Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [480,2,Mod(17,480)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(480, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 2, 2, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("480.17");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 480 = 2^{5} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 480.bi (of order \(4\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.83281929702\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(i)\) |
Coefficient field: | \(\Q(i, \sqrt{6})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 9 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 120) |
Sato-Tate group: | $\mathrm{U}(1)[D_{4}]$ |
Embedding invariants
Embedding label | 113.1 | ||
Root | \(-1.22474 - 1.22474i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 480.113 |
Dual form | 480.2.bi.a.17.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/480\mathbb{Z}\right)^\times\).
\(n\) | \(31\) | \(97\) | \(161\) | \(421\) |
\(\chi(n)\) | \(1\) | \(e\left(\frac{3}{4}\right)\) | \(-1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | −1.22474 | − | 1.22474i | −0.707107 | − | 0.707107i | ||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0.224745 | − | 2.22474i | 0.100509 | − | 0.994936i | ||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 3.44949 | − | 3.44949i | 1.30378 | − | 1.30378i | 0.377964 | − | 0.925820i | \(-0.376624\pi\) |
0.925820 | − | 0.377964i | \(-0.123376\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 3.00000i | 1.00000i | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −1.55051 | −0.467496 | −0.233748 | − | 0.972297i | \(-0.575099\pi\) | ||||
−0.233748 | + | 0.972297i | \(0.575099\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | −3.00000 | + | 2.44949i | −0.774597 | + | 0.632456i | ||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | −8.44949 | −1.84383 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −4.89898 | − | 1.00000i | −0.979796 | − | 0.200000i | ||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 3.67423 | − | 3.67423i | 0.707107 | − | 0.707107i | ||||
\(28\) | 0 | 0 | ||||||||
\(29\) | − | 5.34847i | − | 0.993186i | −0.867984 | − | 0.496593i | \(-0.834584\pi\) | ||
0.867984 | − | 0.496593i | \(-0.165416\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −4.89898 | −0.879883 | −0.439941 | − | 0.898027i | \(-0.645001\pi\) | ||||
−0.439941 | + | 0.898027i | \(0.645001\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 1.89898 | + | 1.89898i | 0.330570 | + | 0.330570i | ||||
\(34\) | 0 | 0 | ||||||||
\(35\) | −6.89898 | − | 8.44949i | −1.16614 | − | 1.42822i | ||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 6.67423 | + | 0.674235i | 0.994936 | + | 0.100509i | ||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | − | 16.7980i | − | 2.39971i | ||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 2.44949 | + | 2.44949i | 0.336463 | + | 0.336463i | 0.855034 | − | 0.518571i | \(-0.173536\pi\) |
−0.518571 | + | 0.855034i | \(0.673536\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −0.348469 | + | 3.44949i | −0.0469876 | + | 0.465129i | ||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 15.3485i | 1.99820i | 0.0424110 | + | 0.999100i | \(0.486496\pi\) | ||||
−0.0424110 | + | 0.999100i | \(0.513504\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 10.3485 | + | 10.3485i | 1.30378 | + | 1.30378i | ||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 11.8990 | + | 11.8990i | 1.39267 | + | 1.39267i | 0.819288 | + | 0.573382i | \(0.194369\pi\) |
0.573382 | + | 0.819288i | \(0.305631\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 4.77526 | + | 7.22474i | 0.551399 | + | 0.834242i | ||||
\(76\) | 0 | 0 | ||||||||
\(77\) | −5.34847 | + | 5.34847i | −0.609515 | + | 0.609515i | ||||
\(78\) | 0 | 0 | ||||||||
\(79\) | − | 14.6969i | − | 1.65353i | −0.562544 | − | 0.826767i | \(-0.690177\pi\) | ||
