Properties

Label 480.3.c.a.449.4
Level $480$
Weight $3$
Character 480.449
Analytic conductor $13.079$
Analytic rank $0$
Dimension $8$
CM discriminant -20
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [480,3,Mod(449,480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("480.449");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 480.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0790526893\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 449.4
Root \(1.14412 + 1.14412i\) of defining polynomial
Character \(\chi\) \(=\) 480.449
Dual form 480.3.c.a.449.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.166925 + 2.99535i) q^{3} -5.00000i q^{5} +12.3153i q^{7} +(-8.94427 - 1.00000i) q^{9} +O(q^{10})\) \(q+(-0.166925 + 2.99535i) q^{3} -5.00000i q^{5} +12.3153i q^{7} +(-8.94427 - 1.00000i) q^{9} +(14.9768 + 0.834626i) q^{15} +(-36.8885 - 2.05573i) q^{21} -40.5995 q^{23} -25.0000 q^{25} +(4.48838 - 26.6243i) q^{27} +53.6656i q^{29} +61.5763 q^{35} -62.0000i q^{41} +25.2796i q^{43} +(-5.00000 + 44.7214i) q^{45} -69.2363 q^{47} -102.666 q^{49} -107.331 q^{61} +(12.3153 - 110.151i) q^{63} +34.5902i q^{67} +(6.77709 - 121.610i) q^{69} +(4.17313 - 74.8838i) q^{75} +(79.0000 + 17.8885i) q^{81} +158.095 q^{83} +(-160.747 - 8.95815i) q^{87} +107.331i q^{89} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 152 q^{21} - 200 q^{25} - 40 q^{45} - 392 q^{49} - 232 q^{69} + 632 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/480\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(421\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.166925 + 2.99535i −0.0556418 + 0.998451i
\(4\) 0 0
\(5\) 5.00000i 1.00000i
\(6\) 0 0
\(7\) 12.3153i 1.75932i 0.475600 + 0.879661i \(0.342231\pi\)
−0.475600 + 0.879661i \(0.657769\pi\)
\(8\) 0 0
\(9\) −8.94427 1.00000i −0.993808 0.111111i
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 14.9768 + 0.834626i 0.998451 + 0.0556418i
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −36.8885 2.05573i −1.75660 0.0978918i
\(22\) 0 0
\(23\) −40.5995 −1.76520 −0.882599 0.470128i \(-0.844208\pi\)
−0.882599 + 0.470128i \(0.844208\pi\)
\(24\) 0 0
\(25\) −25.0000 −1.00000
\(26\) 0 0
\(27\) 4.48838 26.6243i 0.166236 0.986086i
\(28\) 0 0
\(29\) 53.6656i 1.85054i 0.379310 + 0.925270i \(0.376161\pi\)
−0.379310 + 0.925270i \(0.623839\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 61.5763 1.75932
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 62.0000i 1.51220i −0.654459 0.756098i \(-0.727104\pi\)
0.654459 0.756098i \(-0.272896\pi\)
\(42\) 0 0
\(43\) 25.2796i 0.587898i 0.955821 + 0.293949i \(0.0949696\pi\)
−0.955821 + 0.293949i \(0.905030\pi\)
\(44\) 0 0
\(45\) −5.00000 + 44.7214i −0.111111 + 0.993808i
\(46\) 0 0
\(47\) −69.2363 −1.47311 −0.736556 0.676377i \(-0.763549\pi\)
−0.736556 + 0.676377i \(0.763549\pi\)
\(48\) 0 0
\(49\) −102.666 −2.09522
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) −107.331 −1.75953 −0.879764 0.475410i \(-0.842300\pi\)
−0.879764 + 0.475410i \(0.842300\pi\)
\(62\) 0 0
\(63\) 12.3153 110.151i 0.195480 1.74843i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 34.5902i 0.516272i 0.966109 + 0.258136i \(0.0831083\pi\)
−0.966109 + 0.258136i \(0.916892\pi\)
\(68\) 0 0
\(69\) 6.77709 121.610i 0.0982187 1.76246i
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 4.17313 74.8838i 0.0556418 0.998451i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 79.0000 + 17.8885i 0.975309 + 0.220846i
\(82\) 0 0
\(83\) 158.095 1.90476 0.952381 0.304910i \(-0.0986264\pi\)
0.952381 + 0.304910i \(0.0986264\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −160.747 8.95815i −1.84767 0.102967i
\(88\) 0 0
