Properties

Label 480.2.bi.a.113.1
Level $480$
Weight $2$
Character 480.113
Analytic conductor $3.833$
Analytic rank $0$
Dimension $4$
CM discriminant -24
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [480,2,Mod(17,480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(480, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("480.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 480.bi (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.83281929702\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 113.1
Root \(-1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 480.113
Dual form 480.2.bi.a.17.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 - 1.22474i) q^{3} +(0.224745 - 2.22474i) q^{5} +(3.44949 - 3.44949i) q^{7} +3.00000i q^{9} -1.55051 q^{11} +(-3.00000 + 2.44949i) q^{15} -8.44949 q^{21} +(-4.89898 - 1.00000i) q^{25} +(3.67423 - 3.67423i) q^{27} -5.34847i q^{29} -4.89898 q^{31} +(1.89898 + 1.89898i) q^{33} +(-6.89898 - 8.44949i) q^{35} +(6.67423 + 0.674235i) q^{45} -16.7980i q^{49} +(2.44949 + 2.44949i) q^{53} +(-0.348469 + 3.44949i) q^{55} +15.3485i q^{59} +(10.3485 + 10.3485i) q^{63} +(11.8990 + 11.8990i) q^{73} +(4.77526 + 7.22474i) q^{75} +(-5.34847 + 5.34847i) q^{77} -14.6969i q^{79} -9.00000 q^{81} +(4.00000 + 4.00000i) q^{83} +(-6.55051 + 6.55051i) q^{87} +(6.00000 + 6.00000i) q^{93} +(8.79796 - 8.79796i) q^{97} -4.65153i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} + 4 q^{7} - 16 q^{11} - 12 q^{15} - 24 q^{21} - 12 q^{33} - 8 q^{35} + 12 q^{45} + 28 q^{55} + 12 q^{63} + 28 q^{73} + 24 q^{75} + 8 q^{77} - 36 q^{81} + 16 q^{83} - 36 q^{87} + 24 q^{93}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/480\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(421\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.22474 1.22474i −0.707107 0.707107i
\(4\) 0 0
\(5\) 0.224745 2.22474i 0.100509 0.994936i
\(6\) 0 0
\(7\) 3.44949 3.44949i 1.30378 1.30378i 0.377964 0.925820i \(-0.376624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 0 0
\(9\) 3.00000i 1.00000i
\(10\) 0 0
\(11\) −1.55051 −0.467496 −0.233748 0.972297i \(-0.575099\pi\)
−0.233748 + 0.972297i \(0.575099\pi\)
\(12\) 0 0
\(13\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) −3.00000 + 2.44949i −0.774597 + 0.632456i
\(16\) 0 0
\(17\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −8.44949 −1.84383
\(22\) 0 0
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0 0
\(25\) −4.89898 1.00000i −0.979796 0.200000i
\(26\) 0 0
\(27\) 3.67423 3.67423i 0.707107 0.707107i
\(28\) 0 0
\(29\) 5.34847i 0.993186i −0.867984 0.496593i \(-0.834584\pi\)
0.867984 0.496593i \(-0.165416\pi\)
\(30\) 0 0
\(31\) −4.89898 −0.879883 −0.439941 0.898027i \(-0.645001\pi\)
−0.439941 + 0.898027i \(0.645001\pi\)
\(32\) 0 0
\(33\) 1.89898 + 1.89898i 0.330570 + 0.330570i
\(34\) 0 0
\(35\) −6.89898 8.44949i −1.16614 1.42822i
\(36\) 0 0
\(37\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) 6.67423 + 0.674235i 0.994936 + 0.100509i
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 0 0
\(49\) 16.7980i 2.39971i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.44949 + 2.44949i 0.336463 + 0.336463i 0.855034 0.518571i \(-0.173536\pi\)
−0.518571 + 0.855034i \(0.673536\pi\)
\(54\) 0 0
\(55\) −0.348469 + 3.44949i −0.0469876 + 0.465129i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 15.3485i 1.99820i 0.0424110 + 0.999100i \(0.486496\pi\)