0.562544 | − | 0.826767i | \(-0.309823\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | −9.00000 | −1.00000 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 4.00000 | + | 4.00000i | 0.439057 | + | 0.439057i | 0.891695 | − | 0.452638i | \(-0.149517\pi\) |
−0.452638 | + | 0.891695i | \(0.649517\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | −6.55051 | + | 6.55051i | −0.702288 | + | 0.702288i | ||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 6.00000 | + | 6.00000i | 0.622171 | + | 0.622171i | ||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 8.79796 | − | 8.79796i | 0.893297 | − | 0.893297i | −0.101535 | − | 0.994832i | \(-0.532375\pi\) |
0.994832 | + | 0.101535i | \(0.0323753\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | − | 4.65153i | − | 0.467496i | ||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 11.5505 | 1.14932 | 0.574659 | − | 0.818393i | \(-0.305135\pi\) | ||||
0.574659 | + | 0.818393i | \(0.305135\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 0.348469 | + | 0.348469i | 0.0343357 | + | 0.0343357i | 0.724066 | − | 0.689730i | \(-0.242271\pi\) |
−0.689730 | + | 0.724066i | \(0.742271\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | −1.89898 | + | 18.7980i | −0.185321 | + | 1.83449i | ||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 8.00000 | − | 8.00000i | 0.773389 | − | 0.773389i | −0.205308 | − | 0.978697i | \(-0.565820\pi\) |
0.978697 | + | 0.205308i | \(0.0658197\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −8.59592 | −0.781447 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −3.32577 | + | 10.6742i | −0.297465 | + | 0.954733i | ||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 13.4495 | − | 13.4495i | 1.19345 | − | 1.19345i | 0.217357 | − | 0.976092i | \(-0.430256\pi\) |
0.976092 | − | 0.217357i | \(-0.0697436\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 18.4495 | 1.61194 | 0.805970 | − | 0.591957i | \(-0.201644\pi\) | ||||
0.805970 | + | 0.591957i | \(0.201644\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | −7.34847 | − | 9.00000i | −0.632456 | − | 0.774597i | ||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −11.8990 | − | 1.20204i | −0.988156 | − | 0.0998241i | ||||
\(146\) | 0 | 0 | ||||||||
\(147\) | −20.5732 | + | 20.5732i | −1.69685 | + | 1.69685i | ||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 19.1464i | 1.56854i | 0.620422 | + | 0.784268i | \(0.286961\pi\) | ||||
−0.620422 | + | 0.784268i | \(0.713039\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −2.00000 | −0.162758 | −0.0813788 | − | 0.996683i | \(-0.525932\pi\) | ||||
−0.0813788 | + | 0.996683i | \(0.525932\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −1.10102 | + | 10.8990i | −0.0884361 | + | 0.875427i | ||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | − | 6.00000i | − | 0.475831i | ||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 4.65153 | − | 3.79796i | 0.362121 | − | 0.295671i | ||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 13.0000i | 1.00000i | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −14.0000 | − | 14.0000i | −1.06440 | − | 1.06440i | −0.997778 | − | 0.0666220i | \(-0.978778\pi\) |
−0.0666220 | − | 0.997778i | \(-0.521222\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −20.3485 | + | 13.4495i | −1.53820 | + | 1.01669i | ||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 18.7980 | − | 18.7980i | 1.41294 | − | 1.41294i | ||||
\(178\) | 0 | 0 | ||||||||
\(179\) | − | 9.14643i | − | 0.683636i | −0.939766 | − | 0.341818i | \(-0.888957\pi\) | ||
0.939766 | − | 0.341818i | \(-0.111043\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | − | 25.3485i | − | 1.84383i | ||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −8.10102 | − | 8.10102i | −0.583124 | − | 0.583124i | 0.352636 | − | 0.935760i | \(-0.385285\pi\) |
−0.935760 | + | 0.352636i | \(0.885285\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 17.1464 | − | 17.1464i | 1.22163 | − | 1.22163i | 0.254581 | − | 0.967051i | \(-0.418062\pi\) |
