Properties

Label 480.4.h.b.191.13
Level $480$
Weight $4$
Character 480.191
Analytic conductor $28.321$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [480,4,Mod(191,480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("480.191");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 480.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.3209168028\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.13
Character \(\chi\) \(=\) 480.191
Dual form 480.4.h.b.191.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.991849 - 5.10061i) q^{3} +5.00000i q^{5} +7.56208i q^{7} +(-25.0325 - 10.1181i) q^{9} -3.60156 q^{11} +0.331659 q^{13} +(25.5031 + 4.95925i) q^{15} +2.26149i q^{17} +106.718i q^{19} +(38.5712 + 7.50045i) q^{21} +163.714 q^{23} -25.0000 q^{25} +(-76.4368 + 117.645i) q^{27} -39.3759i q^{29} +211.404i q^{31} +(-3.57220 + 18.3702i) q^{33} -37.8104 q^{35} +30.8049 q^{37} +(0.328956 - 1.69166i) q^{39} +268.456i q^{41} +202.814i q^{43} +(50.5904 - 125.162i) q^{45} +13.8352 q^{47} +285.815 q^{49} +(11.5350 + 2.24306i) q^{51} -222.334i q^{53} -18.0078i q^{55} +(544.329 + 105.849i) q^{57} -442.239 q^{59} +601.295 q^{61} +(76.5137 - 189.298i) q^{63} +1.65829i q^{65} +347.079i q^{67} +(162.379 - 835.040i) q^{69} +634.275 q^{71} +620.653 q^{73} +(-24.7962 + 127.515i) q^{75} -27.2353i q^{77} +946.140i q^{79} +(524.249 + 506.561i) q^{81} +655.062 q^{83} -11.3075 q^{85} +(-200.841 - 39.0550i) q^{87} -920.102i q^{89} +2.50803i q^{91} +(1078.29 + 209.681i) q^{93} -533.592 q^{95} +264.948 q^{97} +(90.1559 + 36.4409i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 20 q^{9} + 72 q^{11} - 72 q^{13} + 20 q^{15} - 68 q^{21} + 96 q^{23} - 600 q^{25} + 168 q^{27} - 80 q^{33} - 504 q^{37} - 456 q^{39} - 220 q^{45} + 432 q^{47} - 816 q^{49} + 1240 q^{51} + 40 q^{57}+ \cdots + 3160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/480\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(421\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.991849 5.10061i 0.190882 0.981613i
\(4\) 0 0
\(5\) 5.00000i 0.447214i
\(6\) 0 0
\(7\) 7.56208i 0.408314i 0.978938 + 0.204157i \(0.0654453\pi\)
−0.978938 + 0.204157i \(0.934555\pi\)
\(8\) 0 0
\(9\) −25.0325 10.1181i −0.927128 0.374744i
\(10\) 0 0
\(11\) −3.60156 −0.0987192 −0.0493596 0.998781i \(-0.515718\pi\)
−0.0493596 + 0.998781i \(0.515718\pi\)
\(12\) 0 0
\(13\) 0.331659 0.00707582 0.00353791 0.999994i \(-0.498874\pi\)
0.00353791 + 0.999994i \(0.498874\pi\)
\(14\) 0 0
\(15\) 25.5031 + 4.95925i 0.438991 + 0.0853648i
\(16\) 0 0
\(17\) 2.26149i 0.0322643i 0.999870 + 0.0161321i \(0.00513524\pi\)
−0.999870 + 0.0161321i \(0.994865\pi\)
\(18\) 0 0
\(19\) 106.718i 1.28857i 0.764784 + 0.644286i \(0.222845\pi\)
−0.764784 + 0.644286i \(0.777155\pi\)
\(20\) 0 0
\(21\) 38.5712 + 7.50045i 0.400806 + 0.0779396i
\(22\) 0 0
\(23\) 163.714 1.48420 0.742101 0.670288i \(-0.233829\pi\)
0.742101 + 0.670288i \(0.233829\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 0 0
\(27\) −76.4368 + 117.645i −0.544825 + 0.838550i
\(28\) 0 0
\(29\) 39.3759i 0.252135i −0.992022 0.126068i \(-0.959764\pi\)
0.992022 0.126068i \(-0.0402356\pi\)
\(30\) 0 0
\(31\) 211.404i 1.22482i 0.790542 + 0.612408i \(0.209799\pi\)
−0.790542 + 0.612408i \(0.790201\pi\)
\(32\) 0 0
\(33\) −3.57220 + 18.3702i −0.0188437 + 0.0969040i
\(34\) 0 0
\(35\) −37.8104 −0.182604
\(36\) 0 0
\(37\) 30.8049 0.136873 0.0684365 0.997655i \(-0.478199\pi\)
0.0684365 + 0.997655i \(0.478199\pi\)
\(38\) 0 0
\(39\) 0.328956 1.69166i 0.00135064 0.00694571i
\(40\) 0 0
\(41\) 268.456i 1.02258i 0.859408 + 0.511291i \(0.170832\pi\)
−0.859408 + 0.511291i \(0.829168\pi\)
\(42\) 0 0
\(43\) 202.814i 0.719275i 0.933092 + 0.359637i \(0.117100\pi\)
−0.933092 + 0.359637i \(0.882900\pi\)
\(44\) 0 0
\(45\) 50.5904 125.162i 0.167590 0.414624i
\(46\) 0 0
\(47\) 13.8352 0.0429377 0.0214689 0.999770i \(-0.493166\pi\)
0.0214689 + 0.999770i \(0.493166\pi\)
\(48\) 0 0
\(49\) 285.815 0.833280
\(50\) 0 0
\(51\) 11.5350 + 2.24306i 0.0316711 + 0.00615866i
\(52\) 0 0
\(53\) 222.334i 0.576225i −0.957597 0.288112i \(-0.906972\pi\)
0.957597 0.288112i \(-0.0930277\pi\)
\(54\) 0 0
\(55\) 18.0078i 0.0441486i
\(56\) 0 0
\(57\) 544.329 + 105.849i 1.26488 + 0.245965i
\(58\) 0 0
\(59\) −442.239 −0.975842 −0.487921 0.872888i \(-0.662245\pi\)
−0.487921 + 0.872888i \(0.662245\pi\)
\(60\) 0 0
\(61\) 601.295 1.26210 0.631049 0.775743i \(-0.282625\pi\)
0.631049 + 0.775743i \(0.282625\pi\)
\(62\) 0 0
\(63\) 76.5137 189.298i 0.153013 0.378560i
\(64\) 0 0
\(65\) 1.65829i 0.00316440i
\(66\) 0 0
\(67\) 347.079i 0.632872i 0.948614 + 0.316436i \(0.102486\pi\)
−0.948614 + 0.316436i \(0.897514\pi\)
\(68\) 0 0
\(69\) 162.379 835.040i 0.283307 1.45691i
\(70\) 0 0
\(71\) 634.275 1.06021 0.530103 0.847934i \(-0.322153\pi\)
