0 0
257257 1.31331e19 0.690085 0.345042 0.938587i 0.387865π-0.387865\pi
0.345042 + 0.938587i 0.387865π0.387865\pi
258258 0 0
259259 − 1.33432e19i − 0.658963i
260260 0 0
261261 3.09129e18 0.143554
262262 0 0
263263 − 4.65385e18i − 0.203314i −0.994820 0.101657i 0.967586π-0.967586\pi
0.994820 0.101657i 0.0324144π-0.0324144\pi
264264 0 0
265265 8.48381e16 0.00348838
266266 0 0
267267 − 2.80310e19i − 1.08530i
268268 0 0
269269 6.70644e18 0.244610 0.122305 0.992493i 0.460971π-0.460971\pi
0.122305 + 0.992493i 0.460971π0.460971\pi
270270 0 0
271271 1.37433e19i 0.472428i 0.971701 + 0.236214i 0.0759067π0.0759067\pi
−0.971701 + 0.236214i 0.924093π0.924093\pi
272272 0 0
273273 1.22526e19 0.397125
274274 0 0
275275 − 1.99569e18i − 0.0610144i
276276 0 0
277277 −3.77201e19 −1.08827 −0.544133 0.838999i 0.683141π-0.683141\pi
−0.544133 + 0.838999i 0.683141π0.683141\pi
278278 0 0
279279 − 1.55816e19i − 0.424402i
280280 0 0
281281 −5.98631e19 −1.53996 −0.769979 0.638069i 0.779733π-0.779733\pi
−0.769979 + 0.638069i 0.779733π0.779733\pi
282282 0 0
283283 − 6.75587e19i − 1.64206i −0.570883 0.821031i 0.693399π-0.693399\pi
0.570883 0.821031i 0.306601π-0.306601\pi
284284 0 0
285285 4.81945e18 0.110723
286286 0 0
287287 5.65818e19i 1.22920i
288288 0 0
289289 −4.82427e18 −0.0991400
290290 0 0
291291 − 4.78652e19i − 0.930841i
292292 0 0
293293 −7.68743e19 −1.41527 −0.707637 0.706576i 0.750239π-0.750239\pi
−0.707637 + 0.706576i 0.750239π0.750239\pi
294294 0 0
295295 − 9.46513e18i − 0.165025i
296296 0 0
297297 −4.77451e18 −0.0788637
298298 0 0
299299 3.69186e19i 0.577931i
300300 0 0
301301 −4.52574e19 −0.671672
302302 0 0
303303 2.97674e18i 0.0418987i
304304 0 0
305305 −1.22107e20 −1.63058
306306 0 0
307307 − 1.35153e20i − 1.71284i −0.516276 0.856422i 0.672682π-0.672682\pi
0.516276 0.856422i 0.327318π-0.327318\pi
308308 0 0
309309 6.01988e19 0.724302
310310 0 0
311311 1.07981e20i 1.23386i 0.787020 + 0.616928i 0.211623π0.211623\pi
−0.787020 + 0.616928i 0.788377π0.788377\pi
312312 0 0
313313 1.37030e20 1.48752 0.743759 0.668448i 0.233041π-0.233041\pi
0.743759 + 0.668448i 0.233041π0.233041\pi
314314 0 0
315315 − 2.69994e19i − 0.278529i
316316 0 0
317317 −1.08994e20 −1.06888 −0.534439 0.845207i 0.679477π-0.679477\pi
−0.534439 + 0.845207i 0.679477π0.679477\pi
318318 0 0
319319 − 1.89243e19i − 0.176480i
320320 0 0
321321 −1.06367e19 −0.0943553
322322 0 0
323323 2.33752e19i 0.197304i
324324 0 0
325325 1.40744e19 0.113074
326326 0 0
327327 − 2.04373e19i − 0.156330i
328328 0 0
329329 −5.60258e19 −0.408151
330330 0 0
331331 − 3.08309e18i − 0.0213975i −0.999943 0.0106987i 0.996594π-0.996594\pi
0.999943 0.0106987i 0.00340558π-0.00340558\pi
332332 0 0
333333 −3.66686e19 −0.242516
334334 0 0
335335 1.77253e20i 1.11747i
336336 0 0
337337 −1.44317e20 −0.867520 −0.433760 0.901029i 0.642813π-0.642813\pi
−0.433760 + 0.901029i 0.642813π0.642813\pi
338338 0 0
339339 − 1.32793e20i − 0.761340i
340340 0 0
341341 −9.53878e19 −0.521744
342342 0 0
343343 − 2.04694e20i − 1.06845i
344344 0 0
345345 8.13526e19 0.405339
346346 0 0
347347 1.64935e20i 0.784654i 0.919826 + 0.392327i 0.128330π0.128330\pi