\(89\) 107.331i 1.20597i 0.797753 + 0.602985i \(0.206022\pi\)
−0.797753 + 0.602985i \(0.793978\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 160.997i 1.59403i −0.603960 0.797014i \(-0.706411\pi\)
0.603960 0.797014i \(-0.293589\pi\)
\(102\) 0 0
\(103\) 173.415i 1.68364i 0.539756 + 0.841821i \(0.318516\pi\)
−0.539756 + 0.841821i \(0.681484\pi\)
\(104\) 0 0
\(105\) −10.2786 + 184.443i −0.0978918 + 1.75660i
\(106\) 0 0
\(107\) −35.6476 −0.333155 −0.166578 0.986028i \(-0.553272\pi\)
−0.166578 + 0.986028i \(0.553272\pi\)
\(108\) 0 0
\(109\) 214.663 1.96938 0.984690 0.174312i \(-0.0557701\pi\)
0.984690 + 0.174312i \(0.0557701\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 202.998i 1.76520i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 121.000 1.00000
\(122\) 0 0
\(123\) 185.712 + 10.3494i 1.50985 + 0.0841412i
\(124\) 0 0
\(125\) 125.000i 1.00000i
\(126\) 0 0
\(127\) 233.285i 1.83689i 0.395549 + 0.918445i \(0.370554\pi\)
−0.395549 + 0.918445i \(0.629446\pi\)
\(128\) 0 0
\(129\) −75.7214 4.21981i −0.586987 0.0327117i
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −133.122 22.4419i −0.986086 0.166236i
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 11.5573 207.387i 0.0819665 1.47083i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 268.328 1.85054
\(146\) 0 0
\(147\) 17.1375 307.520i 0.116582 2.09197i
\(148\) 0 0
\(149\) 278.000i 1.86577i 0.360172 + 0.932886i \(0.382718\pi\)
−0.360172 + 0.932886i \(0.617282\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 499.994i 3.10555i
\(162\) 0 0
\(163\) 83.2580i 0.510785i −0.966837 0.255393i \(-0.917795\pi\)
0.966837 0.255393i \(-0.0822047\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.2579 −0.0674125 −0.0337063 0.999432i \(-0.510731\pi\)
−0.0337063 + 0.999432i \(0.510731\pi\)
\(168\) 0 0
\(169\) 169.000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 307.882i 1.75932i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 358.000 1.97790 0.988950 0.148248i \(-0.0473633\pi\)
0.988950 + 0.148248i \(0.0473633\pi\)
\(182\) 0 0
\(183\) 17.9163 321.495i 0.0979033 1.75680i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 327.885 + 55.2755i 1.73484 + 0.292463i
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) −103.610 5.77398i −0.515472 0.0287263i
\(202\) 0 0
\(203\) −660.906 −3.25570
\(204\) 0 0
\(205\) −310.000 −1.51220
\(206\) 0 0
\(207\) 363.133 + 40.5995i 1.75427 + 0.196133i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 126.398 0.587898
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 241.891i 1.08471i 0.840149 + 0.542356i \(0.182468\pi\)
−0.840149 + 0.542356i \(0.817532\pi\)
\(224\) 0 0
\(225\) 223.607 + 25.0000i 0.993808 + 0.111111i
\(226\) 0 0
\(227\) 450.954 1.98658 0.993290 0.115653i \(-0.0368961\pi\)
0.993290 + 0.115653i \(0.0368961\pi\)
\(228\) 0 0
\(229\) −262.000 −1.14410 −0.572052 0.820217i \(-0.693853\pi\)
−0.572052 + 0.820217i \(0.693853\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 346.181i 1.47311i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −375.659 −1.55875 −0.779376 0.626556i \(-0.784464\pi\)
−0.779376 + 0.626556i \(0.784464\pi\)
\(242\) 0 0
\(243\) −66.7696 + 233.647i −0.274772 + 0.961509i
\(244\) 0 0
\(245\) 513.328i 2.09522i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −26.3901 + 473.551i −0.105984 + 1.90181i
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 53.6656 480.000i 0.205615 1.83908i
\(262\) 0 0
\(263\) −513.884 −1.95393 −0.976965 0.213398i \(-0.931547\pi\)
−0.976965 + 0.213398i \(0.931547\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −321.495 17.9163i −1.20410 0.0671022i
\(268\) 0 0
\(269\) 38.0000i 0.141264i −0.997502 0.0706320i \(-0.977498\pi\)