0.967051 | − | 0.254581i | \(-0.0819375\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 14.0000i | 0.992434i | 0.868199 | + | 0.496217i | \(0.165278\pi\) | ||||
−0.868199 | + | 0.496217i | \(0.834722\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −18.4495 | − | 18.4495i | −1.29490 | − | 1.29490i | ||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −16.8990 | + | 16.8990i | −1.14718 | + | 1.14718i | ||||
\(218\) | 0 | 0 | ||||||||
\(219\) | − | 29.1464i | − | 1.96953i | ||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 20.3485 | + | 20.3485i | 1.36263 | + | 1.36263i | 0.870544 | + | 0.492090i | \(0.163767\pi\) |
0.492090 | + | 0.870544i | \(0.336233\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 3.00000 | − | 14.6969i | 0.200000 | − | 0.979796i | ||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 7.34847 | − | 7.34847i | 0.487735 | − | 0.487735i | −0.419856 | − | 0.907591i | \(-0.637919\pi\) |
0.907591 | + | 0.419856i | \(0.137919\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 13.1010 | 0.861984 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | −18.0000 | + | 18.0000i | −1.16923 | + | 1.16923i | ||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 29.3939 | 1.89343 | 0.946713 | − | 0.322078i | \(-0.104381\pi\) | ||||
0.946713 | + | 0.322078i | \(0.104381\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 11.0227 | + | 11.0227i | 0.707107 | + | 0.707107i | ||||
\(244\) | 0 | 0 | ||||||||
\(245\) | −37.3712 | − | 3.77526i | −2.38756 | − | 0.241192i | ||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | − | 9.79796i | − | 0.620920i | ||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −26.0454 | −1.64397 | −0.821986 | − | 0.569508i | \(-0.807134\pi\) | ||||
−0.821986 | + | 0.569508i | \(0.807134\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 16.0454 | 0.993186 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 6.00000 | − | 4.89898i | 0.368577 | − | 0.300942i | ||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 14.6515i | 0.893320i | 0.894704 | + | 0.446660i | \(0.147387\pi\) | ||||
−0.894704 | + | 0.446660i | \(0.852613\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −22.0000 | −1.33640 | −0.668202 | − | 0.743980i | \(-0.732936\pi\) | ||||
−0.668202 | + | 0.743980i | \(0.732936\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 7.59592 | + | 1.55051i | 0.458051 | + | 0.0934993i | ||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | − | 14.6969i | − | 0.879883i | ||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | − | 17.0000i | − | 1.00000i | ||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | −21.5505 | −1.26331 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −22.0454 | − | 22.0454i | −1.28791 | − | 1.28791i | −0.936056 | − | 0.351850i | \(-0.885553\pi\) |
−0.351850 | − | 0.936056i | \(-0.614447\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 34.1464 | + | 3.44949i | 1.98808 | + | 0.200837i | ||||
\(296\) | 0 | 0 | ||||||||
\(297\) | −5.69694 | + | 5.69694i | −0.330570 | + | 0.330570i | ||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | −14.1464 | − | 14.1464i | −0.812691 | − | 0.812691i | ||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | − | 0.853572i | − | 0.0485580i | ||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 21.8990 | + | 21.8990i | 1.23780 | + | 1.23780i | 0.960897 | + | 0.276907i | \(0.0893093\pi\) |
0.276907 | + | 0.960897i | \(0.410691\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 25.3485 | − | 20.6969i | 1.42822 | − | 1.16614i | ||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 22.0000 | − | 22.0000i | 1.23564 | − | 1.23564i | 0.273879 | − | 0.961764i | \(-0.411693\pi\) |
0.961764 | − | 0.273879i | \(-0.0883068\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 8.29286i | 0.464311i | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | −19.5959 | −1.09374 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −25.6969 | + | 25.6969i | −1.39980 | + | 1.39980i | −0.599208 | + | 0.800593i | \(0.704518\pi\) |