−0.919826 + 0.392327i 0.871670π0.871670\pi
348348 0 0
349349 2.35205e20 1.06867 0.534333 0.845274i 0.320563π-0.320563\pi
0.534333 + 0.845274i 0.320563π0.320563\pi
350350 0 0
351351 − 3.36716e19i − 0.146153i
352352 0 0
353353 3.33026e20 1.38127 0.690637 0.723201i 0.257330π-0.257330\pi
0.690637 + 0.723201i 0.257330π0.257330\pi
354354 0 0
355355 − 3.88475e20i − 1.54005i
356356 0 0
357357 1.30952e20 0.496326
358358 0 0
359359 4.21282e20i 1.52692i 0.645853 + 0.763462i 0.276502π0.276502\pi
−0.645853 + 0.763462i 0.723498π0.723498\pi
360360 0 0
361361 2.75977e20 0.956787
362362 0 0
363363 − 1.44829e20i − 0.480398i
364364 0 0
365365 8.55910e19 0.271697
366366 0 0
367367 6.13373e20i 1.86379i 0.362732 + 0.931894i 0.381844π0.381844\pi
−0.362732 + 0.931894i 0.618156π0.618156\pi
368368 0 0
369369 1.55493e20 0.452377
370370 0 0
371371 1.22920e18i 0.00342477i
372372 0 0
373373 2.17396e20 0.580203 0.290102 0.956996i 0.406311π-0.406311\pi
0.290102 + 0.956996i 0.406311π0.406311\pi
374374 0 0
375375 − 2.39310e20i − 0.611943i
376376 0 0
377377 1.33461e20 0.327058
378378 0 0
379379 4.69384e20i 1.10259i 0.834310 + 0.551296i 0.185866π0.185866\pi
−0.834310 + 0.551296i 0.814134π0.814134\pi
380380 0 0
381381 −4.25829e19 −0.0959037
382382 0 0
383383 6.41933e20i 1.38644i 0.720728 + 0.693218i 0.243807π0.243807\pi
−0.720728 + 0.693218i 0.756193π0.756193\pi
384384 0 0
385385 −1.65286e20 −0.342413
386386 0 0
387387 1.24373e20i 0.247193i
388388 0 0
389389 3.55635e19 0.0678278 0.0339139 0.999425i 0.489203π-0.489203\pi
0.0339139 + 0.999425i 0.489203π0.489203\pi
390390 0 0
391391 3.94575e20i 0.722297i
392392 0 0
393393 3.78029e20 0.664332
394394 0 0
395395 − 5.87173e20i − 0.990808i
396396 0 0
397397 5.57406e20 0.903333 0.451666 0.892187i 0.350830π-0.350830\pi
0.451666 + 0.892187i 0.350830π0.350830\pi
398398 0 0
399399 6.98278e19i 0.108704i
400400 0 0
401401 −7.48750e20 −1.11991 −0.559953 0.828524i 0.689181π-0.689181\pi
−0.559953 + 0.828524i 0.689181π0.689181\pi
402402 0 0
403403 − 6.72710e20i − 0.966913i
404404 0 0
405405 −7.41976e19 −0.102506
406406 0 0
407407 2.24479e20i 0.298140i
408408 0 0
409409 −7.57698e20 −0.967631 −0.483816 0.875170i 0.660749π-0.660749\pi
−0.483816 + 0.875170i 0.660749π0.660749\pi
410410 0 0
411411 1.83947e20i 0.225922i
412412 0 0
413413 1.37138e20 0.162016
414414 0 0
415415 − 1.17707e20i − 0.133788i
416416 0 0
417417 −2.82179e20 −0.308628
418418 0 0
419419 − 9.76317e20i − 1.02773i −0.857871 0.513864i 0.828213π-0.828213\pi
0.857871 0.513864i 0.171787π-0.171787\pi
420420 0 0
421421 1.18650e21 1.20230 0.601148 0.799138i 0.294710π-0.294710\pi
0.601148 + 0.799138i 0.294710π0.294710\pi
422422 0 0
423423 1.53965e20i 0.150210i
424424 0 0
425425 1.50423e20 0.141319
426426 0 0
427427 − 1.76918e21i − 1.60084i
428428 0 0
429429 −2.06132e20 −0.179675
430430 0 0
431431 1.90027e21i 1.59587i 0.602743 + 0.797935i 0.294074π0.294074\pi
−0.602743 + 0.797935i 0.705926π0.705926\pi
432432 0 0
433433 −6.21560e20 −0.503014 −0.251507 0.967856i 0.580926π-0.580926\pi
−0.251507 + 0.967856i 0.580926π0.580926\pi
434434 0 0
435435 − 2.94091e20i − 0.229387i
436436 0 0
437437 −2.10400e20 −0.158195
438438 0 0