0.997502 0.0706320i \(-0.0225016\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 418.000i 1.48754i −0.668433 0.743772i \(-0.733035\pi\)
0.668433 0.743772i \(-0.266965\pi\)
\(282\) 0 0
\(283\) 108.593i 0.383722i 0.981422 + 0.191861i \(0.0614523\pi\)
−0.981422 + 0.191861i \(0.938548\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 763.546 2.66044
\(288\) 0 0
\(289\) −289.000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −311.325 −1.03430
\(302\) 0 0
\(303\) 482.242 + 26.8744i 1.59156 + 0.0886946i
\(304\) 0 0
\(305\) 536.656i 1.75953i
\(306\) 0 0
\(307\) 525.791i 1.71267i −0.516418 0.856337i \(-0.672735\pi\)
0.516418 0.856337i \(-0.327265\pi\)
\(308\) 0 0
\(309\) −519.440 28.9474i −1.68103 0.0936808i
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) −550.755 61.5763i −1.74843 0.195480i
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 5.95048 106.777i 0.0185373 0.332639i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −35.8326 + 642.990i −0.109580 + 1.96633i
\(328\) 0 0
\(329\) 852.663i 2.59168i
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 172.951 0.516272
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 660.906i 1.92684i
\(344\) 0 0
\(345\) −608.050 33.8854i −1.76246 0.0982187i
\(346\) 0 0
\(347\) −401.804 −1.15794 −0.578968 0.815350i \(-0.696545\pi\)
−0.578968 + 0.815350i \(0.696545\pi\)
\(348\) 0 0
\(349\) 22.0000 0.0630372 0.0315186 0.999503i \(-0.489966\pi\)
0.0315186 + 0.999503i \(0.489966\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −361.000 −1.00000
\(362\) 0 0
\(363\) −20.1980 + 362.438i −0.0556418 + 0.998451i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 597.327i 1.62759i 0.581150 + 0.813797i \(0.302603\pi\)
−0.581150 + 0.813797i \(0.697397\pi\)
\(368\) 0 0
\(369\) −62.0000 + 554.545i −0.168022 + 1.50283i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) −374.419 20.8657i −0.998451 0.0556418i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) −698.771 38.9412i −1.83404 0.102208i
\(382\) 0 0
\(383\) 571.862 1.49311 0.746556 0.665322i \(-0.231706\pi\)
0.746556 + 0.665322i \(0.231706\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 25.2796 226.108i 0.0653220 0.584258i
\(388\) 0 0
\(389\) 202.000i 0.519280i 0.965705 + 0.259640i \(0.0836039\pi\)
−0.965705 + 0.259640i \(0.916396\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 643.988i 1.60595i 0.596010 + 0.802977i \(0.296752\pi\)
−0.596010 + 0.802977i \(0.703248\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 89.4427 395.000i 0.220846 0.975309i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 160.997 0.393635 0.196818 0.980440i \(-0.436939\pi\)
0.196818 + 0.980440i \(0.436939\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 790.476i 1.90476i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 321.994 0.764831 0.382415 0.923990i \(-0.375092\pi\)
0.382415 + 0.923990i \(0.375092\pi\)
\(422\) 0 0
\(423\) 619.268 + 69.2363i 1.46399 + 0.163679i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1321.81i 3.09558i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) −44.7907 + 803.737i −0.102967 + 1.84767i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 918.269 + 102.666i 2.08224 + 0.232802i
\(442\) 0 0
\(443\) −287.739 −0.649523 −0.324762 0.945796i \(-0.605284\pi\)
−0.324762 + 0.945796i \(0.605284\pi\)
\(444\) 0 0
\(445\) 536.656 1.20597
\(446\) 0 0
\(447\) −832.708 46.4052i −1.86288 0.103815i
\(448\) 0 0
\(449\) 398.000i 0.886414i 0.896419 + 0.443207i \(0.146159\pi\)
−0.896419 + 0.443207i \(0.853841\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 375.659i 0.814879i −0.913232 0.407440i \(-0.866422\pi\)