0.530103 + 0.847934i \(0.322153\pi\)
\(72\) 0 0
\(73\) 620.653 0.995096 0.497548 0.867437i \(-0.334234\pi\)
0.497548 + 0.867437i \(0.334234\pi\)
\(74\) 0 0
\(75\) −24.7962 + 127.515i −0.0381763 + 0.196323i
\(76\) 0 0
\(77\) 27.2353i 0.0403084i
\(78\) 0 0
\(79\) 946.140i 1.34746i 0.738979 + 0.673728i \(0.235308\pi\)
−0.738979 + 0.673728i \(0.764692\pi\)
\(80\) 0 0
\(81\) 524.249 + 506.561i 0.719134 + 0.694871i
\(82\) 0 0
\(83\) 655.062 0.866294 0.433147 0.901323i \(-0.357403\pi\)
0.433147 + 0.901323i \(0.357403\pi\)
\(84\) 0 0
\(85\) −11.3075 −0.0144290
\(86\) 0 0
\(87\) −200.841 39.0550i −0.247499 0.0481279i
\(88\) 0 0
\(89\) 920.102i 1.09585i −0.836528 0.547925i \(-0.815418\pi\)
0.836528 0.547925i \(-0.184582\pi\)
\(90\) 0 0
\(91\) 2.50803i 0.00288915i
\(92\) 0 0
\(93\) 1078.29 + 209.681i 1.20229 + 0.233795i
\(94\) 0 0
\(95\) −533.592 −0.576267
\(96\) 0 0
\(97\) 264.948 0.277334 0.138667 0.990339i \(-0.455718\pi\)
0.138667 + 0.990339i \(0.455718\pi\)
\(98\) 0 0
\(99\) 90.1559 + 36.4409i 0.0915254 + 0.0369944i
\(100\) 0 0
\(101\) 1339.31i 1.31947i −0.751500 0.659733i \(-0.770669\pi\)
0.751500 0.659733i \(-0.229331\pi\)
\(102\) 0 0
\(103\) 78.5803i 0.0751723i 0.999293 + 0.0375861i \(0.0119669\pi\)
−0.999293 + 0.0375861i \(0.988033\pi\)
\(104\) 0 0
\(105\) −37.5022 + 192.856i −0.0348556 + 0.179246i
\(106\) 0 0
\(107\) −535.098 −0.483457 −0.241728 0.970344i \(-0.577714\pi\)
−0.241728 + 0.970344i \(0.577714\pi\)
\(108\) 0 0
\(109\) −1412.38 −1.24111 −0.620556 0.784162i \(-0.713093\pi\)
−0.620556 + 0.784162i \(0.713093\pi\)
\(110\) 0 0
\(111\) 30.5539 157.124i 0.0261265 0.134356i
\(112\) 0 0
\(113\) 2249.99i 1.87311i 0.350523 + 0.936554i \(0.386004\pi\)
−0.350523 + 0.936554i \(0.613996\pi\)
\(114\) 0 0
\(115\) 818.569i 0.663756i
\(116\) 0 0
\(117\) −8.30224 3.35575i −0.00656019 0.00265162i
\(118\) 0 0
\(119\) −17.1016 −0.0131740
\(120\) 0 0
\(121\) −1318.03 −0.990255
\(122\) 0 0
\(123\) 1369.29 + 266.268i 1.00378 + 0.195192i
\(124\) 0 0
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) 1311.90i 0.916634i 0.888789 + 0.458317i \(0.151547\pi\)
−0.888789 + 0.458317i \(0.848453\pi\)
\(128\) 0 0
\(129\) 1034.47 + 201.161i 0.706050 + 0.137296i
\(130\) 0 0
\(131\) 331.540 0.221120 0.110560 0.993869i \(-0.464736\pi\)
0.110560 + 0.993869i \(0.464736\pi\)
\(132\) 0 0
\(133\) −807.013 −0.526142
\(134\) 0 0
\(135\) −588.226 382.184i −0.375011 0.243653i
\(136\) 0 0
\(137\) 2390.13i 1.49053i 0.666767 + 0.745266i \(0.267678\pi\)
−0.666767 + 0.745266i \(0.732322\pi\)
\(138\) 0 0
\(139\) 83.4868i 0.0509443i −0.999676 0.0254721i \(-0.991891\pi\)
0.999676 0.0254721i \(-0.00810891\pi\)
\(140\) 0 0
\(141\) 13.7225 70.5681i 0.00819602 0.0421482i
\(142\) 0 0
\(143\) −1.19449 −0.000698519
\(144\) 0 0
\(145\) 196.879 0.112758
\(146\) 0 0
\(147\) 283.485 1457.83i 0.159058 0.817958i
\(148\) 0 0
\(149\) 3584.43i 1.97079i −0.170280 0.985396i \(-0.554467\pi\)
0.170280 0.985396i \(-0.445533\pi\)
\(150\) 0 0
\(151\) 1708.54i 0.920788i 0.887715 + 0.460394i \(0.152292\pi\)
−0.887715 + 0.460394i \(0.847708\pi\)
\(152\) 0 0
\(153\) 22.8820 56.6108i 0.0120908 0.0299131i
\(154\) 0 0
\(155\) −1057.02 −0.547754
\(156\) 0 0
\(157\) −698.665 −0.355157 −0.177578 0.984107i \(-0.556826\pi\)
−0.177578 + 0.984107i \(0.556826\pi\)
\(158\) 0 0
\(159\) −1134.04 220.522i −0.565630 0.109991i
\(160\) 0 0
\(161\) 1238.02i 0.606021i
\(162\) 0 0
\(163\) 1342.24i 0.644986i 0.946572 + 0.322493i \(0.104521\pi\)
−0.946572 + 0.322493i \(0.895479\pi\)
\(164\) 0 0
\(165\) −91.8508 17.8610i −0.0433368 0.00842714i
\(166\) 0 0
\(167\) −309.196 −0.143271 −0.0716356 0.997431i \(-0.522822\pi\)
−0.0716356 + 0.997431i \(0.522822\pi\)
\(168\) 0 0
\(169\) −2196.89 −0.999950
\(170\) 0 0
\(171\) 1079.78 2671.42i 0.482884 1.19467i
\(172\) 0 0
\(173\) 699.135i 0.307250i −0.988129 0.153625i \(-0.950905\pi\)
0.988129 0.153625i \(-0.0490948\pi\)
\(174\) 0 0
\(175\) 189.052i 0.0816628i
\(176\) 0 0
\(177\) −438.635 + 2255.69i −0.186270 + 0.957899i
\(178\) 0 0
\(179\) 1734.56 0.724286 0.362143 0.932123i \(-0.382045\pi\)
0.362143 + 0.932123i \(0.382045\pi\)
\(180\) 0 0
\(181\) −1557.96 −0.639792 −0.319896 0.947453i \(-0.603648\pi\)
−0.319896 + 0.947453i \(0.603648\pi\)
\(182\) 0 0
\(183\) 596.394 3066.97i 0.240911 1.23889i
\(184\) 0 0
\(185\) 154.025i 0.0612115i
\(186\) 0 0
\(187\) 8.14491i 0.00318510i
\(188\) 0 0
\(189\) −889.643 578.021i −0.342392 0.222460i
\(190\) 0 0
\(191\) 92.4394 0.0350193 0.0175096 0.999847i \(-0.494426\pi\)
0.0175096 + 0.999847i \(0.494426\pi\)
\(192\) 0 0
\(193\) −3015.83 −1.12479 −0.562394 0.826869i \(-0.690119\pi\)
−0.562394 + 0.826869i \(0.690119\pi\)
\(194\) 0 0
\(195\) 8.45831 + 1.64478i 0.00310622 + 0.000604026i
\(196\) 0 0