439439 1.04264e21i 0.755819i 0.925842 + 0.377910i 0.123357π0.123357\pi
−0.925842 + 0.377910i 0.876643π0.876643\pi
440440 0 0
441441 −8.56679e19 −0.0598838
442442 0 0
443443 − 2.89989e21i − 1.95502i −0.210889 0.977510i 0.567636π-0.567636\pi
0.210889 0.977510i 0.432364π-0.432364\pi
444444 0 0
445445 −2.66675e21 −1.73421
446446 0 0
447447 1.08609e21i 0.681404i
448448 0 0
449449 −2.46046e20 −0.148952 −0.0744760 0.997223i 0.523728π-0.523728\pi
−0.0744760 + 0.997223i 0.523728π0.523728\pi
450450 0 0
451451 − 9.51904e20i − 0.556136i
452452 0 0
453453 −1.45911e21 −0.822813
454454 0 0
455455 − 1.16566e21i − 0.634570i
456456 0 0
457457 1.72123e19 0.00904711 0.00452355 0.999990i 0.498560π-0.498560\pi
0.00452355 + 0.999990i 0.498560π0.498560\pi
458458 0 0
459459 − 3.59872e20i − 0.182661i
460460 0 0
461461 5.03857e20 0.247002 0.123501 0.992344i 0.460588π-0.460588\pi
0.123501 + 0.992344i 0.460588π0.460588\pi
462462 0 0
463463 3.86309e20i 0.182931i 0.995808 + 0.0914655i 0.0291551π0.0291551\pi
−0.995808 + 0.0914655i 0.970845π0.970845\pi
464464 0 0
465465 −1.48236e21 −0.678157
466466 0 0
467467 − 7.69940e20i − 0.340347i −0.985414 0.170173i 0.945567π-0.945567\pi
0.985414 0.170173i 0.0544328π-0.0544328\pi
468468 0 0
469469 −2.56818e21 −1.09709
470470 0 0
471471 9.66476e20i 0.399047i
472472 0 0
473473 7.61388e20 0.303890
474474 0 0
475475 8.02101e19i 0.0309514i
476476 0 0
477477 3.37798e18 0.00126041
478478 0 0
479479 − 4.90335e21i − 1.76933i −0.466228 0.884664i 0.654388π-0.654388\pi
0.466228 0.884664i 0.345612π-0.345612\pi
480480 0 0
481481 −1.58311e21 −0.552523
482482 0 0
483483 1.17870e21i 0.397948i
484484 0 0
485485 −4.55368e21 −1.48740
486486 0 0
487487 5.33875e21i 1.68736i 0.536845 + 0.843681i 0.319616π0.319616\pi
−0.536845 + 0.843681i 0.680384π0.680384\pi
488488 0 0
489489 8.83817e20 0.270328
490490 0 0
491491 − 2.05807e21i − 0.609268i −0.952469 0.304634i 0.901466π-0.901466\pi
0.952469 0.304634i 0.0985342π-0.0985342\pi
492492 0 0
493493 1.42640e21 0.408757
494494 0 0
495495 4.54225e20i 0.126017i
496496 0 0
497497 5.62852e21 1.51197
498498 0 0
499499 3.99610e21i 1.03952i 0.854313 + 0.519759i 0.173978π0.173978\pi
−0.854313 + 0.519759i 0.826022π0.826022\pi
500500 0 0
501501 1.32974e21 0.335015
502502 0 0
503503 1.54278e21i 0.376497i 0.982121 + 0.188248i 0.0602810π0.0602810\pi
−0.982121 + 0.188248i 0.939719π0.939719\pi
504504 0 0
505505 2.83194e20 0.0669504
506506 0 0
507507 1.06688e21i 0.244372i
508508 0 0
509509 6.53591e21 1.45065 0.725326 0.688405i 0.241689π-0.241689\pi
0.725326 + 0.688405i 0.241689π0.241689\pi
510510 0 0
511511 1.24011e21i 0.266742i
512512 0 0
513513 1.91895e20 0.0400060
514514 0 0
515515 − 5.72704e21i − 1.15737i
516516 0 0
517517 9.42551e20 0.184663
518518 0 0
519519 2.47949e21i 0.471003i
520520 0 0
521521 3.84224e21 0.707755 0.353878 0.935292i 0.384863π-0.384863\pi
0.353878 + 0.935292i 0.384863π0.384863\pi
522522 0 0
523523 1.05856e21i 0.189104i 0.995520 + 0.0945522i 0.0301419π0.0301419\pi
−0.995520 + 0.0945522i 0.969858π0.969858\pi
524524 0 0
525525 4.49352e20 0.0778595
526526 0 0
527527 − 7.18973e21i − 1.20845i
528528 0 0
529529 2.58104e21 0.420872
530530 0 0