−0.0424110 + 0.999100i \(0.513504\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 10.3485 + 10.3485i 1.30378 + 1.30378i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 11.8990 + 11.8990i 1.39267 + 1.39267i 0.819288 + 0.573382i \(0.194369\pi\)
0.573382 + 0.819288i \(0.305631\pi\)
\(74\) 0 0
\(75\) 4.77526 + 7.22474i 0.551399 + 0.834242i
\(76\) 0 0
\(77\) −5.34847 + 5.34847i −0.609515 + 0.609515i
\(78\) 0 0
\(79\) 14.6969i 1.65353i −0.562544 0.826767i \(-0.690177\pi\)
0.562544 0.826767i \(-0.309823\pi\)
\(80\) 0 0
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) 4.00000 + 4.00000i 0.439057 + 0.439057i 0.891695 0.452638i \(-0.149517\pi\)
−0.452638 + 0.891695i \(0.649517\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −6.55051 + 6.55051i −0.702288 + 0.702288i
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.00000 + 6.00000i 0.622171 + 0.622171i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.79796 8.79796i 0.893297 0.893297i −0.101535 0.994832i \(-0.532375\pi\)
0.994832 + 0.101535i \(0.0323753\pi\)
\(98\) 0 0
\(99\) 4.65153i 0.467496i
\(100\) 0 0
\(101\) 11.5505 1.14932 0.574659 0.818393i \(-0.305135\pi\)
0.574659 + 0.818393i \(0.305135\pi\)
\(102\) 0 0
\(103\) 0.348469 + 0.348469i 0.0343357 + 0.0343357i 0.724066 0.689730i \(-0.242271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 0 0
\(105\) −1.89898 + 18.7980i −0.185321 + 1.83449i
\(106\) 0 0
\(107\) 8.00000 8.00000i 0.773389 0.773389i −0.205308 0.978697i \(-0.565820\pi\)
0.978697 + 0.205308i \(0.0658197\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.59592 −0.781447
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.32577 + 10.6742i −0.297465 + 0.954733i
\(126\) 0 0
\(127\) 13.4495 13.4495i 1.19345 1.19345i 0.217357 0.976092i \(-0.430256\pi\)
0.976092 0.217357i \(-0.0697436\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 18.4495 1.61194 0.805970 0.591957i \(-0.201644\pi\)
0.805970 + 0.591957i \(0.201644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −7.34847 9.00000i −0.632456 0.774597i
\(136\) 0 0
\(137\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −11.8990 1.20204i −0.988156 0.0998241i
\(146\) 0 0
\(147\) −20.5732 + 20.5732i −1.69685 + 1.69685i
\(148\) 0 0
\(149\) 19.1464i 1.56854i 0.620422 + 0.784268i \(0.286961\pi\)
−0.620422 + 0.784268i \(0.713039\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.10102 + 10.8990i −0.0884361 + 0.875427i
\(156\) 0 0
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 6.00000i 0.475831i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) 0 0
\(165\) 4.65153 3.79796i 0.362121 0.295671i
\(166\) 0 0
\(167\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −14.0000 14.0000i −1.06440 1.06440i −0.997778 0.0666220i \(-0.978778\pi\)
−0.0666220 0.997778i \(-0.521222\pi\)
\(174\) 0 0
\(175\) −20.3485 + 13.4495i −1.53820 + 1.01669i
\(176\) 0 0
\(177\) 18.7980 18.7980i 1.41294 1.41294i
\(178\) 0 0
\(179\) 9.14643i 0.683636i −0.939766 0.341818i \(-0.888957\pi\)
0.939766 0.341818i \(-0.111043\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 25.3485i 1.84383i
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) −8.10102 8.10102i −0.583124 0.583124i 0.352636 0.935760i \(-0.385285\pi\)
−0.935760 + 0.352636i \(0.885285\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.1464 17.1464i 1.22163 1.22163i 0.254581 0.967051i \(-0.418062\pi\)
0.967051 0.254581i \(-0.0819375\pi\)
\(198\) 0 0
\(199\) 14.0000i 0.992434i 0.868199 + 0.496217i \(0.165278\pi\)
−0.868199 + 0.496217i \(0.834722\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −18.4495 18.4495i −1.29490 1.29490i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −16.8990 + 16.8990i −1.14718 + 1.14718i