−0.800593 | + | 0.599208i | \(0.795482\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 7.59592 | 0.411342 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −33.7980 | − | 33.7980i | −1.82492 | − | 1.82492i | ||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −17.1464 | + | 17.1464i | −0.920468 | + | 0.920468i | −0.997062 | − | 0.0765939i | \(-0.975596\pi\) |
0.0765939 | + | 0.997062i | \(0.475596\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −19.0000 | −1.00000 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 10.5278 | + | 10.5278i | 0.552567 | + | 0.552567i | ||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 29.1464 | − | 23.7980i | 1.52559 | − | 1.24564i | ||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −16.5505 | + | 16.5505i | −0.863930 | + | 0.863930i | −0.991792 | − | 0.127862i | \(-0.959188\pi\) |
0.127862 | + | 0.991792i | \(0.459188\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 16.8990 | 0.877351 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 17.1464 | − | 9.00000i | 0.885438 | − | 0.464758i | ||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | −32.9444 | −1.68779 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 10.6969 | + | 13.1010i | 0.545166 | + | 0.667690i | ||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 39.1464i | 1.98480i | 0.123043 | + | 0.992401i | \(0.460735\pi\) | ||||
−0.123043 | + | 0.992401i | \(0.539265\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | −22.5959 | − | 22.5959i | −1.13981 | − | 1.13981i | ||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −32.6969 | − | 3.30306i | −1.64516 | − | 0.166195i | ||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | −2.02270 | + | 20.0227i | −0.100509 | + | 0.994936i | ||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 39.1918i | 1.93791i | 0.247234 | + | 0.968956i | \(0.420478\pi\) | ||||
−0.247234 | + | 0.968956i | \(0.579522\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 52.9444 | + | 52.9444i | 2.60522 | + | 2.60522i | ||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 9.79796 | − | 8.00000i | 0.480963 | − | 0.392705i | ||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 35.3485i | 1.72689i | 0.504447 | + | 0.863443i | \(0.331697\pi\) | ||||
−0.504447 | + | 0.863443i | \(0.668303\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −12.5959 | − | 12.5959i | −0.605321 | − | 0.605321i | 0.336399 | − | 0.941720i | \(-0.390791\pi\) |
−0.941720 | + | 0.336399i | \(0.890791\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 13.1010 | + | 16.0454i | 0.628146 | + | 0.769318i | ||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 34.0000i | 1.62273i | 0.584539 | + | 0.811366i | \(0.301275\pi\) | ||||
−0.584539 | + | 0.811366i | \(0.698725\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 50.3939 | 2.39971 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 22.0454 | + | 22.0454i | 1.04741 | + | 1.04741i | 0.998819 | + | 0.0485901i | \(0.0154728\pi\) |
0.0485901 | + | 0.998819i | \(0.484527\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 23.4495 | − | 23.4495i | 1.10912 | − | 1.10912i | ||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 2.44949 | + | 2.44949i | 0.115087 | + | 0.115087i | ||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 28.7980 | − | 28.7980i | 1.34711 | − | 1.34711i | 0.458329 | − | 0.888783i | \(-0.348448\pi\) |
0.888783 | − | 0.458329i | \(-0.151552\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −12.9444 | −0.602880 | −0.301440 | − | 0.953485i | \(-0.597467\pi\) | ||||
−0.301440 | + | 0.953485i | \(0.597467\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −4.14643 | − | 4.14643i | −0.192701 | − | 0.192701i | 0.604161 | − | 0.796862i | \(-0.293508\pi\) |
−0.796862 | + | 0.604161i | \(0.793508\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 14.6969 | − | 12.0000i | 0.681554 | − | 0.556487i | ||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 28.0000 | − | 28.0000i | 1.29569 | − | 1.29569i | 0.364471 | − | 0.931215i | \(-0.381250\pi\) |
