Properties

Label 480.2.f.b
Level $480$
Weight $2$
Character orbit 480.f
Analytic conductor $3.833$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [480,2,Mod(289,480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("480.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 480.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.83281929702\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{3} + ( - i - 2) q^{5} - 2 i q^{7} - q^{9} + 6 q^{11} + 2 i q^{13} + ( - 2 i + 1) q^{15} - 6 i q^{17} + 4 q^{19} + 2 q^{21} - 8 i q^{23} + (4 i + 3) q^{25} - i q^{27} + 8 q^{31} + 6 i q^{33} + (4 i - 2) q^{35} + \cdots - 6 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{5} - 2 q^{9} + 12 q^{11} + 2 q^{15} + 8 q^{19} + 4 q^{21} + 6 q^{25} + 16 q^{31} - 4 q^{35} - 4 q^{39} - 12 q^{41} + 4 q^{45} + 6 q^{49} + 12 q^{51} - 24 q^{55} - 12 q^{59} - 12 q^{61} + 4 q^{65}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/480\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(421\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
1.00000i
1.00000i
0 1.00000i 0 −2.00000 + 1.00000i 0 2.00000i 0 −1.00000 0
289.2 0 1.00000i 0 −2.00000 1.00000i 0 2.00000i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 480.2.f.b yes 2
3.b odd 2 1 1440.2.f.e 2
4.b odd 2 1 480.2.f.a 2
5.b even 2 1 inner 480.2.f.b yes 2
5.c odd 4 1 2400.2.a.d 1
5.c odd 4 1 2400.2.a.bf 1
8.b even 2 1 960.2.f.g 2
8.d odd 2 1 960.2.f.j 2
12.b even 2 1 1440.2.f.g 2
15.d odd 2 1 1440.2.f.e 2
15.e even 4 1 7200.2.a.j 1
15.e even 4 1 7200.2.a.bl 1
16.e even 4 1 3840.2.d.e 2
16.e even 4 1 3840.2.d.bc 2
16.f odd 4 1 3840.2.d.k 2
16.f odd 4 1 3840.2.d.u 2
20.d odd 2 1 480.2.f.a 2
20.e even 4 1 2400.2.a.c 1
20.e even 4 1 2400.2.a.be 1
24.f even 2 1 2880.2.f.a 2
24.h odd 2 1 2880.2.f.g 2
40.e odd 2 1 960.2.f.j 2
40.f even 2 1 960.2.f.g 2
40.i odd 4 1 4800.2.a.z 1
40.i odd 4 1 4800.2.a.bt 1
40.k even 4 1 4800.2.a.ba 1
40.k even 4 1 4800.2.a.bu 1
60.h even 2 1 1440.2.f.g 2
60.l odd 4 1 7200.2.a.p 1
60.l odd 4 1 7200.2.a.br 1
80.k odd 4 1 3840.2.d.k 2
80.k odd 4 1 3840.2.d.u 2
80.q even 4 1 3840.2.d.e 2
80.q even 4 1 3840.2.d.bc 2
120.i odd 2 1 2880.2.f.g 2
120.m even 2 1 2880.2.f.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.2.f.a 2 4.b odd 2 1
480.2.f.a 2 20.d odd 2 1
480.2.f.b yes 2 1.a even 1 1 trivial
480.2.f.b yes 2 5.b even 2 1 inner
960.2.f.g 2 8.b even 2 1
960.2.f.g 2 40.f even 2 1
960.2.f.j 2 8.d odd 2 1
960.2.f.j 2 40.e odd 2 1
1440.2.f.e 2 3.b odd 2 1
1440.2.f.e 2 15.d odd 2 1
1440.2.f.g 2 12.b even 2 1
1440.2.f.g 2 60.h even 2 1
2400.2.a.c 1 20.e even 4 1
2400.2.a.d 1 5.c odd 4 1
2400.2.a.be 1 20.e even 4 1
2400.2.a.bf 1 5.c odd 4 1
2880.2.f.a 2 24.f even 2 1
2880.2.f.a 2 120.m even 2 1
2880.2.f.g 2 24.h odd 2 1
2880.2.f.g 2 120.i odd 2 1
3840.2.d.e 2 16.e even 4 1
3840.2.d.e 2 80.q even 4 1
3840.2.d.k 2 16.f odd 4 1
3840.2.d.k 2 80.k odd 4 1
3840.2.d.u 2 16.f odd 4 1
3840.2.d.u 2 80.k odd 4 1
3840.2.d.bc 2 16.e even 4 1
3840.2.d.bc 2 80.q even 4 1
4800.2.a.z 1 40.i odd 4 1
4800.2.a.ba 1 40.k even 4 1
4800.2.a.bt 1 40.i odd 4 1
4800.2.a.bu 1 40.k even 4 1
7200.2.a.j 1 15.e even 4 1
7200.2.a.p 1 60.l odd 4 1
7200.2.a.bl 1 15.e even 4 1
7200.2.a.br 1 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(480, [\chi])\):

\( T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} - 6 \) Copy content Toggle raw display
\( T_{19} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + 4T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( (T - 6)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 36 \) Copy content Toggle raw display
$19$ \( (T - 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 64 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T - 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{2} + 16 \) Copy content Toggle raw display
$53$ \( T^{2} + 36 \) Copy content Toggle raw display
$59$ \( (T + 6)^{2} \) Copy content Toggle raw display
$61$ \( (T + 6)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( (T - 4)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 144 \) Copy content Toggle raw display
$79$ \( (T + 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 144 \) Copy content Toggle raw display
$89$ \( (T + 14)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 64 \) Copy content Toggle raw display
show more
show less