Properties

Label 483.2.a.d.1.1
Level 483483
Weight 22
Character 483.1
Self dual yes
Analytic conductor 3.8573.857
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 483=3723 483 = 3 \cdot 7 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 3.856774417633.85677441763
Analytic rank: 11
Dimension: 22
Coefficient field: Q(ζ10)+\Q(\zeta_{10})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 1.618031.61803 of defining polynomial
Character χ\chi == 483.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.61803q21.00000q3+0.618034q40.618034q5+1.61803q61.00000q7+2.23607q8+1.00000q9+1.00000q10+2.23607q110.618034q122.38197q13+1.61803q14+0.618034q154.85410q16+6.70820q171.61803q183.47214q190.381966q20+1.00000q213.61803q221.00000q232.23607q244.61803q25+3.85410q261.00000q270.618034q288.23607q291.00000q30+6.70820q31+3.38197q322.23607q3310.8541q34+0.618034q35+0.618034q3611.0000q37+5.61803q38+2.38197q391.38197q401.47214q411.61803q421.61803q43+1.38197q440.618034q45+1.61803q467.23607q47+4.85410q48+1.00000q49+7.47214q506.70820q511.47214q5213.0902q53+1.61803q541.38197q552.23607q56+3.47214q57+13.3262q58+9.38197q59+0.381966q604.85410q6110.8541q621.00000q63+4.23607q64+1.47214q65+3.61803q665.09017q67+4.14590q68+1.00000q691.00000q70+4.38197q71+2.23607q7212.7082q73+17.7984q74+4.61803q752.14590q762.23607q773.85410q789.47214q79+3.00000q80+1.00000q81+2.38197q829.18034q83+0.618034q844.14590q85+2.61803q86+8.23607q87+5.00000q88+11.6180q89+1.00000q90+2.38197q910.618034q926.70820q93+11.7082q94+2.14590q953.38197q96+10.4164q971.61803q98+2.23607q99+O(q100)q-1.61803 q^{2} -1.00000 q^{3} +0.618034 q^{4} -0.618034 q^{5} +1.61803 q^{6} -1.00000 q^{7} +2.23607 q^{8} +1.00000 q^{9} +1.00000 q^{10} +2.23607 q^{11} -0.618034 q^{12} -2.38197 q^{13} +1.61803 q^{14} +0.618034 q^{15} -4.85410 q^{16} +6.70820 q^{17} -1.61803 q^{18} -3.47214 q^{19} -0.381966 q^{20} +1.00000 q^{21} -3.61803 q^{22} -1.00000 q^{23} -2.23607 q^{24} -4.61803 q^{25} +3.85410 q^{26} -1.00000 q^{27} -0.618034 q^{28} -8.23607 q^{29} -1.00000 q^{30} +6.70820 q^{31} +3.38197 q^{32} -2.23607 q^{33} -10.8541 q^{34} +0.618034 q^{35} +0.618034 q^{36} -11.0000 q^{37} +5.61803 q^{38} +2.38197 q^{39} -1.38197 q^{40} -1.47214 q^{41} -1.61803 q^{42} -1.61803 q^{43} +1.38197 q^{44} -0.618034 q^{45} +1.61803 q^{46} -7.23607 q^{47} +4.85410 q^{48} +1.00000 q^{49} +7.47214 q^{50} -6.70820 q^{51} -1.47214 q^{52} -13.0902 q^{53} +1.61803 q^{54} -1.38197 q^{55} -2.23607 q^{56} +3.47214 q^{57} +13.3262 q^{58} +9.38197 q^{59} +0.381966 q^{60} -4.85410 q^{61} -10.8541 q^{62} -1.00000 q^{63} +4.23607 q^{64} +1.47214 q^{65} +3.61803 q^{66} -5.09017 q^{67} +4.14590 q^{68} +1.00000 q^{69} -1.00000 q^{70} +4.38197 q^{71} +2.23607 q^{72} -12.7082 q^{73} +17.7984 q^{74} +4.61803 q^{75} -2.14590 q^{76} -2.23607 q^{77} -3.85410 q^{78} -9.47214 q^{79} +3.00000 q^{80} +1.00000 q^{81} +2.38197 q^{82} -9.18034 q^{83} +0.618034 