0.931215 | − | 0.364471i | \(-0.118750\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | −7.34847 | + | 7.34847i | −0.336463 | + | 0.336463i | ||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | −17.5959 | − | 21.5505i | −0.798989 | − | 0.978558i | ||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −21.0454 | + | 21.0454i | −0.953658 | + | 0.953658i | −0.998973 | − | 0.0453143i | \(-0.985571\pi\) |
0.0453143 | + | 0.998973i | \(0.485571\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 42.9444 | 1.93805 | 0.969027 | − | 0.246957i | \(-0.0794305\pi\) | ||||
0.969027 | + | 0.246957i | \(0.0794305\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | −10.3485 | − | 1.04541i | −0.465129 | − | 0.0469876i | ||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 2.59592 | − | 25.6969i | 0.115517 | − | 1.14350i | ||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 15.9217 | − | 15.9217i | 0.707107 | − | 0.707107i | ||||
\(508\) | 0 | 0 | ||||||||
\(509\) | − | 29.8434i | − | 1.32278i | −0.750040 | − | 0.661392i | \(-0.769966\pi\) | ||
0.750040 | − | 0.661392i | \(-0.230034\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 82.0908 | 3.63148 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0.853572 | − | 0.696938i | 0.0376129 | − | 0.0307108i | ||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 34.2929i | 1.50529i | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 41.3939 | + | 8.44949i | 1.80658 | + | 0.368766i | ||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 23.0000i | 1.00000i | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | −46.0454 | −1.99820 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −16.0000 | − | 19.5959i | −0.691740 | − | 0.847205i | ||||
\(536\) | 0 | 0 | ||||||||
\(537\) | −11.2020 | + | 11.2020i | −0.483404 | + | 0.483404i | ||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 26.0454i | 1.12186i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −50.6969 | − | 50.6969i | −2.15585 | − | 2.15585i | ||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −31.8434 | + | 31.8434i | −1.34925 | + | 1.34925i | −0.462767 | + | 0.886480i | \(0.653143\pi\) |
−0.886480 | + | 0.462767i | \(0.846857\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −26.9444 | − | 26.9444i | −1.13557 | − | 1.13557i | −0.989235 | − | 0.146336i | \(-0.953252\pi\) |
−0.146336 | − | 0.989235i | \(-0.546748\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | −31.0454 | + | 31.0454i | −1.30378 | + | 1.30378i | ||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 4.30306 | − | 4.30306i | 0.179139 | − | 0.179139i | −0.611842 | − | 0.790980i | \(-0.709571\pi\) |
0.790980 | + | 0.611842i | \(0.209571\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 19.8434i | 0.824662i | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 27.5959 | 1.14487 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −3.79796 | − | 3.79796i | −0.157295 | − | 0.157295i | ||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −32.0000 | + | 32.0000i | −1.32078 | + | 1.32078i | −0.407638 | + | 0.913144i | \(0.633647\pi\) |
−0.913144 | + | 0.407638i | \(0.866353\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | −42.0000 | −1.72765 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 17.1464 | − | 17.1464i | 0.701757 | − | 0.701757i | ||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 2.00000 | 0.0815817 | 0.0407909 | − | 0.999168i | \(-0.487012\pi\) | ||||
0.0407909 | + | 0.999168i | \(0.487012\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −1.93189 | + | 19.1237i | −0.0785424 | + | 0.777490i | ||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −11.0454 | + | 11.0454i | −0.448319 | + | 0.448319i | −0.894795 | − | 0.446476i | \(-0.852679\pi\) |
