Properties

Label 48.5.e.b
Level 4848
Weight 55
Character orbit 48.e
Analytic conductor 4.9624.962
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [48,5,Mod(17,48)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(48, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("48.17");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 48=243 48 = 2^{4} \cdot 3
Weight: k k == 5 5
Character orbit: [χ][\chi] == 48.e (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.961758228024.96175822802
Analytic rank: 00
Dimension: 22
Coefficient field: Q(2)\Q(\sqrt{-2})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+2 x^{2} + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 23 2\cdot 3
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=62\beta = 6\sqrt{-2}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β+3)q3+2βq526q7+(6β63)q9+14βq11+50q13+(6β144)q15+24βq17+358q19+(26β78)q2144βq23++(882β6048)q99+O(q100) q + (\beta + 3) q^{3} + 2 \beta q^{5} - 26 q^{7} + (6 \beta - 63) q^{9} + 14 \beta q^{11} + 50 q^{13} + (6 \beta - 144) q^{15} + 24 \beta q^{17} + 358 q^{19} + ( - 26 \beta - 78) q^{21} - 44 \beta q^{23} + \cdots + ( - 882 \beta - 6048) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+6q352q7126q9+100q13288q15+716q19156q21+674q251242q27+1484q312016q33+3748q37+300q39+524q431728q453450q49+12096q99+O(q100) 2 q + 6 q^{3} - 52 q^{7} - 126 q^{9} + 100 q^{13} - 288 q^{15} + 716 q^{19} - 156 q^{21} + 674 q^{25} - 1242 q^{27} + 1484 q^{31} - 2016 q^{33} + 3748 q^{37} + 300 q^{39} + 524 q^{43} - 1728 q^{45} - 3450 q^{49}+ \cdots - 12096 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/48Z)×\left(\mathbb{Z}/48\mathbb{Z}\right)^\times.

nn 1717 3131 3737
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
17.1
1.41421i
1.41421i
0 3.00000 8.48528i 0 16.9706i 0 −26.0000 0 −63.0000 50.9117i 0
17.2 0 3.00000 + 8.48528i 0 16.9706i 0 −26.0000 0 −63.0000 + 50.9117i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 48.5.e.b 2
3.b odd 2 1 inner 48.5.e.b 2
4.b odd 2 1 6.5.b.a 2
8.b even 2 1 192.5.e.c 2
8.d odd 2 1 192.5.e.d 2
12.b even 2 1 6.5.b.a 2
20.d odd 2 1 150.5.d.a 2
20.e even 4 2 150.5.b.a 4
24.f even 2 1 192.5.e.d 2
24.h odd 2 1 192.5.e.c 2
28.d even 2 1 294.5.b.a 2
36.f odd 6 2 162.5.d.a 4
36.h even 6 2 162.5.d.a 4
60.h even 2 1 150.5.d.a 2
60.l odd 4 2 150.5.b.a 4
84.h odd 2 1 294.5.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.5.b.a 2 4.b odd 2 1
6.5.b.a 2 12.b even 2 1
48.5.e.b 2 1.a even 1 1 trivial
48.5.e.b 2 3.b odd 2 1 inner
150.5.b.a 4 20.e even 4 2
150.5.b.a 4 60.l odd 4 2
150.5.d.a 2 20.d odd 2 1
150.5.d.a 2 60.h even 2 1
162.5.d.a 4 36.f odd 6 2
162.5.d.a 4 36.h even 6 2
192.5.e.c 2 8.b even 2 1
192.5.e.c 2 24.h odd 2 1
192.5.e.d 2 8.d odd 2 1
192.5.e.d 2 24.f even 2 1
294.5.b.a 2 28.d even 2 1
294.5.b.a 2 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T52+288 T_{5}^{2} + 288 acting on S5new(48,[χ])S_{5}^{\mathrm{new}}(48, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T26T+81 T^{2} - 6T + 81 Copy content Toggle raw display
55 T2+288 T^{2} + 288 Copy content Toggle raw display
77 (T+26)2 (T + 26)^{2} Copy content Toggle raw display
1111 T2+14112 T^{2} + 14112 Copy content Toggle raw display
1313 (T50)2 (T - 50)^{2} Copy content Toggle raw display
1717 T2+41472 T^{2} + 41472 Copy content Toggle raw display
1919 (T358)2 (T - 358)^{2} Copy content Toggle raw display
2323 T2+139392 T^{2} + 139392 Copy content Toggle raw display
2929 T2+2080800 T^{2} + 2080800 Copy content Toggle raw display
3131 (T742)2 (T - 742)^{2} Copy content Toggle raw display
3737 (T1874)2 (T - 1874)^{2} Copy content Toggle raw display
4141 T2+5807232 T^{2} + 5807232 Copy content Toggle raw display
4343 (T262)2 (T - 262)^{2} Copy content Toggle raw display
4747 T2+2880000 T^{2} + 2880000 Copy content Toggle raw display
5353 T2+209952 T^{2} + 209952 Copy content Toggle raw display
5959 T2+3297312 T^{2} + 3297312 Copy content Toggle raw display
6161 (T+1486)2 (T + 1486)^{2} Copy content Toggle raw display
6767 (T4486)2 (T - 4486)^{2} Copy content Toggle raw display
7171 T2+12700800 T^{2} + 12700800 Copy content Toggle raw display
7373 (T290)2 (T - 290)^{2} Copy content Toggle raw display
7979 (T+9818)2 (T + 9818)^{2} Copy content Toggle raw display
8383 T2+50561568 T^{2} + 50561568 Copy content Toggle raw display
8989 T2+61471872 T^{2} + 61471872 Copy content Toggle raw display
9797 (T+478)2 (T + 478)^{2} Copy content Toggle raw display
show more
show less