531531 − 3.76871e20i − 0.0596262i
532532 0 0
533533 6.71318e21 1.03065
534534 0 0
535535 1.01193e21i 0.150771i
536536 0 0
537537 −4.83759e21 −0.699576
538538 0 0
539539 5.24445e20i 0.0736189i
540540 0 0
541541 2.76090e21 0.376247 0.188124 0.982145i 0.439759π-0.439759\pi
0.188124 + 0.982145i 0.439759π0.439759\pi
542542 0 0
543543 8.09423e21i 1.07097i
544544 0 0
545545 −1.94431e21 −0.249801
546546 0 0
547547 − 4.11011e20i − 0.0512808i −0.999671 0.0256404i 0.991838π-0.991838\pi
0.999671 0.0256404i 0.00816248π-0.00816248\pi
548548 0 0
549549 −4.86192e21 −0.589154
550550 0 0
551551 7.60600e20i 0.0895248i
552552 0 0
553553 8.50741e21 0.972739
554554 0 0
555555 3.48849e21i 0.387519i
556556 0 0
557557 9.57546e21 1.03352 0.516759 0.856131i 0.327138π-0.327138\pi
0.516759 + 0.856131i 0.327138π0.327138\pi
558558 0 0
559559 5.36959e21i 0.563179i
560560 0 0
561561 −2.20308e21 −0.224557
562562 0 0
563563 1.65058e22i 1.63519i 0.575791 + 0.817597i 0.304694π0.304694\pi
−0.575791 + 0.817597i 0.695306π0.695306\pi
564564 0 0
565565 −1.26334e22 −1.21655
566566 0 0
567567 − 1.07503e21i − 0.100637i
568568 0 0
569569 7.25823e21 0.660591 0.330295 0.943878i 0.392852π-0.392852\pi
0.330295 + 0.943878i 0.392852π0.392852\pi
570570 0 0
571571 2.38406e21i 0.210974i 0.994421 + 0.105487i 0.0336401π0.0336401\pi
−0.994421 + 0.105487i 0.966360π0.966360\pi
572572 0 0
573573 7.56413e21 0.650912
574574 0 0
575575 1.35395e21i 0.113308i
576576 0 0
577577 4.77664e21 0.388791 0.194395 0.980923i 0.437726π-0.437726\pi
0.194395 + 0.980923i 0.437726π0.437726\pi
578578 0 0
579579 6.54002e20i 0.0517786i
580580 0 0
581581 1.70542e21 0.131348
582582 0 0
583583 − 2.06795e19i − 0.00154950i
584584 0 0
585585 −3.20336e21 −0.233539
586586 0 0
587587 − 2.61793e22i − 1.85717i −0.371115 0.928587i 0.621024π-0.621024\pi
0.371115 0.928587i 0.378976π-0.378976\pi
588588 0 0
589589 3.83379e21 0.264671
590590 0 0
591591 − 3.75259e21i − 0.252134i
592592 0 0
593593 −2.14609e22 −1.40349 −0.701747 0.712427i 0.747596π-0.747596\pi
−0.701747 + 0.712427i 0.747596π0.747596\pi
594594 0 0
595595 − 1.24582e22i − 0.793086i
596596 0 0
597597 −9.60091e20 −0.0595001
598598 0 0
599599 2.55608e21i 0.154227i 0.997022 + 0.0771135i 0.0245704π0.0245704\pi
−0.997022 + 0.0771135i 0.975430π0.975430\pi
600600 0 0
601601 −6.44355e21 −0.378555 −0.189278 0.981924i 0.560615π-0.560615\pi
−0.189278 + 0.981924i 0.560615π0.560615\pi
602602 0 0
603603 7.05766e21i 0.403759i
604604 0 0
605605 −1.37783e22 −0.767634
606606 0 0
607607 − 6.83436e21i − 0.370842i −0.982659 0.185421i 0.940635π-0.940635\pi
0.982659 0.185421i 0.0593648π-0.0593648\pi
608608 0 0
609609 4.26102e21 0.225203
610610 0 0
611611 6.64721e21i 0.342224i
612612 0 0
613613 −1.83424e22 −0.919968 −0.459984 0.887927i 0.652145π-0.652145\pi
−0.459984 + 0.887927i 0.652145π0.652145\pi
614614 0 0
615615 − 1.47929e22i − 0.722859i
616616 0 0
617617 −1.23087e22 −0.586043 −0.293022 0.956106i 0.594661π-0.594661\pi
−0.293022 + 0.956106i 0.594661π0.594661\pi
618618 0 0
619619 1.45935e22i 0.677073i 0.940953 + 0.338537i 0.109932π0.109932\pi
−0.940953 + 0.338537i 0.890068π0.890068\pi
620620 0 0
621621 3.23920e21 0.146455