0.446476 | + | 0.894795i | \(0.352679\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 45.1918i | 1.83127i | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 23.0000 | + | 9.79796i | 0.920000 | + | 0.391918i | ||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −4.89898 | −0.195025 | −0.0975126 | − | 0.995234i | \(-0.531089\pi\) | ||||
−0.0975126 | + | 0.995234i | \(0.531089\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −26.8990 | − | 32.9444i | −1.06745 | − | 1.30736i | ||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | − | 23.7980i | − | 0.934152i | ||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 41.3939 | 1.62235 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −34.0000 | − | 34.0000i | −1.33052 | − | 1.33052i | −0.904901 | − | 0.425622i | \(-0.860055\pi\) |
−0.425622 | − | 0.904901i | \(-0.639945\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 4.14643 | − | 41.0454i | 0.162014 | − | 1.60378i | ||||
\(656\) | 0 | 0 | ||||||||
\(657\) | −35.6969 | + | 35.6969i | −1.39267 | + | 1.39267i | ||||
\(658\) | 0 | 0 | ||||||||
\(659\) | − | 49.1464i | − | 1.91447i | −0.289307 | − | 0.957237i | \(-0.593425\pi\) | ||
0.289307 | − | 0.957237i | \(-0.406575\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | − | 49.8434i | − | 1.92706i | ||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −2.59592 | − | 2.59592i | −0.100065 | − | 0.100065i | 0.655302 | − | 0.755367i | \(-0.272541\pi\) |
−0.755367 | + | 0.655302i | \(0.772541\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | −21.6742 | + | 14.3258i | −0.834242 | + | 0.551399i | ||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 2.00000 | − | 2.00000i | 0.0768662 | − | 0.0768662i | −0.667628 | − | 0.744495i | \(-0.732690\pi\) |
0.744495 | + | 0.667628i | \(0.232690\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | − | 60.6969i | − | 2.32933i | ||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | −18.0000 | −0.689761 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 4.00000 | + | 4.00000i | 0.153056 | + | 0.153056i | 0.779481 | − | 0.626426i | \(-0.215483\pi\) |
−0.626426 | + | 0.779481i | \(0.715483\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | −16.0454 | − | 16.0454i | −0.609515 | − | 0.609515i | ||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −52.9444 | −1.99968 | −0.999841 | − | 0.0178345i | \(-0.994323\pi\) | ||||
−0.999841 | + | 0.0178345i | \(0.994323\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 39.8434 | − | 39.8434i | 1.49846 | − | 1.49846i | ||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 44.0908 | 1.65353 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 2.40408 | 0.0895327 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | −36.0000 | − | 36.0000i | −1.33885 | − | 1.33885i | ||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −5.34847 | + | 26.2020i | −0.198637 | + | 0.973119i | ||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 27.9444 | − | 27.9444i | 1.03640 | − | 1.03640i | 0.0370879 | − | 0.999312i | \(-0.488192\pi\) |
0.999312 | − | 0.0370879i | \(-0.0118082\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | − | 27.0000i | − | 1.00000i | ||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 41.1464 | + | 50.3939i | 1.51771 | + | 1.85881i | ||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 42.5959 | + | 4.30306i | 1.56059 | + | 0.157652i | ||||
\(746\) | 0 | 0 | ||||||||
\(747\) | −12.0000 | + | 12.0000i | −0.439057 | + | 0.439057i | ||||
\(748\) | 0 | 0 | ||||||||
\(749\) | − | 55.1918i | − | 2.01667i | ||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −53.8888 | −1.96643 | −0.983215 | − | 0.182453i | \(-0.941596\pi\) | ||||
−0.983215 | + | 0.182453i | \(0.941596\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 31.8990 | + | 31.8990i | 1.16246 | + | 1.16246i | ||||
\(754\) | 0 | 0 | ||||||||
\(755\) | −0.449490 | + | 4.44949i | −0.0163586 | + | 0.161934i | ||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 26.0000i | 0.937584i | 0.883309 | + | 0.468792i | \(0.155311\pi\) | ||||