\(218\) 0 0
\(219\) 29.1464i 1.96953i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 20.3485 + 20.3485i 1.36263 + 1.36263i 0.870544 + 0.492090i \(0.163767\pi\)
0.492090 + 0.870544i \(0.336233\pi\)
\(224\) 0 0
\(225\) 3.00000 14.6969i 0.200000 0.979796i
\(226\) 0 0
\(227\) 7.34847 7.34847i 0.487735 0.487735i −0.419856 0.907591i \(-0.637919\pi\)
0.907591 + 0.419856i \(0.137919\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 13.1010 0.861984
\(232\) 0 0
\(233\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −18.0000 + 18.0000i −1.16923 + 1.16923i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 29.3939 1.89343 0.946713 0.322078i \(-0.104381\pi\)
0.946713 + 0.322078i \(0.104381\pi\)
\(242\) 0 0
\(243\) 11.0227 + 11.0227i 0.707107 + 0.707107i
\(244\) 0 0
\(245\) −37.3712 3.77526i −2.38756 0.241192i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 9.79796i 0.620920i
\(250\) 0 0
\(251\) −26.0454 −1.64397 −0.821986 0.569508i \(-0.807134\pi\)
−0.821986 + 0.569508i \(0.807134\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 16.0454 0.993186
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) 6.00000 4.89898i 0.368577 0.300942i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.6515i 0.893320i 0.894704 + 0.446660i \(0.147387\pi\)
−0.894704 + 0.446660i \(0.852613\pi\)
\(270\) 0 0
\(271\) −22.0000 −1.33640 −0.668202 0.743980i \(-0.732936\pi\)
−0.668202 + 0.743980i \(0.732936\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.59592 + 1.55051i 0.458051 + 0.0934993i
\(276\) 0 0
\(277\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(278\) 0 0
\(279\) 14.6969i 0.879883i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000i 1.00000i
\(290\) 0 0
\(291\) −21.5505 −1.26331
\(292\) 0 0
\(293\) −22.0454 22.0454i −1.28791 1.28791i −0.936056 0.351850i \(-0.885553\pi\)
−0.351850 0.936056i \(-0.614447\pi\)
\(294\) 0 0
\(295\) 34.1464 + 3.44949i 1.98808 + 0.200837i
\(296\) 0 0
\(297\) −5.69694 + 5.69694i −0.330570 + 0.330570i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −14.1464 14.1464i −0.812691 0.812691i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0.853572i 0.0485580i
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 21.8990 + 21.8990i 1.23780 + 1.23780i 0.960897 + 0.276907i \(0.0893093\pi\)
0.276907 + 0.960897i \(0.410691\pi\)
\(314\) 0 0
\(315\) 25.3485 20.6969i 1.42822 1.16614i
\(316\) 0 0
\(317\) 22.0000 22.0000i 1.23564 1.23564i 0.273879 0.961764i \(-0.411693\pi\)
0.961764 0.273879i \(-0.0883068\pi\)
\(318\) 0 0
\(319\) 8.29286i 0.464311i
\(320\) 0 0
\(321\) −19.5959 −1.09374
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −25.6969 + 25.6969i −1.39980 + 1.39980i −0.599208 + 0.800593i \(0.704518\pi\)
−0.800593 + 0.599208i \(0.795482\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.59592 0.411342
\(342\) 0 0
\(343\) −33.7980 33.7980i −1.82492 1.82492i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.1464 + 17.1464i −0.920468 + 0.920468i −0.997062 0.0765939i \(-0.975596\pi\)
0.0765939 + 0.997062i \(0.475596\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 10.5278 + 10.5278i 0.552567 + 0.552567i
\(364\) 0 0
\(365\) 29.1464 23.7980i 1.52559 1.24564i
\(366\) 0 0
\(367\) −16.5505 + 16.5505i −0.863930 + 0.863930i −0.991792 0.127862i \(-0.959188\pi\)
0.127862 + 0.991792i \(0.459188\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.8990 0.877351
\(372\) 0 0
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 0 0