\(197\) 1482.37i 0.536115i 0.963403 + 0.268057i \(0.0863817\pi\)
−0.963403 + 0.268057i \(0.913618\pi\)
\(198\) 0 0
\(199\) 527.079i 0.187757i −0.995584 0.0938785i \(-0.970073\pi\)
0.995584 0.0938785i \(-0.0299265\pi\)
\(200\) 0 0
\(201\) 1770.32 + 344.250i 0.621236 + 0.120804i
\(202\) 0 0
\(203\) 297.764 0.102950
\(204\) 0 0
\(205\) −1342.28 −0.457312
\(206\) 0 0
\(207\) −4098.16 1656.47i −1.37605 0.556196i
\(208\) 0 0
\(209\) 384.353i 0.127207i
\(210\) 0 0
\(211\) 3224.65i 1.05211i −0.850452 0.526053i \(-0.823671\pi\)
0.850452 0.526053i \(-0.176329\pi\)
\(212\) 0 0
\(213\) 629.105 3235.19i 0.202374 1.04071i
\(214\) 0 0
\(215\) −1014.07 −0.321669
\(216\) 0 0
\(217\) −1598.65 −0.500109
\(218\) 0 0
\(219\) 615.595 3165.71i 0.189945 0.976799i
\(220\) 0 0
\(221\) 0.750045i 0.000228296i
\(222\) 0 0
\(223\) 5592.65i 1.67942i −0.543032 0.839712i \(-0.682724\pi\)
0.543032 0.839712i \(-0.317276\pi\)
\(224\) 0 0
\(225\) 625.812 + 252.952i 0.185426 + 0.0749487i
\(226\) 0 0
\(227\) −4878.86 −1.42653 −0.713263 0.700896i \(-0.752784\pi\)
−0.713263 + 0.700896i \(0.752784\pi\)
\(228\) 0 0
\(229\) −3451.84 −0.996087 −0.498044 0.867152i \(-0.665948\pi\)
−0.498044 + 0.867152i \(0.665948\pi\)
\(230\) 0 0
\(231\) −138.917 27.0133i −0.0395673 0.00769413i
\(232\) 0 0
\(233\) 1819.14i 0.511485i −0.966745 0.255742i \(-0.917680\pi\)
0.966745 0.255742i \(-0.0823199\pi\)
\(234\) 0 0
\(235\) 69.1761i 0.0192023i
\(236\) 0 0
\(237\) 4825.89 + 938.429i 1.32268 + 0.257205i
\(238\) 0 0
\(239\) 5962.04 1.61361 0.806803 0.590820i \(-0.201196\pi\)
0.806803 + 0.590820i \(0.201196\pi\)
\(240\) 0 0
\(241\) −1303.84 −0.348497 −0.174249 0.984702i \(-0.555750\pi\)
−0.174249 + 0.984702i \(0.555750\pi\)
\(242\) 0 0
\(243\) 3103.75 2171.56i 0.819364 0.573274i
\(244\) 0 0
\(245\) 1429.07i 0.372654i
\(246\) 0 0
\(247\) 35.3941i 0.00911770i
\(248\) 0 0
\(249\) 649.723 3341.22i 0.165359 0.850365i
\(250\) 0 0
\(251\) −6591.43 −1.65756 −0.828780 0.559574i \(-0.810965\pi\)
−0.828780 + 0.559574i \(0.810965\pi\)
\(252\) 0 0
\(253\) −589.625 −0.146519
\(254\) 0 0
\(255\) −11.2153 + 57.6750i −0.00275424 + 0.0141637i
\(256\) 0 0
\(257\) 6088.10i 1.47769i 0.673878 + 0.738843i \(0.264627\pi\)
−0.673878 + 0.738843i \(0.735373\pi\)
\(258\) 0 0
\(259\) 232.949i 0.0558872i
\(260\) 0 0
\(261\) −398.408 + 985.676i −0.0944860 + 0.233762i
\(262\) 0 0
\(263\) 3905.07 0.915577 0.457788 0.889061i \(-0.348642\pi\)
0.457788 + 0.889061i \(0.348642\pi\)
\(264\) 0 0
\(265\) 1111.67 0.257696
\(266\) 0 0
\(267\) −4693.08 912.603i −1.07570 0.209177i
\(268\) 0 0
\(269\) 1436.08i 0.325499i −0.986667 0.162750i \(-0.947964\pi\)
0.986667 0.162750i \(-0.0520363\pi\)
\(270\) 0 0
\(271\) 3055.89i 0.684988i 0.939520 + 0.342494i \(0.111272\pi\)
−0.939520 + 0.342494i \(0.888728\pi\)
\(272\) 0 0
\(273\) 12.7925 + 2.48759i 0.00283603 + 0.000551486i
\(274\) 0 0
\(275\) 90.0390 0.0197438
\(276\) 0 0
\(277\) −3584.60 −0.777538 −0.388769 0.921335i \(-0.627100\pi\)
−0.388769 + 0.921335i \(0.627100\pi\)
\(278\) 0 0
\(279\) 2139.00 5291.96i 0.458992 1.13556i
\(280\) 0 0
\(281\) 4437.97i 0.942161i −0.882090 0.471081i \(-0.843864\pi\)
0.882090 0.471081i \(-0.156136\pi\)
\(282\) 0 0
\(283\) 6626.00i 1.39178i 0.718146 + 0.695892i \(0.244991\pi\)
−0.718146 + 0.695892i \(0.755009\pi\)
\(284\) 0 0
\(285\) −529.243 + 2721.65i −0.109999 + 0.565671i
\(286\) 0 0
\(287\) −2030.09 −0.417534
\(288\) 0 0
\(289\) 4907.89 0.998959
\(290\) 0 0
\(291\) 262.789 1351.40i 0.0529380 0.272235i
\(292\) 0 0
\(293\) 2675.75i 0.533512i −0.963764 0.266756i \(-0.914048\pi\)
0.963764 0.266756i \(-0.0859517\pi\)
\(294\) 0 0
\(295\) 2211.20i 0.436410i
\(296\) 0 0
\(297\) 275.292 423.706i 0.0537847 0.0827809i
\(298\) 0 0
\(299\) 54.2971 0.0105019
\(300\) 0 0
\(301\) −1533.69 −0.293690
\(302\) 0 0
\(303\) −6831.29 1328.39i −1.29521 0.251862i
\(304\) 0 0
\(305\) 3006.48i 0.564427i
\(306\) 0 0
\(307\) 627.027i 0.116568i 0.998300 + 0.0582839i \(0.0185629\pi\)
−0.998300 + 0.0582839i \(0.981437\pi\)
\(308\) 0 0
\(309\) 400.807 + 77.9398i 0.0737901 + 0.0143490i
\(310\) 0 0
\(311\) 7966.93 1.45261 0.726307 0.687370i \(-0.241235\pi\)
0.726307 + 0.687370i \(0.241235\pi\)
\(312\) 0 0
\(313\) −9332.71 −1.68536 −0.842678 0.538418i \(-0.819022\pi\)
−0.842678 + 0.538418i \(0.819022\pi\)
\(314\) 0 0
\(315\) 946.488 + 382.569i 0.169297 + 0.0684295i
\(316\) 0 0
\(317\) 7948.93i 1.40838i 0.710012 + 0.704190i \(0.248690\pi\)
−0.710012 + 0.704190i \(0.751310\pi\)
\(318\) 0 0
\(319\) 141.815i 0.0248906i
\(320\) 0 0
\(321\) −530.737 + 2729.33i −0.0922830 + 0.474568i
\(322\) 0 0
\(323\) −241.343 −0.0415749
\(324\) 0 0
\(325\) −8.29147 −0.00141516
\(326\) 0 0
\(327\) −1400.87 + 7203.99i −0.236905 + 1.21829i
\(328\) 0 0
\(329\) 104.623i 0.0175321i
\(330\) 0 0
\(331\) 3174.68i 0.527179i 0.964635 + 0.263589i \(0.0849064\pi\)