0.913232 0.407440i \(-0.133578\pi\)
\(462\) 0 0
\(463\) 910.216i 1.96591i −0.183848 0.982955i \(-0.558855\pi\)
0.183848 0.982955i \(-0.441145\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −566.910 −1.21394 −0.606970 0.794725i \(-0.707615\pi\)
−0.606970 + 0.794725i \(0.707615\pi\)
\(468\) 0 0
\(469\) −425.988 −0.908289
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 1497.66 + 83.4616i 3.10074 + 0.172798i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 255.431i 0.524499i 0.965000 + 0.262249i \(0.0844643\pi\)
−0.965000 + 0.262249i \(0.915536\pi\)
\(488\) 0 0
\(489\) 249.387 + 13.8979i 0.509994 + 0.0284210i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 1.87923 33.7214i 0.00375095 0.0673081i
\(502\) 0 0
\(503\) −941.802 −1.87237 −0.936185 0.351509i \(-0.885669\pi\)
−0.936185 + 0.351509i \(0.885669\pi\)
\(504\) 0 0
\(505\) −804.984 −1.59403
\(506\) 0 0
\(507\) −28.2104 + 506.215i −0.0556418 + 0.998451i
\(508\) 0 0
\(509\) 268.328i 0.527167i −0.964637 0.263584i \(-0.915095\pi\)
0.964637 0.263584i \(-0.0849045\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 867.076 1.68364
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 751.319i 1.44207i −0.692898 0.721035i \(-0.743667\pi\)
0.692898 0.721035i \(-0.256333\pi\)
\(522\) 0 0
\(523\) 614.521i 1.17499i 0.809227 + 0.587496i \(0.199886\pi\)
−0.809227 + 0.587496i \(0.800114\pi\)
\(524\) 0 0
\(525\) 922.214 + 51.3932i 1.75660 + 0.0978918i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1119.32 2.11592
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 178.238i 0.333155i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 362.000 0.669131 0.334566 0.942372i \(-0.391410\pi\)
0.334566 + 0.942372i \(0.391410\pi\)
\(542\) 0 0
\(543\) −59.7592 + 1072.34i −0.110054 + 1.97484i
\(544\) 0 0
\(545\) 1073.31i 1.96938i
\(546\) 0 0
\(547\) 662.149i 1.21051i 0.796032 + 0.605255i \(0.206929\pi\)
−0.796032 + 0.605255i \(0.793071\pi\)
\(548\) 0 0
\(549\) 960.000 + 107.331i 1.74863 + 0.195503i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −842.222 −1.49595 −0.747977 0.663725i \(-0.768975\pi\)
−0.747977 + 0.663725i \(0.768975\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −220.302 + 972.906i −0.388540 + 1.71588i
\(568\) 0 0
\(569\) 158.000i 0.277680i 0.990315 + 0.138840i \(0.0443374\pi\)
−0.990315 + 0.138840i \(0.955663\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1014.99 1.76520
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1946.98i 3.35109i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 428.808 0.730507 0.365254 0.930908i \(-0.380982\pi\)
0.365254 + 0.930908i \(0.380982\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 1126.98 1.87517 0.937586 0.347754i \(-0.113055\pi\)
0.937586 + 0.347754i \(0.113055\pi\)
\(602\) 0 0
\(603\) 34.5902 309.384i 0.0573636 0.513075i
\(604\) 0 0
\(605\) 605.000i 1.00000i
\(606\) 0 0
\(607\) 159.875i 0.263386i −0.991291 0.131693i \(-0.957959\pi\)
0.991291 0.131693i \(-0.0420413\pi\)
\(608\) 0 0
\(609\) 110.322 1979.65i 0.181153 3.25065i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 51.7468 928.559i 0.0841412 1.50985i
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) −182.226 + 1080.93i −0.293440 + 1.74064i
\(622\) 0 0
\(623\) −1321.81 −2.12169
\(624\) 0 0
\(625\) 625.000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1166.43 1.83689
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1138.00i 1.77535i 0.460470 + 0.887676i \(0.347681\pi\)
−0.460470 + 0.887676i \(0.652319\pi\)
\(642\) 0 0
\(643\) 1148.97i 1.78689i −0.449168 0.893447i \(-0.648280\pi\)
0.449168 0.893447i \(-0.351720\pi\)
\(644\) 0 0
\(645\) −21.0990 + 378.607i −0.0327117 + 0.586987i
\(646\) 0 0
