Properties

Label 48.5.e.b
Level $48$
Weight $5$
Character orbit 48.e
Analytic conductor $4.962$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [48,5,Mod(17,48)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(48, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("48.17");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 48.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.96175822802\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 6\sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 3) q^{3} + 2 \beta q^{5} - 26 q^{7} + (6 \beta - 63) q^{9} + 14 \beta q^{11} + 50 q^{13} + (6 \beta - 144) q^{15} + 24 \beta q^{17} + 358 q^{19} + ( - 26 \beta - 78) q^{21} - 44 \beta q^{23} + \cdots + ( - 882 \beta - 6048) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} - 52 q^{7} - 126 q^{9} + 100 q^{13} - 288 q^{15} + 716 q^{19} - 156 q^{21} + 674 q^{25} - 1242 q^{27} + 1484 q^{31} - 2016 q^{33} + 3748 q^{37} + 300 q^{39} + 524 q^{43} - 1728 q^{45} - 3450 q^{49}+ \cdots - 12096 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
1.41421i
1.41421i
0 3.00000 8.48528i 0 16.9706i 0 −26.0000 0 −63.0000 50.9117i 0
17.2 0 3.00000 + 8.48528i 0 16.9706i 0 −26.0000 0 −63.0000 + 50.9117i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 48.5.e.b 2
3.b odd 2 1 inner 48.5.e.b 2
4.b odd 2 1 6.5.b.a 2
8.b even 2 1 192.5.e.c 2
8.d odd 2 1 192.5.e.d 2
12.b even 2 1 6.5.b.a 2
20.d odd 2 1 150.5.d.a 2
20.e even 4 2 150.5.b.a 4
24.f even 2 1 192.5.e.d 2
24.h odd 2 1 192.5.e.c 2
28.d even 2 1 294.5.b.a 2
36.f odd 6 2 162.5.d.a 4
36.h even 6 2 162.5.d.a 4
60.h even 2 1 150.5.d.a 2
60.l odd 4 2 150.5.b.a 4
84.h odd 2 1 294.5.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.5.b.a 2 4.b odd 2 1
6.5.b.a 2 12.b even 2 1
48.5.e.b 2 1.a even 1 1 trivial
48.5.e.b 2 3.b odd 2 1 inner
150.5.b.a 4 20.e even 4 2
150.5.b.a 4 60.l odd 4 2
150.5.d.a 2 20.d odd 2 1
150.5.d.a 2 60.h even 2 1
162.5.d.a 4 36.f odd 6 2
162.5.d.a 4 36.h even 6 2
192.5.e.c 2 8.b even 2 1
192.5.e.c 2 24.h odd 2 1
192.5.e.d 2 8.d odd 2 1
192.5.e.d 2 24.f even 2 1
294.5.b.a 2 28.d even 2 1
294.5.b.a 2 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 288 \) acting on \(S_{5}^{\mathrm{new}}(48, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 6T + 81 \) Copy content Toggle raw display
$5$ \( T^{2} + 288 \) Copy content Toggle raw display
$7$ \( (T + 26)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 14112 \) Copy content Toggle raw display
$13$ \( (T - 50)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 41472 \) Copy content Toggle raw display
$19$ \( (T - 358)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 139392 \) Copy content Toggle raw display
$29$ \( T^{2} + 2080800 \) Copy content Toggle raw display
$31$ \( (T - 742)^{2} \) Copy content Toggle raw display
$37$ \( (T - 1874)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 5807232 \) Copy content Toggle raw display
$43$ \( (T - 262)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 2880000 \) Copy content Toggle raw display
$53$ \( T^{2} + 209952 \) Copy content Toggle raw display
$59$ \( T^{2} + 3297312 \) Copy content Toggle raw display
$61$ \( (T + 1486)^{2} \) Copy content Toggle raw display
$67$ \( (T - 4486)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 12700800 \) Copy content Toggle raw display
$73$ \( (T - 290)^{2} \) Copy content Toggle raw display
$79$ \( (T + 9818)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 50561568 \) Copy content Toggle raw display
$89$ \( T^{2} + 61471872 \) Copy content Toggle raw display
$97$ \( (T + 478)^{2} \) Copy content Toggle raw display
show more
show less