−0.964635 + 0.263589i \(0.915094\pi\)
\(332\) 0 0
\(333\) −771.124 311.687i −0.126899 0.0512923i
\(334\) 0 0
\(335\) −1735.40 −0.283029
\(336\) 0 0
\(337\) −596.381 −0.0964004 −0.0482002 0.998838i \(-0.515349\pi\)
−0.0482002 + 0.998838i \(0.515349\pi\)
\(338\) 0 0
\(339\) 11476.3 + 2231.65i 1.83867 + 0.357542i
\(340\) 0 0
\(341\) 761.384i 0.120913i
\(342\) 0 0
\(343\) 4755.15i 0.748554i
\(344\) 0 0
\(345\) 4175.20 + 811.897i 0.651551 + 0.126699i
\(346\) 0 0
\(347\) −9910.10 −1.53315 −0.766573 0.642157i \(-0.778040\pi\)
−0.766573 + 0.642157i \(0.778040\pi\)
\(348\) 0 0
\(349\) −7302.75 −1.12008 −0.560039 0.828466i \(-0.689214\pi\)
−0.560039 + 0.828466i \(0.689214\pi\)
\(350\) 0 0
\(351\) −25.3509 + 39.0181i −0.00385508 + 0.00593342i
\(352\) 0 0
\(353\) 11157.8i 1.68235i −0.540766 0.841173i \(-0.681866\pi\)
0.540766 0.841173i \(-0.318134\pi\)
\(354\) 0 0
\(355\) 3171.37i 0.474138i
\(356\) 0 0
\(357\) −16.9622 + 87.2286i −0.00251467 + 0.0129317i
\(358\) 0 0
\(359\) 13045.4 1.91785 0.958927 0.283652i \(-0.0915461\pi\)
0.958927 + 0.283652i \(0.0915461\pi\)
\(360\) 0 0
\(361\) −4529.81 −0.660419
\(362\) 0 0
\(363\) −1307.29 + 6722.75i −0.189021 + 0.972047i
\(364\) 0 0
\(365\) 3103.27i 0.445020i
\(366\) 0 0
\(367\) 8284.26i 1.17830i 0.808025 + 0.589148i \(0.200537\pi\)
−0.808025 + 0.589148i \(0.799463\pi\)
\(368\) 0 0
\(369\) 2716.26 6720.12i 0.383206 0.948064i
\(370\) 0 0
\(371\) 1681.31 0.235281
\(372\) 0 0
\(373\) 13725.9 1.90537 0.952684 0.303962i \(-0.0983097\pi\)
0.952684 + 0.303962i \(0.0983097\pi\)
\(374\) 0 0
\(375\) −637.576 123.981i −0.0877981 0.0170730i
\(376\) 0 0
\(377\) 13.0594i 0.00178406i
\(378\) 0 0
\(379\) 492.460i 0.0667440i −0.999443 0.0333720i \(-0.989375\pi\)
0.999443 0.0333720i \(-0.0106246\pi\)
\(380\) 0 0
\(381\) 6691.50 + 1301.21i 0.899780 + 0.174968i
\(382\) 0 0
\(383\) −2848.35 −0.380010 −0.190005 0.981783i \(-0.560850\pi\)
−0.190005 + 0.981783i \(0.560850\pi\)
\(384\) 0 0
\(385\) 136.176 0.0180265
\(386\) 0 0
\(387\) 2052.09 5076.93i 0.269544 0.666860i
\(388\) 0 0
\(389\) 7422.19i 0.967404i 0.875233 + 0.483702i \(0.160708\pi\)
−0.875233 + 0.483702i \(0.839292\pi\)
\(390\) 0 0
\(391\) 370.238i 0.0478868i
\(392\) 0 0
\(393\) 328.838 1691.06i 0.0422078 0.217055i
\(394\) 0 0
\(395\) −4730.70 −0.602601
\(396\) 0 0
\(397\) 10609.7 1.34127 0.670637 0.741785i \(-0.266021\pi\)
0.670637 + 0.741785i \(0.266021\pi\)
\(398\) 0 0
\(399\) −800.436 + 4116.26i −0.100431 + 0.516468i
\(400\) 0 0
\(401\) 12084.4i 1.50490i −0.658650 0.752449i \(-0.728872\pi\)
0.658650 0.752449i \(-0.271128\pi\)
\(402\) 0 0
\(403\) 70.1140i 0.00866657i
\(404\) 0 0
\(405\) −2532.80 + 2621.25i −0.310756 + 0.321607i
\(406\) 0 0
\(407\) −110.946 −0.0135120
\(408\) 0 0
\(409\) 11303.0 1.36650 0.683251 0.730184i \(-0.260566\pi\)
0.683251 + 0.730184i \(0.260566\pi\)
\(410\) 0 0
\(411\) 12191.1 + 2370.65i 1.46313 + 0.284515i
\(412\) 0 0
\(413\) 3344.25i 0.398450i
\(414\) 0 0
\(415\) 3275.31i 0.387418i
\(416\) 0 0
\(417\) −425.834 82.8063i −0.0500076 0.00972433i
\(418\) 0 0
\(419\) 13156.2 1.53395 0.766974 0.641678i \(-0.221762\pi\)
0.766974 + 0.641678i \(0.221762\pi\)
\(420\) 0 0
\(421\) 10659.2 1.23396 0.616979 0.786980i \(-0.288356\pi\)
0.616979 + 0.786980i \(0.288356\pi\)
\(422\) 0 0
\(423\) −346.330 139.986i −0.0398088 0.0160906i
\(424\) 0 0
\(425\) 56.5374i 0.00645286i
\(426\) 0 0
\(427\) 4547.04i 0.515332i
\(428\) 0 0
\(429\) −1.18475 + 6.09262i −0.000133334 + 0.000685675i
\(430\) 0 0
\(431\) −13912.5 −1.55485 −0.777426 0.628975i \(-0.783475\pi\)
−0.777426 + 0.628975i \(0.783475\pi\)
\(432\) 0 0
\(433\) −675.722 −0.0749956 −0.0374978 0.999297i \(-0.511939\pi\)
−0.0374978 + 0.999297i \(0.511939\pi\)
\(434\) 0 0
\(435\) 195.275 1004.21i 0.0215235 0.110685i
\(436\) 0 0
\(437\) 17471.3i 1.91250i
\(438\) 0 0
\(439\) 445.601i 0.0484451i 0.999707 + 0.0242225i \(0.00771102\pi\)
−0.999707 + 0.0242225i \(0.992289\pi\)
\(440\) 0 0
\(441\) −7154.65 2891.90i −0.772557 0.312266i
\(442\) 0 0
\(443\) −2942.79 −0.315612 −0.157806 0.987470i \(-0.550442\pi\)
−0.157806 + 0.987470i \(0.550442\pi\)
\(444\) 0 0
\(445\) 4600.51 0.490079
\(446\) 0 0
\(447\) −18282.8 3555.21i −1.93455 0.376188i
\(448\) 0 0
\(449\) 17229.3i 1.81091i −0.424438 0.905457i \(-0.639528\pi\)
0.424438 0.905457i \(-0.360472\pi\)
\(450\) 0 0
\(451\) 966.861i 0.100948i
\(452\) 0 0
\(453\) 8714.60 + 1694.62i 0.903858 + 0.175762i
\(454\) 0 0
\(455\) −12.5402 −0.00129207
\(456\) 0 0
\(457\) 13952.0 1.42811 0.714055 0.700090i \(-0.246857\pi\)
0.714055 + 0.700090i \(0.246857\pi\)
\(458\) 0 0
\(459\) −266.054 172.861i −0.0270552 0.0175784i
\(460\) 0 0
\(461\) 9609.93i 0.970887i −0.874268 0.485444i \(-0.838658\pi\)
0.874268 0.485444i \(-0.161342\pi\)
\(462\) 0 0