\(647\) −1292.64 −1.99790 −0.998948 0.0458655i \(-0.985395\pi\)
−0.998948 + 0.0458655i \(0.985395\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 1287.98 1.94853 0.974263 0.225416i \(-0.0723741\pi\)
0.974263 + 0.225416i \(0.0723741\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2178.80i 3.26657i
\(668\) 0 0
\(669\) −724.548 40.3777i −1.08303 0.0603553i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) −112.209 + 665.608i −0.166236 + 0.986086i
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −75.2755 + 1350.76i −0.110537 + 1.98350i
\(682\) 0 0
\(683\) 489.124 0.716141 0.358070 0.933695i \(-0.383435\pi\)
0.358070 + 0.933695i \(0.383435\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 43.7344 784.782i 0.0636600 1.14233i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 902.000i 1.28673i −0.765558 0.643367i \(-0.777537\pi\)
0.765558 0.643367i \(-0.222463\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −1036.93 57.7864i −1.47083 0.0819665i
\(706\) 0 0
\(707\) 1982.72 2.80441
\(708\) 0 0
\(709\) −698.000 −0.984485 −0.492243 0.870458i \(-0.663823\pi\)
−0.492243 + 0.870458i \(0.663823\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) −2135.65 −2.96207
\(722\) 0 0
\(723\) 62.7070 1125.23i 0.0867317 1.55634i
\(724\) 0 0
\(725\) 1341.64i 1.85054i
\(726\) 0 0
\(727\) 854.129i 1.17487i 0.809272 + 0.587434i \(0.199862\pi\)
−0.809272 + 0.587434i \(0.800138\pi\)
\(728\) 0 0
\(729\) −688.709 239.000i −0.944731 0.327846i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) −1537.60 85.6874i −2.09197 0.116582i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −361.020 −0.485894 −0.242947 0.970040i \(-0.578114\pi\)
−0.242947 + 0.970040i \(0.578114\pi\)
\(744\) 0 0
\(745\) 1390.00 1.86577
\(746\) 0 0
\(747\) −1414.05 158.095i −1.89297 0.211640i
\(748\) 0 0
\(749\) 439.009i 0.586127i
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1502.64i 1.97456i 0.159001 + 0.987278i \(0.449173\pi\)
−0.159001 + 0.987278i \(0.550827\pi\)
\(762\) 0 0
\(763\) 2643.62i 3.46478i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1342.00 1.74512 0.872562 0.488504i \(-0.162457\pi\)
0.872562 + 0.488504i \(0.162457\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 1428.81 + 240.872i 1.82479 + 0.307627i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1027.94i 1.30614i 0.757296 + 0.653072i \(0.226520\pi\)
−0.757296 + 0.653072i \(0.773480\pi\)
\(788\) 0 0
\(789\) 85.7802 1539.26i 0.108720 1.95090i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 107.331 960.000i 0.133997 1.19850i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −2499.97 −3.10555
\(806\) 0 0
\(807\) 113.823 + 6.34316i 0.141045 + 0.00786017i
\(808\) 0 0
\(809\) 965.981i 1.19404i 0.802225 + 0.597022i \(0.203649\pi\)
−0.802225 + 0.597022i \(0.796351\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −416.290 −0.510785
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 662.000i 0.806334i −0.915126 0.403167i \(-0.867909\pi\)
0.915126 0.403167i \(-0.132091\pi\)
\(822\) 0 0
\(823\) 1603.77i 1.94868i −0.225077 0.974341i \(-0.572263\pi\)
0.225077 0.974341i \(-0.427737\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 669.550 0.809613 0.404807 0.914402i \(-0.367339\pi\)
0.404807 + 0.914402i \(0.367339\pi\)
\(828\) 0 0
\(829\) −751.319 −0.906295 −0.453148 0.891435i \(-0.649699\pi\)
−0.453148 + 0.891435i \(0.649699\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 56.2895i 0.0674125i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −2039.00 −2.42449
\(842\) 0 0
\(843\) 1252.06 + 69.7748i 1.48524 + 0.0827696i
\(844\) 0 0
\(845\) 845.000i 1.00000i
\(846\) 0 0
\(847\) 1490.15i 1.75932i
\(848\) 0 0