622622 0 0
623623 − 3.86378e22i − 1.70258i
624624 0 0
625625 −1.93002e22 −0.828938
626626 0 0
627627 − 1.17475e21i − 0.0491819i
628628 0 0
629629 −1.69198e22 −0.690543
630630 0 0
631631 − 3.34572e22i − 1.33124i −0.746292 0.665618i 0.768168π-0.768168\pi
0.746292 0.665618i 0.231832π-0.231832\pi
632632 0 0
633633 −5.93464e21 −0.230231
634634 0 0
635635 4.05115e21i 0.153246i
636636 0 0
637637 −3.69858e21 −0.136433
638638 0 0
639639 − 1.54678e22i − 0.556445i
640640 0 0
641641 −1.92372e21 −0.0674958 −0.0337479 0.999430i 0.510744π-0.510744\pi
−0.0337479 + 0.999430i 0.510744π0.510744\pi
642642 0 0
643643 3.52972e22i 1.20796i 0.797000 + 0.603979i 0.206419π0.206419\pi
−0.797000 + 0.603979i 0.793581π0.793581\pi
644644 0 0
645645 1.18323e22 0.394993
646646 0 0
647647 1.78800e22i 0.582281i 0.956680 + 0.291141i 0.0940347π0.0940347\pi
−0.956680 + 0.291141i 0.905965π0.905965\pi
648648 0 0
649649 −2.30714e21 −0.0733022
650650 0 0
651651 − 2.14776e22i − 0.665790i
652652 0 0
653653 −1.59480e22 −0.482393 −0.241196 0.970476i 0.577540π-0.577540\pi
−0.241196 + 0.970476i 0.577540π0.577540\pi
654654 0 0
655655 − 3.59640e22i − 1.06154i
656656 0 0
657657 3.40796e21 0.0981684
658658 0 0
659659 5.67794e22i 1.59627i 0.602476 + 0.798137i 0.294181π0.294181\pi
−0.602476 + 0.798137i 0.705819π0.705819\pi
660660 0 0
661661 5.15514e22 1.41458 0.707292 0.706921i 0.249916π-0.249916\pi
0.707292 + 0.706921i 0.249916π0.249916\pi
662662 0 0
663663 − 1.55369e22i − 0.416156i
664664 0 0
665665 6.64311e21 0.173699
666666 0 0
667667 1.28390e22i 0.327736i
668668 0 0
669669 −1.43176e22 −0.356830
670670 0 0
671671 2.97638e22i 0.724284i
672672 0 0
673673 −6.12492e22 −1.45539 −0.727696 0.685900i 0.759409π-0.759409\pi
−0.727696 + 0.685900i 0.759409π0.759409\pi
674674 0 0
675675 − 1.23487e21i − 0.0286544i
676676 0 0
677677 −1.46668e22 −0.332374 −0.166187 0.986094i 0.553146π-0.553146\pi
−0.166187 + 0.986094i 0.553146π0.553146\pi
678678 0 0
679679 − 6.59772e22i − 1.46028i
680680 0 0
681681 1.91206e22 0.413356
682682 0 0
683683 8.91229e22i 1.88202i 0.338383 + 0.941009i 0.390120π0.390120\pi
−0.338383 + 0.941009i 0.609880π0.609880\pi
684684 0 0
685685 1.74999e22 0.361004
686686 0 0
687687 − 5.83088e21i − 0.117511i
688688 0 0
689689 1.45839e20 0.00287158
690690 0 0
691691 − 2.26063e22i − 0.434916i −0.976070 0.217458i 0.930224π-0.930224\pi
0.976070 0.217458i 0.0697764π-0.0697764\pi
692692 0 0
693693 −6.58116e21 −0.123719
694694 0 0
695695 2.68452e22i 0.493161i
696696 0 0
697697 7.17485e22 1.28810
698698 0 0
699699 4.08852e22i 0.717380i
700700 0 0
701701 −6.45959e22 −1.10780 −0.553899 0.832584i 0.686861π-0.686861\pi
−0.553899 + 0.832584i 0.686861π0.686861\pi
702702 0 0
703703 − 9.02218e21i − 0.151241i
704704 0 0
705705 1.46476e22 0.240023
706706 0 0
707707 4.10313e21i 0.0657295i
708708 0 0
709709 4.64290e22 0.727142 0.363571 0.931567i 0.381557π-0.381557\pi
0.363571 + 0.931567i 0.381557π0.381557\pi
710710 0 0
711711 − 2.33794e22i − 0.357994i
712712 0 0
713713 6.47146e22 0.968916
714714 0 0
715715 1.96105e22i 0.287104i
716716 0 0
717717 5.91087e22 0.846250
718718 0 0
719719 2.18704e22i 0.306215i 0.988210 + 0.153108i 0.0489281π0.0489281\pi