−0.883309 | + | 0.468792i | \(0.844689\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −14.0000 | − | 14.0000i | −0.503545 | − | 0.503545i | 0.408993 | − | 0.912538i | \(-0.365880\pi\) |
−0.912538 | + | 0.408993i | \(0.865880\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 24.0000 | + | 4.89898i | 0.862105 | + | 0.175977i | ||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | −19.6515 | − | 19.6515i | −0.702288 | − | 0.702288i | ||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | −13.3485 | − | 1.34847i | −0.473421 | − | 0.0478253i | ||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −38.0000 | + | 38.0000i | −1.34603 | + | 1.34603i | −0.456101 | + | 0.889928i | \(0.650754\pi\) |
−0.889928 | + | 0.456101i | \(0.849246\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −18.4495 | − | 18.4495i | −0.651068 | − | 0.651068i | ||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 17.9444 | − | 17.9444i | 0.631672 | − | 0.631672i | ||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 26.9444 | + | 26.9444i | 0.944981 | + | 0.944981i | ||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 56.0454 | 1.95600 | 0.977999 | − | 0.208609i | \(-0.0668936\pi\) | ||||
0.977999 | + | 0.208609i | \(0.0668936\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 5.85357 | + | 5.85357i | 0.204043 | + | 0.204043i | 0.801730 | − | 0.597687i | \(-0.203913\pi\) |
−0.597687 | + | 0.801730i | \(0.703913\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | −7.40408 | − | 11.2020i | −0.257777 | − | 0.390005i | ||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 7.34847 | − | 7.34847i | 0.255531 | − | 0.255531i | −0.567702 | − | 0.823234i | \(-0.692168\pi\) |
0.823234 | + | 0.567702i | \(0.192168\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | −18.0000 | + | 18.0000i | −0.622171 | + | 0.622171i | ||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 0.393877 | 0.0135820 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 28.9217 | + | 2.92168i | 0.994936 | + | 0.100509i | ||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −29.6515 | + | 29.6515i | −1.01884 | + | 1.01884i | ||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −34.2929 | + | 28.0000i | −1.16599 | + | 0.952029i | ||||
\(866\) | 0 | 0 | ||||||||
\(867\) | −20.8207 | + | 20.8207i | −0.707107 | + | 0.707107i | ||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 22.7878i | 0.773022i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 26.3939 | + | 26.3939i | 0.893297 | + | 0.893297i | ||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 25.3485 | + | 48.2929i | 0.856935 | + | 1.63260i | ||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 54.0000i | 1.82137i | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | −37.5959 | − | 46.0454i | −1.26377 | − | 1.54780i | ||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | − | 92.7878i | − | 3.11200i | ||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 13.9546 | 0.467496 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −20.3485 | − | 2.05561i | −0.680174 | − | 0.0687116i | ||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 26.2020i | 0.873887i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 34.6515i | 1.14932i | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −6.20204 | − | 6.20204i | −0.205258 | − | 0.205258i | ||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 63.6413 | − | 63.6413i | 2.10162 | − | 2.10162i | ||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 34.2929i | 1.13122i | 0.824674 | + | 0.565608i | \(0.191359\pi\) | ||||
−0.824674 | + | 0.565608i | \(0.808641\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | −1.04541 | + | 1.04541i | −0.0343357 | + | 0.0343357i | ||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 38.7980 | − | 38.7980i | 1.26747 | − | 1.26747i | 0.320085 | − | 0.947389i | \(-0.396288\pi\) |
0.947389 | − | 0.320085i | \(-0.103712\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | − | 53.6413i | − | 1.75052i | ||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 7.05561 | 0.230006 | 0.115003 | − | 0.993365i | \(-0.463312\pi\) | ||||