\(375\) 17.1464 9.00000i 0.885438 0.464758i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) −32.9444 −1.68779
\(382\) 0 0
\(383\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(384\) 0 0
\(385\) 10.6969 + 13.1010i 0.545166 + 0.667690i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 39.1464i 1.98480i 0.123043 + 0.992401i \(0.460735\pi\)
−0.123043 + 0.992401i \(0.539265\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −22.5959 22.5959i −1.13981 1.13981i
\(394\) 0 0
\(395\) −32.6969 3.30306i −1.64516 0.166195i
\(396\) 0 0
\(397\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2.02270 + 20.0227i −0.100509 + 0.994936i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 39.1918i 1.93791i 0.247234 + 0.968956i \(0.420478\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 52.9444 + 52.9444i 2.60522 + 2.60522i
\(414\) 0 0
\(415\) 9.79796 8.00000i 0.480963 0.392705i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 35.3485i 1.72689i 0.504447 + 0.863443i \(0.331697\pi\)
−0.504447 + 0.863443i \(0.668303\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) −12.5959 12.5959i −0.605321 0.605321i 0.336399 0.941720i \(-0.390791\pi\)
−0.941720 + 0.336399i \(0.890791\pi\)
\(434\) 0 0
\(435\) 13.1010 + 16.0454i 0.628146 + 0.769318i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 34.0000i 1.62273i 0.584539 + 0.811366i \(0.301275\pi\)
−0.584539 + 0.811366i \(0.698725\pi\)
\(440\) 0 0
\(441\) 50.3939 2.39971
\(442\) 0 0
\(443\) 22.0454 + 22.0454i 1.04741 + 1.04741i 0.998819 + 0.0485901i \(0.0154728\pi\)
0.0485901 + 0.998819i \(0.484527\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 23.4495 23.4495i 1.10912 1.10912i
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 2.44949 + 2.44949i 0.115087 + 0.115087i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.7980 28.7980i 1.34711 1.34711i 0.458329 0.888783i \(-0.348448\pi\)
0.888783 0.458329i \(-0.151552\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12.9444 −0.602880 −0.301440 0.953485i \(-0.597467\pi\)
−0.301440 + 0.953485i \(0.597467\pi\)
\(462\) 0 0
\(463\) −4.14643 4.14643i −0.192701 0.192701i 0.604161 0.796862i \(-0.293508\pi\)
−0.796862 + 0.604161i \(0.793508\pi\)
\(464\) 0 0
\(465\) 14.6969 12.0000i 0.681554 0.556487i
\(466\) 0 0
\(467\) 28.0000 28.0000i 1.29569 1.29569i 0.364471 0.931215i \(-0.381250\pi\)
0.931215 0.364471i \(-0.118750\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −7.34847 + 7.34847i −0.336463 + 0.336463i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −17.5959 21.5505i −0.798989 0.978558i
\(486\) 0 0
\(487\) −21.0454 + 21.0454i −0.953658 + 0.953658i −0.998973 0.0453143i \(-0.985571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 42.9444 1.93805 0.969027 0.246957i \(-0.0794305\pi\)
0.969027 + 0.246957i \(0.0794305\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −10.3485 1.04541i −0.465129 0.0469876i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) 2.59592 25.6969i 0.115517 1.14350i
\(506\) 0 0
\(507\) 15.9217 15.9217i 0.707107 0.707107i
\(508\) 0 0
\(509\) 29.8434i 1.32278i −0.750040 0.661392i \(-0.769966\pi\)
0.750040 0.661392i \(-0.230034\pi\)
\(510\) 0 0
\(511\) 82.0908 3.63148
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.853572 0.696938i 0.0376129 0.0307108i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 34.2929i 1.50529i
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 41.3939 + 8.44949i 1.80658 + 0.368766i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) 0 0