−0.988210 + 0.153108i 0.951072π0.951072\pi
720720 0 0
721721 8.29777e22 1.13626
722722 0 0
723723 − 6.28619e22i − 0.841940i
724724 0 0
725725 4.89456e21 0.0641224
726726 0 0
727727 − 4.68917e22i − 0.600925i −0.953794 0.300463i 0.902859π-0.902859\pi
0.953794 0.300463i 0.0971411π-0.0971411\pi
728728 0 0
729729 −2.95431e21 −0.0370370
730730 0 0
731731 5.73886e22i 0.703861i
732732 0 0
733733 6.19965e22 0.743936 0.371968 0.928246i 0.378683π-0.378683\pi
0.371968 + 0.928246i 0.378683π0.378683\pi
734734 0 0
735735 8.15006e21i 0.0956890i
736736 0 0
737737 4.32058e22 0.496366
738738 0 0
739739 2.15220e22i 0.241950i 0.992656 + 0.120975i 0.0386022π0.0386022\pi
−0.992656 + 0.120975i 0.961398π0.961398\pi
740740 0 0
741741 8.28477e21 0.0911454
742742 0 0
743743 9.74537e21i 0.104927i 0.998623 + 0.0524636i 0.0167073π0.0167073\pi
−0.998623 + 0.0524636i 0.983293π0.983293\pi
744744 0 0
745745 1.03326e23 1.08882
746746 0 0
747747 − 4.68671e21i − 0.0483396i
748748 0 0
749749 −1.46616e22 −0.148022
750750 0 0
751751 1.20764e23i 1.19349i 0.802432 + 0.596744i 0.203539π0.203539\pi
−0.802432 + 0.596744i 0.796461π0.796461\pi
752752 0 0
753753 1.08812e23 1.05273
754754 0 0
755755 1.38813e23i 1.31478i
756756 0 0
757757 −1.13124e22 −0.104903 −0.0524515 0.998623i 0.516704π-0.516704\pi
−0.0524515 + 0.998623i 0.516704π0.516704\pi
758758 0 0
759759 − 1.98299e22i − 0.180047i
760760 0 0
761761 −1.10144e23 −0.979228 −0.489614 0.871939i 0.662862π-0.662862\pi
−0.489614 + 0.871939i 0.662862π0.662862\pi
762762 0 0
763763 − 2.81707e22i − 0.245246i
764764 0 0
765765 −3.42366e22 −0.291877
766766 0 0
767767 − 1.62708e22i − 0.135846i
768768 0 0
769769 −1.93201e23 −1.57979 −0.789893 0.613245i 0.789864π-0.789864\pi
−0.789893 + 0.613245i 0.789864π0.789864\pi
770770 0 0
771771 − 4.97481e22i − 0.398421i
772772 0 0
773773 −6.85136e22 −0.537453 −0.268727 0.963216i 0.586603π-0.586603\pi
−0.268727 + 0.963216i 0.586603π0.586603\pi
774774 0 0
775775 − 2.46710e22i − 0.189571i
776776 0 0
777777 −5.05439e22 −0.380453
778778 0 0
779779 3.82585e22i 0.282117i
780780 0 0
781781 −9.46915e22 −0.684073
782782 0 0
783783 − 1.17098e22i − 0.0828809i
784784 0 0
785785 9.19462e22 0.637642
786786 0 0
787787 − 9.28055e22i − 0.630632i −0.948987 0.315316i 0.897890π-0.897890\pi
0.948987 0.315316i 0.102110π-0.102110\pi
788788 0 0
789789 −1.76288e22 −0.117383
790790 0 0
791791 − 1.83042e23i − 1.19437i
792792 0 0
793793 −2.09906e23 −1.34227
794794 0 0
795795 − 3.21366e20i − 0.00201402i
796796 0 0
797797 9.87144e22 0.606337 0.303168 0.952937i 0.401956π-0.401956\pi
0.303168 + 0.952937i 0.401956π0.401956\pi
798798 0 0
799799 7.10435e22i 0.427711i
800800 0 0
801801 −1.06181e23 −0.626597
802802 0 0
803803 − 2.08630e22i − 0.120685i
804804 0 0
805805 1.12136e23 0.635885
806806 0 0
807807 − 2.54040e22i − 0.141226i
808808 0 0
809809 3.73633e22 0.203637 0.101819 0.994803i 0.467534π-0.467534\pi
0.101819 + 0.994803i 0.467534π0.467534\pi
810810 0 0
811811 1.25266e23i 0.669369i 0.942330 + 0.334685i 0.108630π0.108630\pi
−0.942330 + 0.334685i 0.891370π0.891370\pi
812812 0 0
813813 5.20594e22 0.272757
814814 0 0
815815 − 8.40824e22i − 0.431961i