\(463\) 1619.02i 0.162510i 0.996693 + 0.0812550i \(0.0258928\pi\)
−0.996693 + 0.0812550i \(0.974107\pi\)
\(464\) 0 0
\(465\) −1048.40 + 5391.45i −0.104556 + 0.537683i
\(466\) 0 0
\(467\) 2089.28 0.207024 0.103512 0.994628i \(-0.466992\pi\)
0.103512 + 0.994628i \(0.466992\pi\)
\(468\) 0 0
\(469\) −2624.64 −0.258411
\(470\) 0 0
\(471\) −692.971 + 3563.62i −0.0677928 + 0.348626i
\(472\) 0 0
\(473\) 730.446i 0.0710062i
\(474\) 0 0
\(475\) 2667.96i 0.257715i
\(476\) 0 0
\(477\) −2249.59 + 5565.57i −0.215937 + 0.534234i
\(478\) 0 0
\(479\) 5299.72 0.505533 0.252767 0.967527i \(-0.418660\pi\)
0.252767 + 0.967527i \(0.418660\pi\)
\(480\) 0 0
\(481\) 10.2167 0.000968488
\(482\) 0 0
\(483\) 6314.64 + 1227.93i 0.594878 + 0.115678i
\(484\) 0 0
\(485\) 1324.74i 0.124028i
\(486\) 0 0
\(487\) 4111.11i 0.382530i −0.981538 0.191265i \(-0.938741\pi\)
0.981538 0.191265i \(-0.0612590\pi\)
\(488\) 0 0
\(489\) 6846.27 + 1331.30i 0.633126 + 0.123116i
\(490\) 0 0
\(491\) −19369.9 −1.78035 −0.890176 0.455617i \(-0.849419\pi\)
−0.890176 + 0.455617i \(0.849419\pi\)
\(492\) 0 0
\(493\) 89.0484 0.00813496
\(494\) 0 0
\(495\) −182.204 + 450.780i −0.0165444 + 0.0409314i
\(496\) 0 0
\(497\) 4796.44i 0.432897i
\(498\) 0 0
\(499\) 11765.0i 1.05546i −0.849412 0.527731i \(-0.823043\pi\)
0.849412 0.527731i \(-0.176957\pi\)
\(500\) 0 0
\(501\) −306.676 + 1577.09i −0.0273478 + 0.140637i
\(502\) 0 0
\(503\) 15301.1 1.35635 0.678175 0.734900i \(-0.262771\pi\)
0.678175 + 0.734900i \(0.262771\pi\)
\(504\) 0 0
\(505\) 6696.54 0.590083
\(506\) 0 0
\(507\) −2178.98 + 11205.5i −0.190872 + 0.981564i
\(508\) 0 0
\(509\) 3104.14i 0.270312i 0.990824 + 0.135156i \(0.0431535\pi\)
−0.990824 + 0.135156i \(0.956846\pi\)
\(510\) 0 0
\(511\) 4693.43i 0.406312i
\(512\) 0 0
\(513\) −12554.9 8157.21i −1.08053 0.702046i
\(514\) 0 0
\(515\) −392.901 −0.0336181
\(516\) 0 0
\(517\) −49.8283 −0.00423878
\(518\) 0 0
\(519\) −3566.01 693.436i −0.301601 0.0586483i
\(520\) 0 0
\(521\) 9588.86i 0.806326i 0.915128 + 0.403163i \(0.132089\pi\)
−0.915128 + 0.403163i \(0.867911\pi\)
\(522\) 0 0
\(523\) 10769.0i 0.900374i −0.892934 0.450187i \(-0.851357\pi\)
0.892934 0.450187i \(-0.148643\pi\)
\(524\) 0 0
\(525\) −964.281 187.511i −0.0801613 0.0155879i
\(526\) 0 0
\(527\) −478.089 −0.0395178
\(528\) 0 0
\(529\) 14635.2 1.20286
\(530\) 0 0
\(531\) 11070.3 + 4474.61i 0.904730 + 0.365690i
\(532\) 0 0
\(533\) 89.0359i 0.00723560i
\(534\) 0 0
\(535\) 2675.49i 0.216208i
\(536\) 0 0
\(537\) 1720.42 8847.32i 0.138253 0.710968i
\(538\) 0 0
\(539\) −1029.38 −0.0822607
\(540\) 0 0
\(541\) 14203.8 1.12878 0.564391 0.825508i \(-0.309111\pi\)
0.564391 + 0.825508i \(0.309111\pi\)
\(542\) 0 0
\(543\) −1545.26 + 7946.55i −0.122124 + 0.628028i
\(544\) 0 0
\(545\) 7061.89i 0.555043i
\(546\) 0 0
\(547\) 7545.49i 0.589803i 0.955528 + 0.294901i \(0.0952868\pi\)
−0.955528 + 0.294901i \(0.904713\pi\)
\(548\) 0 0
\(549\) −15051.9 6083.95i −1.17013 0.472963i
\(550\) 0 0
\(551\) 4202.13 0.324894
\(552\) 0 0
\(553\) −7154.79 −0.550185
\(554\) 0 0
\(555\) 785.620 + 152.769i 0.0600860 + 0.0116841i
\(556\) 0 0
\(557\) 1999.80i 0.152126i 0.997103 + 0.0760631i \(0.0242350\pi\)
−0.997103 + 0.0760631i \(0.975765\pi\)
\(558\) 0 0
\(559\) 67.2650i 0.00508946i
\(560\) 0 0
\(561\) −41.5440 8.07852i −0.00312654 0.000607978i
\(562\) 0 0
\(563\) 7507.55 0.561999 0.281000 0.959708i \(-0.409334\pi\)
0.281000 + 0.959708i \(0.409334\pi\)
\(564\) 0 0
\(565\) −11250.0 −0.837680
\(566\) 0 0
\(567\) −3830.65 + 3964.41i −0.283726 + 0.293633i
\(568\) 0 0
\(569\) 8616.82i 0.634861i −0.948282 0.317430i \(-0.897180\pi\)
0.948282 0.317430i \(-0.102820\pi\)
\(570\) 0 0
\(571\) 7168.20i 0.525359i −0.964883 0.262680i \(-0.915394\pi\)
0.964883 0.262680i \(-0.0846062\pi\)
\(572\) 0 0
\(573\) 91.6860 471.498i 0.00668453 0.0343754i
\(574\) 0 0
\(575\) −4092.84 −0.296841
\(576\) 0 0
\(577\) −11297.9 −0.815144 −0.407572 0.913173i \(-0.633624\pi\)
−0.407572 + 0.913173i \(0.633624\pi\)
\(578\) 0 0
\(579\) −2991.25 + 15382.6i −0.214701 + 1.10411i
\(580\) 0 0
\(581\) 4953.63i 0.353720i
\(582\) 0 0
\(583\) 800.749i 0.0568844i
\(584\) 0 0
\(585\) 16.7787 41.5112i 0.00118584 0.00293381i
\(586\) 0 0
\(587\) −6935.92 −0.487694 −0.243847 0.969814i \(-0.578409\pi\)
−0.243847 + 0.969814i \(0.578409\pi\)
\(588\) 0 0
\(589\) −22560.7 −1.57826
\(590\) 0 0
\(591\) 7561.00 + 1470.29i 0.526257 + 0.102334i
\(592\) 0 0
\(593\) 7039.12i 0.487457i 0.969843 + 0.243729i \(0.0783706\pi\)
−0.969843 + 0.243729i \(0.921629\pi\)
\(594\) 0 0
\(595\) 85.5080i 0.00589158i
\(596\) 0 0
\(597\) −2688.43 522.783i −0.184305 0.0358393i
\(598\) 0 0
\(599\) 10574.2 0.721283 0.360641 0.932705i \(-0.382558\pi\)
0.360641 + 0.932705i \(0.382558\pi\)
\(600\) 0 0
\(601\) −12740.8 −0.864741 −0.432370 0.901696i \(-0.642323\pi\)
