Properties

Label 4800.2.d.m
Level 48004800
Weight 22
Character orbit 4800.d
Analytic conductor 38.32838.328
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4800,2,Mod(1249,4800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4800.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4800=26352 4800 = 2^{6} \cdot 3 \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4800.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 38.328192970238.3281929702
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 25 2^{5}
Twist minimal: no (minimal twist has level 960)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq3β1q7+q9+(β3β1)q11+(β2+2)q13+β3q172β3q19+β1q21+2β1q23q27+(2β3β1)q29++(β3β1)q99+O(q100) q - q^{3} - \beta_1 q^{7} + q^{9} + (\beta_{3} - \beta_1) q^{11} + ( - \beta_{2} + 2) q^{13} + \beta_{3} q^{17} - 2 \beta_{3} q^{19} + \beta_1 q^{21} + 2 \beta_1 q^{23} - q^{27} + (2 \beta_{3} - \beta_1) q^{29}+ \cdots + (\beta_{3} - \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q3+4q9+8q134q27+16q31+24q378q398q41+12q4924q5316q7716q79+4q81+32q83+24q8916q93+O(q100) 4 q - 4 q^{3} + 4 q^{9} + 8 q^{13} - 4 q^{27} + 16 q^{31} + 24 q^{37} - 8 q^{39} - 8 q^{41} + 12 q^{49} - 24 q^{53} - 16 q^{77} - 16 q^{79} + 4 q^{81} + 32 q^{83} + 24 q^{89} - 16 q^{93}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== 2ζ123 2\zeta_{12}^{3} Copy content Toggle raw display
β2\beta_{2}== 2ζ123+4ζ12 -2\zeta_{12}^{3} + 4\zeta_{12} Copy content Toggle raw display
β3\beta_{3}== 4ζ1222 4\zeta_{12}^{2} - 2 Copy content Toggle raw display
ζ12\zeta_{12}== (β2+β1)/4 ( \beta_{2} + \beta_1 ) / 4 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== (β3+2)/4 ( \beta_{3} + 2 ) / 4 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== (β1)/2 ( \beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4800Z)×\left(\mathbb{Z}/4800\mathbb{Z}\right)^\times.

nn 577577 901901 16011601 43514351
χ(n)\chi(n) 1-1 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1249.1
−0.866025 + 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0 −1.00000 0 0 0 2.00000i 0 1.00000 0
1249.2 0 −1.00000 0 0 0 2.00000i 0 1.00000 0
1249.3 0 −1.00000 0 0 0 2.00000i 0 1.00000 0
1249.4 0 −1.00000 0 0 0 2.00000i 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4800.2.d.m 4
4.b odd 2 1 4800.2.d.r 4
5.b even 2 1 4800.2.d.n 4
5.c odd 4 1 960.2.k.f yes 4
5.c odd 4 1 4800.2.k.i 4
8.b even 2 1 4800.2.d.n 4
8.d odd 2 1 4800.2.d.i 4
15.e even 4 1 2880.2.k.k 4
20.d odd 2 1 4800.2.d.i 4
20.e even 4 1 960.2.k.e 4
20.e even 4 1 4800.2.k.o 4
40.e odd 2 1 4800.2.d.r 4
40.f even 2 1 inner 4800.2.d.m 4
40.i odd 4 1 960.2.k.f yes 4
40.i odd 4 1 4800.2.k.i 4
40.k even 4 1 960.2.k.e 4
40.k even 4 1 4800.2.k.o 4
60.l odd 4 1 2880.2.k.f 4
80.i odd 4 1 3840.2.a.bi 2
80.j even 4 1 3840.2.a.bn 2
80.s even 4 1 3840.2.a.be 2
80.t odd 4 1 3840.2.a.bf 2
120.q odd 4 1 2880.2.k.f 4
120.w even 4 1 2880.2.k.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
960.2.k.e 4 20.e even 4 1
960.2.k.e 4 40.k even 4 1
960.2.k.f yes 4 5.c odd 4 1
960.2.k.f yes 4 40.i odd 4 1
2880.2.k.f 4 60.l odd 4 1
2880.2.k.f 4 120.q odd 4 1
2880.2.k.k 4 15.e even 4 1
2880.2.k.k 4 120.w even 4 1
3840.2.a.be 2 80.s even 4 1
3840.2.a.bf 2 80.t odd 4 1
3840.2.a.bi 2 80.i odd 4 1
3840.2.a.bn 2 80.j even 4 1
4800.2.d.i 4 8.d odd 2 1
4800.2.d.i 4 20.d odd 2 1
4800.2.d.m 4 1.a even 1 1 trivial
4800.2.d.m 4 40.f even 2 1 inner
4800.2.d.n 4 5.b even 2 1
4800.2.d.n 4 8.b even 2 1
4800.2.d.r 4 4.b odd 2 1
4800.2.d.r 4 40.e odd 2 1
4800.2.k.i 4 5.c odd 4 1
4800.2.k.i 4 40.i odd 4 1
4800.2.k.o 4 20.e even 4 1
4800.2.k.o 4 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(4800,[χ])S_{2}^{\mathrm{new}}(4800, [\chi]):

T72+4 T_{7}^{2} + 4 Copy content Toggle raw display
T1324T138 T_{13}^{2} - 4T_{13} - 8 Copy content Toggle raw display
T3128T31+4 T_{31}^{2} - 8T_{31} + 4 Copy content Toggle raw display
T43248 T_{43}^{2} - 48 Copy content Toggle raw display
T838 T_{83} - 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
1111 T4+32T2+64 T^{4} + 32T^{2} + 64 Copy content Toggle raw display
1313 (T24T8)2 (T^{2} - 4 T - 8)^{2} Copy content Toggle raw display
1717 (T2+12)2 (T^{2} + 12)^{2} Copy content Toggle raw display
1919 (T2+48)2 (T^{2} + 48)^{2} Copy content Toggle raw display
2323 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
2929 T4+104T2+1936 T^{4} + 104T^{2} + 1936 Copy content Toggle raw display
3131 (T28T+4)2 (T^{2} - 8 T + 4)^{2} Copy content Toggle raw display
3737 (T212T+24)2 (T^{2} - 12 T + 24)^{2} Copy content Toggle raw display
4141 (T2+4T44)2 (T^{2} + 4 T - 44)^{2} Copy content Toggle raw display
4343 (T248)2 (T^{2} - 48)^{2} Copy content Toggle raw display
4747 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
5353 (T2+12T12)2 (T^{2} + 12 T - 12)^{2} Copy content Toggle raw display
5959 T4+96T2+576 T^{4} + 96T^{2} + 576 Copy content Toggle raw display
6161 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
6767 (T248)2 (T^{2} - 48)^{2} Copy content Toggle raw display
7171 (T248)2 (T^{2} - 48)^{2} Copy content Toggle raw display
7373 (T2+100)2 (T^{2} + 100)^{2} Copy content Toggle raw display
7979 (T2+8T92)2 (T^{2} + 8 T - 92)^{2} Copy content Toggle raw display
8383 (T8)4 (T - 8)^{4} Copy content Toggle raw display
8989 (T212T12)2 (T^{2} - 12 T - 12)^{2} Copy content Toggle raw display
9797 T4+168T2+144 T^{4} + 168T^{2} + 144 Copy content Toggle raw display
show more
show less