q^{84} -4.14590 q^{85} +2.61803 q^{86} +8.23607 q^{87} +5.00000 q^{88} +11.6180 q^{89} +1.00000 q^{90} +2.38197 q^{91} -0.618034 q^{92} -6.70820 q^{93} +11.7082 q^{94} +2.14590 q^{95} -3.38197 q^{96} +10.4164 q^{97} -1.61803 q^{98} +2.23607 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq22q3q4+q5+q62q7+2q9+2q10+q127q13+q14q153q16q18+2q193q20+2q215q222q237q25+q98+O(q100) 2 q - q^{2} - 2 q^{3} - q^{4} + q^{5} + q^{6} - 2 q^{7} + 2 q^{9} + 2 q^{10} + q^{12} - 7 q^{13} + q^{14} - q^{15} - 3 q^{16} - q^{18} + 2 q^{19} - 3 q^{20} + 2 q^{21} - 5 q^{22} - 2 q^{23} - 7 q^{25}+ \cdots - q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.61803 −1.14412 −0.572061 0.820211i 0.693856π-0.693856\pi
−0.572061 + 0.820211i 0.693856π0.693856\pi
33 −1.00000 −0.577350
44 0.618034 0.309017
55 −0.618034 −0.276393 −0.138197 0.990405i 0.544131π-0.544131\pi
−0.138197 + 0.990405i 0.544131π0.544131\pi
66 1.61803 0.660560
77 −1.00000 −0.377964
88 2.23607 0.790569
99 1.00000 0.333333
1010 1.00000 0.316228
1111 2.23607 0.674200 0.337100 0.941469i 0.390554π-0.390554\pi
0.337100 + 0.941469i 0.390554π0.390554\pi
1212 −0.618034 −0.178411
1313 −2.38197 −0.660639 −0.330319 0.943869i 0.607156π-0.607156\pi
−0.330319 + 0.943869i 0.607156π0.607156\pi
1414 1.61803 0.432438
1515 0.618034 0.159576
1616 −4.85410 −1.21353
1717 6.70820 1.62698 0.813489 0.581580i 0.197565π-0.197565\pi
0.813489 + 0.581580i 0.197565π0.197565\pi
1818 −1.61803 −0.381374
1919 −3.47214 −0.796563 −0.398281 0.917263i 0.630393π-0.630393\pi
−0.398281 + 0.917263i 0.630393π0.630393\pi
2020 −0.381966 −0.0854102
2121 1.00000 0.218218
2222 −3.61803 −0.771367
2323 −1.00000 −0.208514
2424 −2.23607 −0.456435
2525 −4.61803 −0.923607
2626 3.85410 0.755852
2727 −1.00000 −0.192450
2828 −0.618034 −0.116797
2929 −8.23607 −1.52940 −0.764700 0.644387i 0.777113π-0.777113\pi
−0.764700 + 0.644387i 0.777113π0.777113\pi
3030 −1.00000 −0.182574
3131 6.70820 1.20483 0.602414 0.798183i 0.294205π-0.294205\pi
0.602414 + 0.798183i 0.294205π0.294205\pi
3232 3.38197 0.597853
3333 −2.23607 −0.389249
3434 −10.8541 −1.86146
3535 0.618034 0.104467
3636 0.618034 0.103006
3737 −11.0000 −1.80839 −0.904194 0.427121i 0.859528π-0.859528\pi
−0.904194 + 0.427121i 0.859528π0.859528\pi
3838 5.61803 0.911365
3939 2.38197 0.381420
4040 −1.38197 −0.218508
4141 −1.47214 −0.229909 −0.114955 0.993371i 0.536672π-0.536672\pi
−0.114955 + 0.993371i 0.536672π0.536672\pi
4242 −1.61803 −0.249668
4343 −1.61803 −0.246748 −0.123374 0.992360i 0.539371π-0.539371\pi
−0.123374 + 0.992360i 0.539371π0.539371\pi
4444 1.38197 0.208339
4545 −0.618034 −0.0921311
4646 1.61803 0.238566
4747 −7.23607 −1.05549 −0.527744 0.849403i 0.676962π-0.676962\pi
−0.527744 + 0.849403i 0.676962π0.676962\pi
4848 4.85410 0.700629
4949 1.00000 0.142857
5050 7.47214 1.05672
5151 −6.70820 −0.939336
5252 −1.47214 −0.204149
5353 −13.0902 −1.79807 −0.899037 0.437874i 0.855732π-0.855732\pi