−0.432370 + 0.901696i \(0.642323\pi\)
\(602\) 0 0
\(603\) 3511.77 8688.25i 0.237165 0.586754i
\(604\) 0 0
\(605\) 6590.14i 0.442855i
\(606\) 0 0
\(607\) 25748.3i 1.72173i −0.508831 0.860867i \(-0.669922\pi\)
0.508831 0.860867i \(-0.330078\pi\)
\(608\) 0 0
\(609\) 295.337 1518.78i 0.0196513 0.101057i
\(610\) 0 0
\(611\) 4.58857 0.000303820
\(612\) 0 0
\(613\) 16632.3 1.09587 0.547937 0.836520i \(-0.315413\pi\)
0.547937 + 0.836520i \(0.315413\pi\)
\(614\) 0 0
\(615\) −1331.34 + 6846.46i −0.0872925 + 0.448904i
\(616\) 0 0
\(617\) 24761.8i 1.61568i 0.589405 + 0.807838i \(0.299362\pi\)
−0.589405 + 0.807838i \(0.700638\pi\)
\(618\) 0 0
\(619\) 3258.09i 0.211557i 0.994390 + 0.105779i \(0.0337335\pi\)
−0.994390 + 0.105779i \(0.966267\pi\)
\(620\) 0 0
\(621\) −12513.8 + 19260.1i −0.808631 + 1.24458i
\(622\) 0 0
\(623\) 6957.89 0.447451
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −1960.43 381.220i −0.124868 0.0242814i
\(628\) 0 0
\(629\) 69.6652i 0.00441611i
\(630\) 0 0
\(631\) 23435.1i 1.47850i −0.673429 0.739251i \(-0.735179\pi\)
0.673429 0.739251i \(-0.264821\pi\)
\(632\) 0 0
\(633\) −16447.7 3198.37i −1.03276 0.200827i
\(634\) 0 0
\(635\) −6559.51 −0.409931
\(636\) 0 0
\(637\) 94.7931 0.00589613
\(638\) 0 0
\(639\) −15877.5 6417.64i −0.982946 0.397305i
\(640\) 0 0
\(641\) 5791.54i 0.356867i −0.983952 0.178434i \(-0.942897\pi\)
0.983952 0.178434i \(-0.0571030\pi\)
\(642\) 0 0
\(643\) 28184.8i 1.72862i −0.502963 0.864308i \(-0.667757\pi\)
0.502963 0.864308i \(-0.332243\pi\)
\(644\) 0 0
\(645\) −1005.80 + 5172.37i −0.0614008 + 0.315755i
\(646\) 0 0
\(647\) 18326.1 1.11356 0.556780 0.830660i \(-0.312037\pi\)
0.556780 + 0.830660i \(0.312037\pi\)
\(648\) 0 0
\(649\) 1592.75 0.0963343
\(650\) 0 0
\(651\) −1585.62 + 8154.11i −0.0954616 + 0.490914i
\(652\) 0 0
\(653\) 3131.15i 0.187644i −0.995589 0.0938220i \(-0.970092\pi\)
0.995589 0.0938220i \(-0.0299084\pi\)
\(654\) 0 0
\(655\) 1657.70i 0.0988880i
\(656\) 0 0
\(657\) −15536.5 6279.82i −0.922582 0.372906i
\(658\) 0 0
\(659\) −10369.6 −0.612961 −0.306480 0.951877i \(-0.599151\pi\)
−0.306480 + 0.951877i \(0.599151\pi\)
\(660\) 0 0
\(661\) 2158.66 0.127023 0.0635116 0.997981i \(-0.479770\pi\)
0.0635116 + 0.997981i \(0.479770\pi\)
\(662\) 0 0
\(663\) 3.82569 + 0.743931i 0.000224099 + 4.35775e-5i
\(664\) 0 0
\(665\) 4035.07i 0.235298i
\(666\) 0 0
\(667\) 6446.37i 0.374220i
\(668\) 0 0
\(669\) −28525.9 5547.07i −1.64854 0.320571i
\(670\) 0 0
\(671\) −2165.60 −0.124593
\(672\) 0 0
\(673\) −12912.3 −0.739574 −0.369787 0.929117i \(-0.620569\pi\)
−0.369787 + 0.929117i \(0.620569\pi\)
\(674\) 0 0
\(675\) 1910.92 2941.13i 0.108965 0.167710i
\(676\) 0 0
\(677\) 12719.5i 0.722081i 0.932550 + 0.361041i \(0.117578\pi\)
−0.932550 + 0.361041i \(0.882422\pi\)
\(678\) 0 0
\(679\) 2003.56i 0.113239i
\(680\) 0 0
\(681\) −4839.10 + 24885.2i −0.272298 + 1.40030i
\(682\) 0 0
\(683\) −16158.9 −0.905273 −0.452637 0.891695i \(-0.649517\pi\)
−0.452637 + 0.891695i \(0.649517\pi\)
\(684\) 0 0
\(685\) −11950.7 −0.666586
\(686\) 0 0
\(687\) −3423.70 + 17606.5i −0.190135 + 0.977772i
\(688\) 0 0
\(689\) 73.7390i 0.00407726i
\(690\) 0 0
\(691\) 16564.6i 0.911934i 0.889997 + 0.455967i \(0.150707\pi\)
−0.889997 + 0.455967i \(0.849293\pi\)
\(692\) 0 0
\(693\) −275.569 + 681.766i −0.0151053 + 0.0373711i
\(694\) 0 0
\(695\) 417.434 0.0227830
\(696\) 0 0
\(697\) −607.113 −0.0329929
\(698\) 0 0
\(699\) −9278.74 1804.32i −0.502080 0.0976330i
\(700\) 0 0
\(701\) 18242.4i 0.982893i −0.870908 0.491446i \(-0.836468\pi\)
0.870908 0.491446i \(-0.163532\pi\)
\(702\) 0 0
\(703\) 3287.45i 0.176371i
\(704\) 0 0
\(705\) 352.840 + 68.6123i 0.0188493 + 0.00366537i
\(706\) 0 0
\(707\) 10128.0 0.538757
\(708\) 0 0
\(709\) −2575.81 −0.136441 −0.0682203 0.997670i \(-0.521732\pi\)
−0.0682203 + 0.997670i \(0.521732\pi\)
\(710\) 0 0
\(711\) 9573.12 23684.2i 0.504951 1.24927i
\(712\) 0 0
\(713\) 34609.7i 1.81787i
\(714\) 0 0
\(715\) 5.97244i 0.000312387i
\(716\) 0 0
\(717\) 5913.44 30410.0i 0.308008 1.58394i
\(718\) 0 0
\(719\) −22087.5 −1.14565 −0.572827 0.819677i \(-0.694153\pi\)
−0.572827 + 0.819677i \(0.694153\pi\)
\(720\) 0 0
\(721\) −594.230 −0.0306939
\(722\) 0 0
\(723\) −1293.22 + 6650.39i −0.0665217 + 0.342090i
\(724\) 0 0
\(725\) 984.397i 0.0504270i
\(726\) 0 0
\(727\) 20412.7i 1.04136i −0.853753 0.520678i \(-0.825679\pi\)
0.853753 0.520678i \(-0.174321\pi\)
\(728\) 0 0
\(729\) −7997.83 17984.9i −0.406332 0.913726i
\(730\) 0 0
\(731\) −458.662 −0.0232069
\(732\) 0 0
\(733\) 21094.4 1.06294 0.531472 0.847076i \(-0.321639\pi\)
0.531472 + 0.847076i \(0.321639\pi\)
\(734\) 0 0
\(735\) 7289.15 + 1417.43i 0.365802 + 0.0711328i
\(736\) 0 0
\(737\) 1250.03i 0.0624766i
\(738\) 0 0
\(739\) 23587.2i 1.17411i −0.809546 0.587056i \(-0.800287\pi\)