\(531\) −46.0454 −1.99820
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −16.0000 19.5959i −0.691740 0.847205i
\(536\) 0 0
\(537\) −11.2020 + 11.2020i −0.483404 + 0.483404i
\(538\) 0 0
\(539\) 26.0454i 1.12186i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −50.6969 50.6969i −2.15585 2.15585i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −31.8434 + 31.8434i −1.34925 + 1.34925i −0.462767 + 0.886480i \(0.653143\pi\)
−0.886480 + 0.462767i \(0.846857\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −26.9444 26.9444i −1.13557 1.13557i −0.989235 0.146336i \(-0.953252\pi\)
−0.146336 0.989235i \(-0.546748\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −31.0454 + 31.0454i −1.30378 + 1.30378i
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 4.30306 4.30306i 0.179139 0.179139i −0.611842 0.790980i \(-0.709571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 0 0
\(579\) 19.8434i 0.824662i
\(580\) 0 0
\(581\) 27.5959 1.14487
\(582\) 0 0
\(583\) −3.79796 3.79796i −0.157295 0.157295i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −32.0000 + 32.0000i −1.32078 + 1.32078i −0.407638 + 0.913144i \(0.633647\pi\)
−0.913144 + 0.407638i \(0.866353\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −42.0000 −1.72765
\(592\) 0 0
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 17.1464 17.1464i 0.701757 0.701757i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.93189 + 19.1237i −0.0785424 + 0.777490i
\(606\) 0 0
\(607\) −11.0454 + 11.0454i −0.448319 + 0.448319i −0.894795 0.446476i \(-0.852679\pi\)
0.446476 + 0.894795i \(0.352679\pi\)
\(608\) 0 0
\(609\) 45.1918i 1.83127i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 23.0000 + 9.79796i 0.920000 + 0.391918i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −4.89898 −0.195025 −0.0975126 0.995234i \(-0.531089\pi\)
−0.0975126 + 0.995234i \(0.531089\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −26.8990 32.9444i −1.06745 1.30736i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(648\) 0 0
\(649\) 23.7980i 0.934152i
\(650\) 0 0
\(651\) 41.3939 1.62235
\(652\) 0 0
\(653\) −34.0000 34.0000i −1.33052 1.33052i −0.904901 0.425622i \(-0.860055\pi\)
−0.425622 0.904901i \(-0.639945\pi\)
\(654\) 0 0
\(655\) 4.14643 41.0454i 0.162014 1.60378i
\(656\) 0 0
\(657\) −35.6969 + 35.6969i −1.39267 + 1.39267i
\(658\) 0 0
\(659\) 49.1464i 1.91447i −0.289307 0.957237i \(-0.593425\pi\)
0.289307 0.957237i \(-0.406575\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 49.8434i 1.92706i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −2.59592 2.59592i −0.100065 0.100065i 0.655302 0.755367i \(-0.272541\pi\)
−0.755367 + 0.655302i \(0.772541\pi\)
\(674\) 0 0
\(675\) −21.6742 + 14.3258i −0.834242 + 0.551399i
\(676\) 0 0
\(677\) 2.00000 2.00000i 0.0768662 0.0768662i −0.667628 0.744495i \(-0.732690\pi\)
0.744495 + 0.667628i \(0.232690\pi\)
\(678\) 0 0
\(679\) 60.6969i 2.32933i
\(680\) 0 0
\(681\) −18.0000 −0.689761
\(682\) 0 0
\(683\) 4.00000 + 4.00000i 0.153056 + 0.153056i 0.779481 0.626426i \(-0.215483\pi\)
−0.626426 + 0.779481i \(0.715483\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) −16.0454 16.0454i −0.609515 0.609515i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −52.9444 −1.99968 −0.999841 0.0178345i \(-0.994323\pi\)
−0.999841 + 0.0178345i \(0.994323\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 39.8434 39.8434i 1.49846 1.49846i
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 44.0908 1.65353