\(849\) −325.276 18.1270i −0.383128 0.0213510i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) −127.455 + 2287.09i −0.148032 + 2.65632i
\(862\) 0 0
\(863\) −767.867 −0.889764 −0.444882 0.895589i \(-0.646754\pi\)
−0.444882 + 0.895589i \(0.646754\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 48.2414 865.657i 0.0556418 0.998451i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1539.41 −1.75932
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1618.00i 1.83655i 0.395944 + 0.918275i \(0.370417\pi\)
−0.395944 + 0.918275i \(0.629583\pi\)
\(882\) 0 0
\(883\) 38.9665i 0.0441296i −0.999757 0.0220648i \(-0.992976\pi\)
0.999757 0.0220648i \(-0.00702402\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1734.69 1.95568 0.977841 0.209350i \(-0.0671349\pi\)
0.977841 + 0.209350i \(0.0671349\pi\)
\(888\) 0 0
\(889\) −2872.97 −3.23168
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 51.9680 932.528i 0.0575504 1.03270i
\(904\) 0 0
\(905\) 1790.00i 1.97790i
\(906\) 0 0
\(907\) 1450.21i 1.59891i 0.600724 + 0.799456i \(0.294879\pi\)
−0.600724 + 0.799456i \(0.705121\pi\)
\(908\) 0 0
\(909\) −160.997 + 1440.00i −0.177114 + 1.58416i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −1607.47 89.5815i −1.75680 0.0979033i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 1574.93 + 87.7678i 1.71002 + 0.0952962i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 173.415 1551.07i 0.187071 1.67322i
\(928\) 0 0
\(929\) 562.000i 0.604952i 0.953157 + 0.302476i \(0.0978131\pi\)
−0.953157 + 0.302476i \(0.902187\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1878.30i 1.99606i 0.0626993 + 0.998032i \(0.480029\pi\)
−0.0626993 + 0.998032i \(0.519971\pi\)
\(942\) 0 0
\(943\) 2517.17i 2.66932i
\(944\) 0 0
\(945\) 276.378 1639.43i 0.292463 1.73484i
\(946\) 0 0
\(947\) −1683.55 −1.77778 −0.888888 0.458124i \(-0.848522\pi\)
−0.888888 + 0.458124i \(0.848522\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −961.000 −1.00000
\(962\) 0 0
\(963\) 318.842 + 35.6476i 0.331092 + 0.0370172i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1184.08i 1.22449i −0.790668 0.612246i \(-0.790266\pi\)
0.790668 0.612246i \(-0.209734\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −1920.00 214.663i −1.95719 0.218820i
\(982\) 0 0
\(983\) 1576.41 1.60367 0.801836 0.597544i \(-0.203857\pi\)
0.801836 + 0.597544i \(0.203857\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2554.02 + 142.331i 2.58766 + 0.144206i
\(988\) 0 0
\(989\) 1026.34i 1.03776i
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.3.c.a.449.4 yes 8
3.2 odd 2 inner 480.3.c.a.449.6 yes 8
4.3 odd 2 inner 480.3.c.a.449.5 yes 8
5.4 even 2 inner 480.3.c.a.449.5 yes 8
8.3 odd 2 960.3.c.i.449.4 8
8.5 even 2 960.3.c.i.449.5 8
12.11 even 2 inner 480.3.c.a.449.3 8
15.14 odd 2 inner 480.3.c.a.449.3 8
20.19 odd 2 CM 480.3.c.a.449.4 yes 8
24.5 odd 2 960.3.c.i.449.3 8
24.11 even 2 960.3.c.i.449.6 8
40.19 odd 2 960.3.c.i.449.5 8
40.29 even 2 960.3.c.i.449.4 8
60.59 even 2 inner 480.3.c.a.449.6 yes 8
120.29 odd 2 960.3.c.i.449.6 8
120.59 even 2 960.3.c.i.449.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.3.c.a.449.3 8 12.11 even 2 inner
480.3.c.a.449.3 8 15.14 odd 2 inner
480.3.c.a.449.4 yes 8 1.1 even 1 trivial
480.3.c.a.449.4 yes 8 20.19 odd 2 CM
480.3.c.a.449.5 yes 8 4.3 odd 2 inner
480.3.c.a.449.5 yes 8 5.4 even 2 inner
480.3.c.a.449.6 yes 8 3.2 odd 2 inner
480.3.c.a.449.6 yes 8 60.59 even 2 inner
960.3.c.i.449.3 8 24.5 odd 2
960.3.c.i.449.3 8 120.59 even 2
960.3.c.i.449.4 8 8.3 odd 2
960.3.c.i.449.4 8 40.29 even 2
960.3.c.i.449.5 8 8.5 even 2
960.3.c.i.449.5 8 40.19 odd 2
960.3.c.i.449.6 8 24.11 even 2
960.3.c.i.449.6 8 120.29 odd 2