Properties

Label 480.4.bh.a
Level 480480
Weight 44
Character orbit 480.bh
Analytic conductor 28.32128.321
Analytic rank 00
Dimension 7272
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [480,4,Mod(367,480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(480, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("480.367");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 480=2535 480 = 2^{5} \cdot 3 \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 480.bh (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 28.320916802828.3209168028
Analytic rank: 00
Dimension: 7272
Relative dimension: 3636 over Q(i)\Q(i)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 72q104q1788q25912q35864q43+1488q511048q653696q67+1480q735832q81+5360q833392q91328q97+O(q100) 72 q - 104 q^{17} - 88 q^{25} - 912 q^{35} - 864 q^{43} + 1488 q^{51} - 1048 q^{65} - 3696 q^{67} + 1480 q^{73} - 5832 q^{81} + 5360 q^{83} - 3392 q^{91} - 328 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
367.1 0 −2.12132 + 2.12132i 0 −8.21764 7.58092i 0 21.7697 21.7697i 0 9.00000i 0
367.2 0 −2.12132 + 2.12132i 0 8.21764 + 7.58092i 0 −21.7697 + 21.7697i 0 9.00000i 0
367.3 0 −2.12132 + 2.12132i 0 −0.507948 + 11.1688i 0 −17.5600 + 17.5600i 0 9.00000i 0
367.4 0 −2.12132 + 2.12132i 0 0.507948 11.1688i 0 17.5600 17.5600i 0 9.00000i 0
367.5 0 −2.12132 + 2.12132i 0 −3.59302 + 10.5873i 0 −3.55795 + 3.55795i 0 9.00000i 0
367.6 0 −2.12132 + 2.12132i 0 3.59302 10.5873i 0 3.55795 3.55795i 0 9.00000i 0
367.7 0 −2.12132 + 2.12132i 0 −8.74847 6.96163i 0 −1.78469 + 1.78469i 0 9.00000i 0
367.8 0 −2.12132 + 2.12132i 0 8.74847 + 6.96163i 0 1.78469 1.78469i 0 9.00000i 0
367.9 0 −2.12132 + 2.12132i 0 −8.64040 + 7.09531i 0 −4.53056 + 4.53056i 0 9.00000i 0
367.10 0 −2.12132 + 2.12132i 0 8.64040 7.09531i 0 4.53056 4.53056i 0 9.00000i 0
367.11 0 −2.12132 + 2.12132i 0 −11.0300 + 1.82735i 0 11.6097 11.6097i 0 9.00000i 0
367.12 0 −2.12132 + 2.12132i 0 11.0300 1.82735i 0 −11.6097 + 11.6097i 0 9.00000i 0
367.13 0 −2.12132 + 2.12132i 0 −7.39199 + 8.38800i 0 12.7938 12.7938i 0 9.00000i 0
367.14 0 −2.12132 + 2.12132i 0 7.39199 8.38800i 0 −12.7938 + 12.7938i 0 9.00000i 0
367.15 0 −2.12132 + 2.12132i 0 −4.33793 10.3045i 0 −15.3854 + 15.3854i 0 9.00000i 0
367.16 0 −2.12132 + 2.12132i 0 4.33793 + 10.3045i 0 15.3854 15.3854i 0 9.00000i 0
367.17 0 −2.12132 + 2.12132i 0 −9.87236 5.24752i 0 −20.3922 + 20.3922i 0 9.00000i 0
367.18 0 −2.12132 + 2.12132i 0 9.87236 + 5.24752i 0 20.3922 20.3922i 0 9.00000i 0
367.19 0 2.12132 2.12132i 0 −9.61270 + 5.70930i 0 7.34859 7.34859i 0 9.00000i 0
367.20 0 2.12132 2.12132i 0 9.61270 5.70930i 0 −7.34859 + 7.34859i 0 9.00000i 0
See all 72 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 367.36
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
8.d odd 2 1 inner
40.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 480.4.bh.a 72
4.b odd 2 1 120.4.v.a 72
5.c odd 4 1 inner 480.4.bh.a 72
8.b even 2 1 120.4.v.a 72
8.d odd 2 1 inner 480.4.bh.a 72
20.e even 4 1 120.4.v.a 72
40.i odd 4 1 120.4.v.a 72
40.k even 4 1 inner 480.4.bh.a 72
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.4.v.a 72 4.b odd 2 1
120.4.v.a 72 8.b even 2 1
120.4.v.a 72 20.e even 4 1
120.4.v.a 72 40.i odd 4 1
480.4.bh.a 72 1.a even 1 1 trivial
480.4.bh.a 72 5.c odd 4 1 inner
480.4.bh.a 72 8.d odd 2 1 inner
480.4.bh.a 72 40.k even 4 1 inner

Hecke kernels

This newform subspace is the entire newspace S4new(480,[χ])S_{4}^{\mathrm{new}}(480, [\chi]).