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 2.40408 0.0895327
\(722\) 0 0
\(723\) −36.0000 36.0000i −1.33885 1.33885i
\(724\) 0 0
\(725\) −5.34847 + 26.2020i −0.198637 + 0.973119i
\(726\) 0 0
\(727\) 27.9444 27.9444i 1.03640 1.03640i 0.0370879 0.999312i \(-0.488192\pi\)
0.999312 0.0370879i \(-0.0118082\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(734\) 0 0
\(735\) 41.1464 + 50.3939i 1.51771 + 1.85881i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 42.5959 + 4.30306i 1.56059 + 0.157652i
\(746\) 0 0
\(747\) −12.0000 + 12.0000i −0.439057 + 0.439057i
\(748\) 0 0
\(749\) 55.1918i 2.01667i
\(750\) 0 0
\(751\) −53.8888 −1.96643 −0.983215 0.182453i \(-0.941596\pi\)
−0.983215 + 0.182453i \(0.941596\pi\)
\(752\) 0 0
\(753\) 31.8990 + 31.8990i 1.16246 + 1.16246i
\(754\) 0 0
\(755\) −0.449490 + 4.44949i −0.0163586 + 0.161934i
\(756\) 0 0
\(757\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 26.0000i 0.937584i 0.883309 + 0.468792i \(0.155311\pi\)
−0.883309 + 0.468792i \(0.844689\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −14.0000 14.0000i −0.503545 0.503545i 0.408993 0.912538i \(-0.365880\pi\)
−0.912538 + 0.408993i \(0.865880\pi\)
\(774\) 0 0
\(775\) 24.0000 + 4.89898i 0.862105 + 0.175977i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −19.6515 19.6515i −0.702288 0.702288i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −13.3485 1.34847i −0.473421 0.0478253i
\(796\) 0 0
\(797\) −38.0000 + 38.0000i −1.34603 + 1.34603i −0.456101 + 0.889928i \(0.650754\pi\)
−0.889928 + 0.456101i \(0.849246\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −18.4495 18.4495i −0.651068 0.651068i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 17.9444 17.9444i 0.631672 0.631672i
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 26.9444 + 26.9444i 0.944981 + 0.944981i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 56.0454 1.95600 0.977999 0.208609i \(-0.0668936\pi\)
0.977999 + 0.208609i \(0.0668936\pi\)
\(822\) 0 0
\(823\) 5.85357 + 5.85357i 0.204043 + 0.204043i 0.801730 0.597687i \(-0.203913\pi\)
−0.597687 + 0.801730i \(0.703913\pi\)
\(824\) 0 0
\(825\) −7.40408 11.2020i −0.257777 0.390005i
\(826\) 0 0
\(827\) 7.34847 7.34847i 0.255531 0.255531i −0.567702 0.823234i \(-0.692168\pi\)
0.823234 + 0.567702i \(0.192168\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −18.0000 + 18.0000i −0.622171 + 0.622171i
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 0.393877 0.0135820
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 28.9217 + 2.92168i 0.994936 + 0.100509i
\(846\) 0 0
\(847\) −29.6515 + 29.6515i −1.01884 + 1.01884i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) −34.2929 + 28.0000i −1.16599 + 0.952029i
\(866\) 0 0
\(867\) −20.8207 + 20.8207i −0.707107 + 0.707107i
\(868\) 0 0
\(869\) 22.7878i 0.773022i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 26.3939 + 26.3939i 0.893297 + 0.893297i
\(874\) 0 0
\(875\) 25.3485 + 48.2929i 0.856935 + 1.63260i
\(876\) 0 0
\(877\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) 0 0
\(879\) 54.0000i 1.82137i
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) 0 0
\(885\) −37.5959 46.0454i −1.26377 1.54780i
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 92.7878i 3.11200i
\(890\) 0 0
\(891\) 13.9546 0.467496
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −20.3485 2.05561i −0.680174 0.0687116i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 26.2020i 0.873887i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) 0 0