0.115003 | + | 0.993365i | \(0.463312\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | −56.3939 | − | 5.69694i | −1.83449 | − | 0.185321i | ||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −17.1464 | + | 17.1464i | −0.557184 | + | 0.557184i | −0.928505 | − | 0.371321i | \(-0.878905\pi\) |
0.371321 | + | 0.928505i | \(0.378905\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | −53.8888 | −1.74746 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 10.1566 | − | 10.1566i | 0.328317 | − | 0.328317i | ||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −7.00000 | −0.225806 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 24.0000 | + | 24.0000i | 0.773389 | + | 0.773389i | ||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −19.8434 | + | 16.2020i | −0.638781 | + | 0.521562i | ||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 33.4495 | − | 33.4495i | 1.07566 | − | 1.07566i | 0.0787703 | − | 0.996893i | \(-0.474901\pi\) |
0.996893 | − | 0.0787703i | \(-0.0250994\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −41.5505 | −1.33342 | −0.666710 | − | 0.745318i | \(-0.732298\pi\) | ||||
−0.666710 | + | 0.745318i | \(0.732298\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −34.2929 | − | 42.0000i | −1.09266 | − | 1.33823i | ||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 58.0000 | 1.84243 | 0.921215 | − | 0.389053i | \(-0.127198\pi\) | ||||
0.921215 | + | 0.389053i | \(0.127198\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 31.1464 | + | 3.14643i | 0.987408 | + | 0.0997485i | ||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 480.2.bi.a.113.1 | 4 | ||
3.2 | odd | 2 | 480.2.bi.b.113.2 | 4 | |||
4.3 | odd | 2 | 120.2.w.b.53.2 | yes | 4 | ||
5.2 | odd | 4 | inner | 480.2.bi.a.17.1 | 4 | ||
8.3 | odd | 2 | 120.2.w.a.53.1 | ✓ | 4 | ||
8.5 | even | 2 | 480.2.bi.b.113.2 | 4 | |||
12.11 | even | 2 | 120.2.w.a.53.1 | ✓ | 4 | ||
15.2 | even | 4 | 480.2.bi.b.17.2 | 4 | |||
20.3 | even | 4 | 600.2.w.b.557.1 | 4 | |||
20.7 | even | 4 | 120.2.w.b.77.2 | yes | 4 | ||
20.19 | odd | 2 | 600.2.w.b.293.1 | 4 | |||
24.5 | odd | 2 | CM | 480.2.bi.a.113.1 | 4 | ||
24.11 | even | 2 | 120.2.w.b.53.2 | yes | 4 | ||
40.3 | even | 4 | 600.2.w.h.557.2 | 4 | |||
40.19 | odd | 2 | 600.2.w.h.293.2 | 4 | |||
40.27 | even | 4 | 120.2.w.a.77.1 | yes | 4 | ||
40.37 | odd | 4 | 480.2.bi.b.17.2 | 4 | |||
60.23 | odd | 4 | 600.2.w.h.557.2 | 4 | |||
60.47 | odd | 4 | 120.2.w.a.77.1 | yes | 4 | ||
60.59 | even | 2 | 600.2.w.h.293.2 | 4 | |||
120.59 | even | 2 | 600.2.w.b.293.1 | 4 | |||
120.77 | even | 4 | inner | 480.2.bi.a.17.1 | 4 | ||
120.83 | odd | 4 | 600.2.w.b.557.1 | 4 | |||
120.107 | odd | 4 | 120.2.w.b.77.2 | yes | 4 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
120.2.w.a.53.1 | ✓ | 4 | 8.3 | odd | 2 | ||
120.2.w.a.53.1 | ✓ | 4 | 12.11 | even | 2 | ||
120.2.w.a.77.1 | yes | 4 | 40.27 | even | 4 | ||
120.2.w.a.77.1 | yes | 4 | 60.47 | odd | 4 | ||
120.2.w.b.53.2 | yes | 4 | 4.3 | odd | 2 | ||
120.2.w.b.53.2 | yes | 4 | 24.11 | even | 2 | ||
120.2.w.b.77.2 | yes | 4 | 20.7 | even | 4 | ||
120.2.w.b.77.2 | yes | 4 | 120.107 | odd | 4 | ||
480.2.bi.a.17.1 | 4 | 5.2 | odd | 4 | inner | ||
480.2.bi.a.17.1 | 4 | 120.77 | even | 4 | inner | ||
480.2.bi.a.113.1 | 4 | 1.1 | even | 1 | trivial | ||
480.2.bi.a.113.1 | 4 | 24.5 | odd | 2 | CM | ||
480.2.bi.b.17.2 | 4 | 15.2 | even | 4 | |||
480.2.bi.b.17.2 | 4 | 40.37 | odd | 4 | |||
480.2.bi.b.113.2 | 4 | 3.2 | odd | 2 | |||
480.2.bi.b.113.2 | 4 | 8.5 | even | 2 | |||
600.2.w.b.293.1 | 4 | 20.19 | odd | 2 | |||
600.2.w.b.293.1 | 4 | 120.59 | even | 2 | |||
600.2.w.b.557.1 | 4 | 20.3 | even | 4 | |||
600.2.w.b.557.1 | 4 | 120.83 | odd | 4 | |||
600.2.w.h.293.2 | 4 | 40.19 | odd | 2 | |||
600.2.w.h.293.2 | 4 | 60.59 | even | 2 | |||
600.2.w.h.557.2 | 4 | 40.3 | even | 4 | |||
600.2.w.h.557.2 | 4 | 60.23 | odd | 4 |