816816 0 0
817817 −3.06014e22 −0.154158
818818 0 0
819819 − 4.64128e22i − 0.229280i
820820 0 0
821821 −2.55103e23 −1.23586 −0.617931 0.786232i 0.712029π-0.712029\pi
−0.617931 + 0.786232i 0.712029π0.712029\pi
822822 0 0
823823 − 1.17112e23i − 0.556421i −0.960520 0.278210i 0.910259π-0.910259\pi
0.960520 0.278210i 0.0897413π-0.0897413\pi
824824 0 0
825825 −7.55968e21 −0.0352267
826826 0 0
827827 − 3.30491e23i − 1.51048i −0.655446 0.755242i 0.727519π-0.727519\pi
0.655446 0.755242i 0.272481π-0.272481\pi
828828 0 0
829829 −1.31366e23 −0.588907 −0.294454 0.955666i 0.595138π-0.595138\pi
−0.294454 + 0.955666i 0.595138π0.595138\pi
830830 0 0
831831 1.42884e23i 0.628311i
832832 0 0
833833 −3.95293e22 −0.170514
834834 0 0
835835 − 1.26505e23i − 0.535324i
836836 0 0
837837 −5.90229e22 −0.245029
838838 0 0
839839 2.42312e23i 0.986914i 0.869770 + 0.493457i 0.164267π0.164267\pi
−0.869770 + 0.493457i 0.835733π0.835733\pi
840840 0 0
841841 −2.03833e23 −0.814530
842842 0 0
843843 2.26761e23i 0.889095i
844844 0 0
845845 1.01498e23 0.390485
846846 0 0
847847 − 1.99631e23i − 0.753635i
848848 0 0
849849 −2.55912e23 −0.948045
850850 0 0
851851 − 1.52295e23i − 0.553668i
852852 0 0
853853 3.34753e23 1.19435 0.597176 0.802110i 0.296289π-0.296289\pi
0.597176 + 0.802110i 0.296289π0.296289\pi
854854 0 0
855855 − 1.82560e22i − 0.0639260i
856856 0 0
857857 −3.53238e23 −1.21400 −0.607002 0.794700i 0.707628π-0.707628\pi
−0.607002 + 0.794700i 0.707628π0.707628\pi
858858 0 0
859859 − 2.25702e23i − 0.761361i −0.924707 0.380680i 0.875690π-0.875690\pi
0.924707 0.380680i 0.124310π-0.124310\pi
860860 0 0
861861 2.14331e23 0.709677
862862 0 0
863863 − 4.65349e23i − 1.51249i −0.654288 0.756245i 0.727032π-0.727032\pi
0.654288 0.756245i 0.272968π-0.272968\pi
864864 0 0
865865 2.35888e23 0.752621
866866 0 0
867867 1.82743e22i 0.0572385i
868868 0 0
869869 −1.43125e23 −0.440105
870870 0 0
871871 3.04703e23i 0.919881i
872872 0 0
873873 −1.81313e23 −0.537422
874874 0 0
875875 − 3.29864e23i − 0.959999i
876876 0 0
877877 −5.03888e23 −1.43992 −0.719958 0.694018i 0.755839π-0.755839\pi
−0.719958 + 0.694018i 0.755839π0.755839\pi
878878 0 0
879879 2.91200e23i 0.817109i
880880 0 0
881881 5.94146e23 1.63714 0.818570 0.574407i 0.194767π-0.194767\pi
0.818570 + 0.574407i 0.194767π0.194767\pi
882882 0 0
883883 2.33388e23i 0.631528i 0.948838 + 0.315764i 0.102261π0.102261\pi
−0.948838 + 0.315764i 0.897739π0.897739\pi
884884 0 0
885885 −3.58538e22 −0.0952773
886886 0 0
887887 4.85675e22i 0.126753i 0.997990 + 0.0633763i 0.0201868π0.0201868\pi
−0.997990 + 0.0633763i 0.979813π0.979813\pi
888888 0 0
889889 −5.86961e22 −0.150451
890890 0 0
891891 1.80858e22i 0.0455320i
892892 0 0
893893 −3.78826e22 −0.0936760
894894 0 0
895895 4.60227e23i 1.11786i
896896 0 0
897897 1.39847e23 0.333668
898898 0 0
899899 − 2.33945e23i − 0.548322i
900900 0 0
901901 1.55869e21 0.00358889
902902 0 0
903903 1.71435e23i 0.387790i
904904 0 0
905905 7.70049e23 1.71131
906906 0 0
907907 2.95630e23i 0.645492i 0.946486 + 0.322746i 0.104606π0.104606\pi
−0.946486 + 0.322746i 0.895394π0.895394\pi
908908 0 0
909909 1.12759e22 0.0241902
910910 0 0