0.809546 0.587056i \(-0.199713\pi\)
\(740\) 0 0
\(741\) 180.532 + 35.1056i 0.00895006 + 0.00174040i
\(742\) 0 0
\(743\) 21493.1 1.06125 0.530624 0.847608i \(-0.321958\pi\)
0.530624 + 0.847608i \(0.321958\pi\)
\(744\) 0 0
\(745\) 17922.1 0.881365
\(746\) 0 0
\(747\) −16397.8 6627.97i −0.803165 0.324638i
\(748\) 0 0
\(749\) 4046.46i 0.197402i
\(750\) 0 0
\(751\) 28360.3i 1.37801i −0.724759 0.689003i \(-0.758049\pi\)
0.724759 0.689003i \(-0.241951\pi\)
\(752\) 0 0
\(753\) −6537.71 + 33620.3i −0.316398 + 1.62708i
\(754\) 0 0
\(755\) −8542.70 −0.411789
\(756\) 0 0
\(757\) −2336.95 −0.112203 −0.0561017 0.998425i \(-0.517867\pi\)
−0.0561017 + 0.998425i \(0.517867\pi\)
\(758\) 0 0
\(759\) −584.819 + 3007.45i −0.0279678 + 0.143825i
\(760\) 0 0
\(761\) 15498.7i 0.738274i −0.929375 0.369137i \(-0.879653\pi\)
0.929375 0.369137i \(-0.120347\pi\)
\(762\) 0 0
\(763\) 10680.5i 0.506764i
\(764\) 0 0
\(765\) 283.054 + 114.410i 0.0133776 + 0.00540719i
\(766\) 0 0
\(767\) −146.673 −0.00690488
\(768\) 0 0
\(769\) 34398.0 1.61304 0.806518 0.591210i \(-0.201349\pi\)
0.806518 + 0.591210i \(0.201349\pi\)
\(770\) 0 0
\(771\) 31053.0 + 6038.48i 1.45052 + 0.282063i
\(772\) 0 0
\(773\) 8017.03i 0.373030i 0.982452 + 0.186515i \(0.0597194\pi\)
−0.982452 + 0.186515i \(0.940281\pi\)
\(774\) 0 0
\(775\) 5285.10i 0.244963i
\(776\) 0 0
\(777\) 1188.18 + 231.051i 0.0548596 + 0.0106678i
\(778\) 0 0
\(779\) −28649.2 −1.31767
\(780\) 0 0
\(781\) −2284.38 −0.104663
\(782\) 0 0
\(783\) 4632.39 + 3009.77i 0.211428 + 0.137370i
\(784\) 0 0
\(785\) 3493.33i 0.158831i
\(786\) 0 0
\(787\) 4787.96i 0.216864i −0.994104 0.108432i \(-0.965417\pi\)
0.994104 0.108432i \(-0.0345830\pi\)
\(788\) 0 0
\(789\) 3873.24 19918.2i 0.174767 0.898742i
\(790\) 0 0
\(791\) −17014.6 −0.764816
\(792\) 0 0
\(793\) 199.425 0.00893037
\(794\) 0 0
\(795\) 1102.61 5670.19i 0.0491893 0.252957i
\(796\) 0 0
\(797\) 42855.5i 1.90467i −0.305059 0.952334i \(-0.598676\pi\)
0.305059 0.952334i \(-0.401324\pi\)
\(798\) 0 0
\(799\) 31.2883i 0.00138536i
\(800\) 0 0
\(801\) −9309.67 + 23032.4i −0.410663 + 1.01599i
\(802\) 0 0
\(803\) −2235.32 −0.0982350
\(804\) 0 0
\(805\) −6190.08 −0.271021
\(806\) 0 0
\(807\) −7324.89 1424.38i −0.319514 0.0621318i
\(808\) 0 0
\(809\) 39261.4i 1.70625i 0.521705 + 0.853126i \(0.325296\pi\)
−0.521705 + 0.853126i \(0.674704\pi\)
\(810\) 0 0
\(811\) 18358.6i 0.794890i −0.917626 0.397445i \(-0.869897\pi\)
0.917626 0.397445i \(-0.130103\pi\)
\(812\) 0 0
\(813\) 15586.9 + 3030.98i 0.672394 + 0.130752i
\(814\) 0 0
\(815\) −6711.22 −0.288446
\(816\) 0 0
\(817\) −21644.0 −0.926838
\(818\) 0 0
\(819\) 25.3765 62.7822i 0.00108269 0.00267862i
\(820\) 0 0
\(821\) 17109.3i 0.727307i −0.931534 0.363653i \(-0.881529\pi\)
0.931534 0.363653i \(-0.118471\pi\)
\(822\) 0 0
\(823\) 2383.56i 0.100955i 0.998725 + 0.0504773i \(0.0160742\pi\)
−0.998725 + 0.0504773i \(0.983926\pi\)
\(824\) 0 0
\(825\) 89.3051 459.254i 0.00376873 0.0193808i
\(826\) 0 0
\(827\) 42820.0 1.80048 0.900241 0.435392i \(-0.143390\pi\)
0.900241 + 0.435392i \(0.143390\pi\)
\(828\) 0 0
\(829\) −29767.6 −1.24713 −0.623565 0.781772i \(-0.714316\pi\)
−0.623565 + 0.781772i \(0.714316\pi\)
\(830\) 0 0
\(831\) −3555.39 + 18283.7i −0.148418 + 0.763241i
\(832\) 0 0
\(833\) 646.369i 0.0268852i
\(834\) 0 0
\(835\) 1545.98i 0.0640728i
\(836\) 0 0
\(837\) −24870.7 16159.0i −1.02707 0.667310i
\(838\) 0 0
\(839\) −4587.05 −0.188752 −0.0943758 0.995537i \(-0.530086\pi\)
−0.0943758 + 0.995537i \(0.530086\pi\)
\(840\) 0 0
\(841\) 22838.5 0.936428
\(842\) 0 0
\(843\) −22636.4 4401.80i −0.924838 0.179841i
\(844\) 0 0
\(845\) 10984.5i 0.447191i
\(846\) 0 0
\(847\) 9967.04i 0.404335i
\(848\) 0 0
\(849\) 33796.7 + 6572.00i 1.36619 + 0.265666i
\(850\) 0 0
\(851\) 5043.19 0.203147
\(852\) 0 0
\(853\) 13351.4 0.535924 0.267962 0.963429i \(-0.413650\pi\)
0.267962 + 0.963429i \(0.413650\pi\)
\(854\) 0 0
\(855\) 13357.1 + 5398.92i 0.534274 + 0.215952i
\(856\) 0 0
\(857\) 7865.61i 0.313517i −0.987637 0.156759i \(-0.949896\pi\)
0.987637 0.156759i \(-0.0501044\pi\)
\(858\) 0 0
\(859\) 16368.8i 0.650171i 0.945685 + 0.325085i \(0.105393\pi\)
−0.945685 + 0.325085i \(0.894607\pi\)
\(860\) 0 0
\(861\) −2013.54 + 10354.7i −0.0796996 + 0.409857i
\(862\) 0 0
\(863\) −15437.7 −0.608930 −0.304465 0.952524i \(-0.598478\pi\)
−0.304465 + 0.952524i \(0.598478\pi\)
\(864\) 0 0
\(865\) 3495.67 0.137406
\(866\) 0 0
\(867\) 4867.88 25033.2i 0.190683 0.980591i
\(868\) 0 0
\(869\) 3407.58i 0.133020i
\(870\) 0 0
\(871\) 115.112i 0.00447809i
\(872\) 0 0
\(873\) −6632.31 2680.77i −0.257125 0.103929i
\(874\) 0 0
\(875\) 945.260 0.0365207
\(876\) 0 0
\(877\) 49168.8 1.89317 0.946586 0.322451i \(-0.104507\pi\)
0.946586 + 0.322451i \(0.104507\pi\)
\(878\) 0 0