−0.899037 + 0.437874i 0.855732π0.855732\pi
5454 1.61803 0.220187
5555 −1.38197 −0.186344
5656 −2.23607 −0.298807
5757 3.47214 0.459896
5858 13.3262 1.74982
5959 9.38197 1.22143 0.610714 0.791851i 0.290883π-0.290883\pi
0.610714 + 0.791851i 0.290883π0.290883\pi
6060 0.381966 0.0493116
6161 −4.85410 −0.621504 −0.310752 0.950491i 0.600581π-0.600581\pi
−0.310752 + 0.950491i 0.600581π0.600581\pi
6262 −10.8541 −1.37847
6363 −1.00000 −0.125988
6464 4.23607 0.529508
6565 1.47214 0.182596
6666 3.61803 0.445349
6767 −5.09017 −0.621863 −0.310932 0.950432i 0.600641π-0.600641\pi
−0.310932 + 0.950432i 0.600641π0.600641\pi
6868 4.14590 0.502764
6969 1.00000 0.120386
7070 −1.00000 −0.119523
7171 4.38197 0.520044 0.260022 0.965603i 0.416270π-0.416270\pi
0.260022 + 0.965603i 0.416270π0.416270\pi
7272 2.23607 0.263523
7373 −12.7082 −1.48738 −0.743691 0.668523i 0.766927π-0.766927\pi
−0.743691 + 0.668523i 0.766927π0.766927\pi
7474 17.7984 2.06902
7575 4.61803 0.533245
7676 −2.14590 −0.246151
7777 −2.23607 −0.254824
7878 −3.85410 −0.436391
7979 −9.47214 −1.06570 −0.532849 0.846210i 0.678879π-0.678879\pi
−0.532849 + 0.846210i 0.678879π0.678879\pi
8080 3.00000 0.335410
8181 1.00000 0.111111
8282 2.38197 0.263044
8383 −9.18034 −1.00767 −0.503837 0.863799i 0.668079π-0.668079\pi
−0.503837 + 0.863799i 0.668079π0.668079\pi
8484 0.618034 0.0674330
8585 −4.14590 −0.449686
8686 2.61803 0.282310
8787 8.23607 0.882999
8888 5.00000 0.533002
8989 11.6180 1.23151 0.615755 0.787938i 0.288851π-0.288851\pi
0.615755 + 0.787938i 0.288851π0.288851\pi
9090 1.00000 0.105409
9191 2.38197 0.249698
9292 −0.618034 −0.0644345
9393 −6.70820 −0.695608
9494 11.7082 1.20761
9595 2.14590 0.220164
9696 −3.38197 −0.345170
9797 10.4164 1.05763 0.528813 0.848738i 0.322637π-0.322637\pi
0.528813 + 0.848738i 0.322637π0.322637\pi
9898 −1.61803 −0.163446
9999 2.23607 0.224733
100100 −2.85410 −0.285410
101101 4.14590 0.412532 0.206266 0.978496i 0.433869π-0.433869\pi
0.206266 + 0.978496i 0.433869π0.433869\pi
102102 10.8541 1.07472
103103 −7.41641 −0.730760 −0.365380 0.930858i 0.619061π-0.619061\pi
−0.365380 + 0.930858i 0.619061π0.619061\pi
104104 −5.32624 −0.522281
105105 −0.618034 −0.0603139
106106 21.1803 2.05722
107107 3.32624 0.321560 0.160780 0.986990i 0.448599π-0.448599\pi
0.160780 + 0.986990i 0.448599π0.448599\pi
108108 −0.618034 −0.0594703
109109 19.2705 1.84578 0.922890 0.385064i 0.125820π-0.125820\pi
0.922890 + 0.385064i 0.125820π0.125820\pi
110110 2.23607 0.213201
111111 11.0000 1.04407
112112 4.85410 0.458670
113113 −0.909830 −0.0855896 −0.0427948 0.999084i 0.513626π-0.513626\pi
−0.0427948 + 0.999084i 0.513626π0.513626\pi
114114 −5.61803 −0.526177
115115 0.618034 0.0576320
116116 −5.09017 −0.472610
117117 −2.38197 −0.220213
118118 −15.1803 −1.39746
119119 −6.70820 −0.614940
120120 1.38197 0.126156
121121 −6.00000 −0.545455
122122 7.85410 0.711077
123123 1.47214 0.132738