\(909\) 34.6515i 1.14932i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −6.20204 6.20204i −0.205258 0.205258i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 63.6413 63.6413i 2.10162 2.10162i
\(918\) 0 0
\(919\) 34.2929i 1.13122i 0.824674 + 0.565608i \(0.191359\pi\)
−0.824674 + 0.565608i \(0.808641\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1.04541 + 1.04541i −0.0343357 + 0.0343357i
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 38.7980 38.7980i 1.26747 1.26747i 0.320085 0.947389i \(-0.396288\pi\)
0.947389 0.320085i \(-0.103712\pi\)
\(938\) 0 0
\(939\) 53.6413i 1.75052i
\(940\) 0 0
\(941\) 7.05561 0.230006 0.115003 0.993365i \(-0.463312\pi\)
0.115003 + 0.993365i \(0.463312\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −56.3939 5.69694i −1.83449 0.185321i
\(946\) 0 0
\(947\) −17.1464 + 17.1464i −0.557184 + 0.557184i −0.928505 0.371321i \(-0.878905\pi\)
0.371321 + 0.928505i \(0.378905\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −53.8888 −1.74746
\(952\) 0 0
\(953\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 10.1566 10.1566i 0.328317 0.328317i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −7.00000 −0.225806
\(962\) 0 0
\(963\) 24.0000 + 24.0000i 0.773389 + 0.773389i
\(964\) 0 0
\(965\) −19.8434 + 16.2020i −0.638781 + 0.521562i
\(966\) 0 0
\(967\) 33.4495 33.4495i 1.07566 1.07566i 0.0787703 0.996893i \(-0.474901\pi\)
0.996893 0.0787703i \(-0.0250994\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −41.5505 −1.33342 −0.666710 0.745318i \(-0.732298\pi\)
−0.666710 + 0.745318i \(0.732298\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) −34.2929 42.0000i −1.09266 1.33823i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 58.0000 1.84243 0.921215 0.389053i \(-0.127198\pi\)
0.921215 + 0.389053i \(0.127198\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 31.1464 + 3.14643i 0.987408 + 0.0997485i
\(996\) 0 0
\(997\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.2.bi.a.113.1 4
3.2 odd 2 480.2.bi.b.113.2 4
4.3 odd 2 120.2.w.b.53.2 yes 4
5.2 odd 4 inner 480.2.bi.a.17.1 4
8.3 odd 2 120.2.w.a.53.1 4
8.5 even 2 480.2.bi.b.113.2 4
12.11 even 2 120.2.w.a.53.1 4
15.2 even 4 480.2.bi.b.17.2 4
20.3 even 4 600.2.w.b.557.1 4
20.7 even 4 120.2.w.b.77.2 yes 4
20.19 odd 2 600.2.w.b.293.1 4
24.5 odd 2 CM 480.2.bi.a.113.1 4
24.11 even 2 120.2.w.b.53.2 yes 4
40.3 even 4 600.2.w.h.557.2 4
40.19 odd 2 600.2.w.h.293.2 4
40.27 even 4 120.2.w.a.77.1 yes 4
40.37 odd 4 480.2.bi.b.17.2 4
60.23 odd 4 600.2.w.h.557.2 4
60.47 odd 4 120.2.w.a.77.1 yes 4
60.59 even 2 600.2.w.h.293.2 4
120.59 even 2 600.2.w.b.293.1 4
120.77 even 4 inner 480.2.bi.a.17.1 4
120.83 odd 4 600.2.w.b.557.1 4
120.107 odd 4 120.2.w.b.77.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.2.w.a.53.1 4 8.3 odd 2
120.2.w.a.53.1 4 12.11 even 2
120.2.w.a.77.1 yes 4 40.27 even 4
120.2.w.a.77.1 yes 4 60.47 odd 4
120.2.w.b.53.2 yes 4 4.3 odd 2
120.2.w.b.53.2 yes 4 24.11 even 2
120.2.w.b.77.2 yes 4 20.7 even 4
120.2.w.b.77.2 yes 4 120.107 odd 4
480.2.bi.a.17.1 4 5.2 odd 4 inner
480.2.bi.a.17.1 4 120.77 even 4 inner
480.2.bi.a.113.1 4 1.1 even 1 trivial
480.2.bi.a.113.1 4 24.5 odd 2 CM
480.2.bi.b.17.2 4 15.2 even 4
480.2.bi.b.17.2 4 40.37 odd 4
480.2.bi.b.113.2 4 3.2 odd 2
480.2.bi.b.113.2 4 8.5 even 2
600.2.w.b.293.1 4 20.19 odd 2
600.2.w.b.293.1 4 120.59 even 2
600.2.w.b.557.1 4 20.3 even 4
600.2.w.b.557.1 4 120.83 odd 4
600.2.w.h.293.2 4 40.19 odd 2
600.2.w.h.293.2 4 60.59 even 2
600.2.w.h.557.2 4 40.3 even 4
600.2.w.h.557.2 4 60.23 odd 4