\(879\) −13648.0 2653.94i −0.523702 0.101837i
\(880\) 0 0
\(881\) 681.297i 0.0260539i 0.999915 + 0.0130270i \(0.00414672\pi\)
−0.999915 + 0.0130270i \(0.995853\pi\)
\(882\) 0 0
\(883\) 4787.17i 0.182447i −0.995830 0.0912237i \(-0.970922\pi\)
0.995830 0.0912237i \(-0.0290778\pi\)
\(884\) 0 0
\(885\) −11278.5 2193.17i −0.428385 0.0833025i
\(886\) 0 0
\(887\) 34679.9 1.31278 0.656391 0.754421i \(-0.272082\pi\)
0.656391 + 0.754421i \(0.272082\pi\)
\(888\) 0 0
\(889\) −9920.71 −0.374274
\(890\) 0 0
\(891\) −1888.11 1824.41i −0.0709924 0.0685971i
\(892\) 0 0
\(893\) 1476.47i 0.0553284i
\(894\) 0 0
\(895\) 8672.80i 0.323910i
\(896\) 0 0
\(897\) 53.8546 276.948i 0.00200463 0.0103088i
\(898\) 0 0
\(899\) 8324.22 0.308819
\(900\) 0 0
\(901\) 502.807 0.0185915
\(902\) 0 0
\(903\) −1521.19 + 7822.78i −0.0560600 + 0.288290i
\(904\) 0 0
\(905\) 7789.81i 0.286124i
\(906\) 0 0
\(907\) 48652.6i 1.78113i 0.454859 + 0.890564i \(0.349690\pi\)
−0.454859 + 0.890564i \(0.650310\pi\)
\(908\) 0 0
\(909\) −13551.2 + 33526.2i −0.494462 + 1.22332i
\(910\) 0 0
\(911\) −27930.6 −1.01579 −0.507894 0.861420i \(-0.669576\pi\)
−0.507894 + 0.861420i \(0.669576\pi\)
\(912\) 0 0
\(913\) −2359.24 −0.0855198
\(914\) 0 0
\(915\) 15334.9 + 2981.97i 0.554049 + 0.107739i
\(916\) 0 0
\(917\) 2507.13i 0.0902865i
\(918\) 0 0
\(919\) 13528.1i 0.485584i 0.970078 + 0.242792i \(0.0780633\pi\)
−0.970078 + 0.242792i \(0.921937\pi\)
\(920\) 0 0
\(921\) 3198.22 + 621.917i 0.114425 + 0.0222507i
\(922\) 0 0
\(923\) 210.363 0.00750182
\(924\) 0 0
\(925\) −770.124 −0.0273746
\(926\) 0 0
\(927\) 795.081 1967.06i 0.0281703 0.0696944i
\(928\) 0 0
\(929\) 19568.9i 0.691104i 0.938400 + 0.345552i \(0.112308\pi\)
−0.938400 + 0.345552i \(0.887692\pi\)
\(930\) 0 0
\(931\) 30501.7i 1.07374i
\(932\) 0 0
\(933\) 7902.00 40636.2i 0.277277 1.42591i
\(934\) 0 0
\(935\) 40.7245 0.00142442
\(936\) 0 0
\(937\) 24127.4 0.841203 0.420602 0.907245i \(-0.361819\pi\)
0.420602 + 0.907245i \(0.361819\pi\)
\(938\) 0 0
\(939\) −9256.65 + 47602.5i −0.321703 + 1.65437i
\(940\) 0 0
\(941\) 16631.5i 0.576166i −0.957605 0.288083i \(-0.906982\pi\)
0.957605 0.288083i \(-0.0930180\pi\)
\(942\) 0 0
\(943\) 43950.0i 1.51772i
\(944\) 0 0
\(945\) 2890.11 4448.22i 0.0994870 0.153122i
\(946\) 0 0
\(947\) 53121.4 1.82282 0.911411 0.411496i \(-0.134994\pi\)
0.911411 + 0.411496i \(0.134994\pi\)
\(948\) 0 0
\(949\) 205.845 0.00704111
\(950\) 0 0
\(951\) 40544.4 + 7884.14i 1.38248 + 0.268834i
\(952\) 0 0
\(953\) 4330.26i 0.147189i 0.997288 + 0.0735944i \(0.0234470\pi\)
−0.997288 + 0.0735944i \(0.976553\pi\)
\(954\) 0 0
\(955\) 462.197i 0.0156611i
\(956\) 0 0
\(957\) 723.341 + 140.659i 0.0244329 + 0.00475115i
\(958\) 0 0
\(959\) −18074.4 −0.608605
\(960\) 0 0
\(961\) −14900.6 −0.500173
\(962\) 0 0
\(963\) 13394.8 + 5414.16i 0.448227 + 0.181172i
\(964\) 0 0
\(965\) 15079.1i 0.503020i
\(966\) 0 0
\(967\) 20993.9i 0.698157i 0.937093 + 0.349078i \(0.113505\pi\)
−0.937093 + 0.349078i \(0.886495\pi\)
\(968\) 0 0
\(969\) −239.376 + 1231.00i −0.00793588 + 0.0408104i
\(970\) 0 0
\(971\) −21909.0 −0.724093 −0.362047 0.932160i \(-0.617922\pi\)
−0.362047 + 0.932160i \(0.617922\pi\)
\(972\) 0 0
\(973\) 631.334 0.0208013
\(974\) 0 0
\(975\) −8.22389 + 42.2916i −0.000270129 + 0.00138914i
\(976\) 0 0
\(977\) 25168.2i 0.824158i 0.911148 + 0.412079i \(0.135197\pi\)
−0.911148 + 0.412079i \(0.864803\pi\)
\(978\) 0 0
\(979\) 3313.80i 0.108181i
\(980\) 0 0
\(981\) 35355.3 + 14290.6i 1.15067 + 0.465099i
\(982\) 0 0
\(983\) −43478.1 −1.41072 −0.705360 0.708850i \(-0.749214\pi\)
−0.705360 + 0.708850i \(0.749214\pi\)
\(984\) 0 0
\(985\) −7411.86 −0.239758
\(986\) 0 0
\(987\) 533.641 + 103.770i 0.0172097 + 0.00334655i
\(988\) 0 0
\(989\) 33203.4i 1.06755i
\(990\) 0 0
\(991\) 54030.2i 1.73191i 0.500121 + 0.865956i \(0.333289\pi\)
−0.500121 + 0.865956i \(0.666711\pi\)
\(992\) 0 0
\(993\) 16192.8 + 3148.80i 0.517485 + 0.100629i
\(994\) 0 0
\(995\) 2635.40 0.0839675
\(996\) 0 0
\(997\) −46940.4 −1.49109 −0.745545 0.666455i \(-0.767811\pi\)
−0.745545 + 0.666455i \(0.767811\pi\)
\(998\) 0 0
\(999\) −2354.63 + 3624.06i −0.0745718 + 0.114775i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.4.h.b.191.13 yes 24
3.2 odd 2 480.4.h.a.191.11 24
4.3 odd 2 480.4.h.a.191.12 yes 24
8.3 odd 2 960.4.h.e.191.13 24
8.5 even 2 960.4.h.c.191.12 24
12.11 even 2 inner 480.4.h.b.191.14 yes 24
24.5 odd 2 960.4.h.e.191.14 24
24.11 even 2 960.4.h.c.191.11 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.h.a.191.11 24 3.2 odd 2
480.4.h.a.191.12 yes 24 4.3 odd 2
480.4.h.b.191.13 yes 24 1.1 even 1 trivial
480.4.h.b.191.14 yes 24 12.11 even 2 inner
960.4.h.c.191.11 24 24.11 even 2
960.4.h.c.191.12 24 8.5 even 2
960.4.h.e.191.13 24 8.3 odd 2
960.4.h.e.191.14 24 24.5 odd 2