911911 5.80586e23i 1.22383i 0.790925 + 0.611913i 0.209600π0.209600\pi
−0.790925 + 0.611913i 0.790400π0.790400\pi
912912 0 0
913913 −2.86912e22 −0.0594269
914914 0 0
915915 4.62541e23i 0.941416i
916916 0 0
917917 5.21074e23 1.04219
918918 0 0
919919 6.73665e23i 1.32410i 0.749461 + 0.662049i 0.230313π0.230313\pi
−0.749461 + 0.662049i 0.769687π0.769687\pi
920920 0 0
921921 −5.11958e23 −0.988911
922922 0 0
923923 − 6.67799e23i − 1.26775i
924924 0 0
925925 −5.80590e22 −0.108327
926926 0 0
927927 − 2.28033e23i − 0.418176i
928928 0 0
929929 8.03203e23 1.44777 0.723885 0.689921i 0.242355π-0.242355\pi
0.723885 + 0.689921i 0.242355π0.242355\pi
930930 0 0
931931 − 2.10783e22i − 0.0373454i
932932 0 0
933933 4.09032e23 0.712367
934934 0 0
935935 2.09591e23i 0.358823i
936936 0 0
937937 9.63691e23 1.62189 0.810945 0.585123i 0.198954π-0.198954\pi
0.810945 + 0.585123i 0.198954π0.198954\pi
938938 0 0
939939 − 5.19070e23i − 0.858819i
940940 0 0
941941 3.57623e23 0.581712 0.290856 0.956767i 0.406060π-0.406060\pi
0.290856 + 0.956767i 0.406060π0.406060\pi
942942 0 0
943943 6.45807e23i 1.03278i
944944 0 0
945945 −1.02274e23 −0.160809
946946 0 0
947947 − 5.56883e23i − 0.860923i −0.902609 0.430461i 0.858351π-0.858351\pi
0.902609 0.430461i 0.141649π-0.141649\pi
948948 0 0
949949 1.47133e23 0.223656
950950 0 0
951951 4.12869e23i 0.617117i
952952 0 0
953953 −3.29464e23 −0.484245 −0.242122 0.970246i 0.577844π-0.577844\pi
−0.242122 + 0.970246i 0.577844π0.577844\pi
954954 0 0
955955 − 7.19618e23i − 1.04010i
956956 0 0
957957 −7.16853e22 −0.101891
958958 0 0
959959 2.53552e23i 0.354420i
960960 0 0
961961 −4.51770e23 −0.621056
962962 0 0
963963 4.02917e22i 0.0544761i
964964 0 0
965965 6.22188e22 0.0827377
966966 0 0
967967 − 9.49275e22i − 0.124160i −0.998071 0.0620798i 0.980227π-0.980227\pi
0.998071 0.0620798i 0.0197733π-0.0197733\pi
968968 0 0
969969 8.85452e22 0.113913
970970 0 0
971971 − 1.21561e24i − 1.53829i −0.639073 0.769146i 0.720682π-0.720682\pi
0.639073 0.769146i 0.279318π-0.279318\pi
972972 0 0
973973 −3.88954e23 −0.484168
974974 0 0
975975 − 5.33136e22i − 0.0652831i
976976 0 0
977977 6.98630e23 0.841571 0.420785 0.907160i 0.361755π-0.361755\pi
0.420785 + 0.907160i 0.361755π0.361755\pi
978978 0 0
979979 6.50025e23i 0.770315i
980980 0 0
981981 −7.74164e22 −0.0902570
982982 0 0
983983 2.91314e23i 0.334144i 0.985945 + 0.167072i 0.0534312π0.0534312\pi
−0.985945 + 0.167072i 0.946569π0.946569\pi
984984 0 0
985985 −3.57005e23 −0.402888
986986 0 0
987987 2.12225e23i 0.235646i
988988 0 0
989989 −5.16554e23 −0.564346
990990 0 0
991991 1.29800e23i 0.139535i 0.997563 + 0.0697677i 0.0222258π0.0222258\pi
−0.997563 + 0.0697677i 0.977774π0.977774\pi
992992 0 0
993993 −1.16787e22 −0.0123538
994994 0 0
995995 9.13388e22i 0.0950759i
996996 0 0
997997 1.19324e24 1.22227 0.611133 0.791528i 0.290714π-0.290714\pi
0.611133 + 0.791528i 0.290714π0.290714\pi
998998 0 0
999999 1.38901e23i 0.140017i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 48.17.g.a.31.1 4
4.3 odd 2 inner 48.17.g.a.31.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.17.g.a.31.1 4 1.1 even 1 trivial
48.17.g.a.31.3 yes 4 4.3 odd 2 inner