124124 4.14590 0.372313
125125 5.94427 0.531672
126126 1.61803 0.144146
127127 22.2705 1.97619 0.988094 0.153851i 0.0491675π-0.0491675\pi
0.988094 + 0.153851i 0.0491675π0.0491675\pi
128128 −13.6180 −1.20368
129129 1.61803 0.142460
130130 −2.38197 −0.208912
131131 15.1803 1.32631 0.663156 0.748481i 0.269216π-0.269216\pi
0.663156 + 0.748481i 0.269216π0.269216\pi
132132 −1.38197 −0.120285
133133 3.47214 0.301072
134134 8.23607 0.711488
135135 0.618034 0.0531919
136136 15.0000 1.28624
137137 −16.4164 −1.40255 −0.701274 0.712892i 0.747385π-0.747385\pi
−0.701274 + 0.712892i 0.747385π0.747385\pi
138138 −1.61803 −0.137736
139139 −11.3820 −0.965406 −0.482703 0.875784i 0.660345π-0.660345\pi
−0.482703 + 0.875784i 0.660345π0.660345\pi
140140 0.381966 0.0322820
141141 7.23607 0.609387
142142 −7.09017 −0.594994
143143 −5.32624 −0.445402
144144 −4.85410 −0.404508
145145 5.09017 0.422716
146146 20.5623 1.70175
147147 −1.00000 −0.0824786
148148 −6.79837 −0.558823
149149 −19.2361 −1.57588 −0.787940 0.615752i 0.788852π-0.788852\pi
−0.787940 + 0.615752i 0.788852π0.788852\pi
150150 −7.47214 −0.610097
151151 −15.2361 −1.23989 −0.619947 0.784644i 0.712846π-0.712846\pi
−0.619947 + 0.784644i 0.712846π0.712846\pi
152152 −7.76393 −0.629738
153153 6.70820 0.542326
154154 3.61803 0.291549
155155 −4.14590 −0.333007
156156 1.47214 0.117865
157157 −0.291796 −0.0232879 −0.0116439 0.999932i 0.503706π-0.503706\pi
−0.0116439 + 0.999932i 0.503706π0.503706\pi
158158 15.3262 1.21929
159159 13.0902 1.03812
160160 −2.09017 −0.165242
161161 1.00000 0.0788110
162162 −1.61803 −0.127125
163163 −0.618034 −0.0484082 −0.0242041 0.999707i 0.507705π-0.507705\pi
−0.0242041 + 0.999707i 0.507705π0.507705\pi
164164 −0.909830 −0.0710458
165165 1.38197 0.107586
166166 14.8541 1.15290
167167 −7.18034 −0.555631 −0.277816 0.960634i 0.589610π-0.589610\pi
−0.277816 + 0.960634i 0.589610π0.589610\pi
168168 2.23607 0.172516
169169 −7.32624 −0.563557
170170 6.70820 0.514496
171171 −3.47214 −0.265521
172172 −1.00000 −0.0762493
173173 −3.47214 −0.263982 −0.131991 0.991251i 0.542137π-0.542137\pi
−0.131991 + 0.991251i 0.542137π0.542137\pi
174174 −13.3262 −1.01026
175175 4.61803 0.349091
176176 −10.8541 −0.818159
177177 −9.38197 −0.705192
178178 −18.7984 −1.40900
179179 1.85410 0.138582 0.0692910 0.997596i 0.477926π-0.477926\pi
0.0692910 + 0.997596i 0.477926π0.477926\pi
180180 −0.381966 −0.0284701
181181 −1.94427 −0.144517 −0.0722583 0.997386i 0.523021π-0.523021\pi
−0.0722583 + 0.997386i 0.523021π0.523021\pi
182182 −3.85410 −0.285685
183183 4.85410 0.358826
184184 −2.23607 −0.164845
185185 6.79837 0.499826
186186 10.8541 0.795861
187187 15.0000 1.09691
188188 −4.47214 −0.326164
189189 1.00000 0.0727393
190190 −3.47214 −0.251895
191191 16.1803 1.17077 0.585384 0.810756i 0.300944π-0.300944\pi
0.585384 + 0.810756i 0.300944π0.300944\pi
192192 −4.23607 −0.305712
193193 8.29180 0.596857 0.298428 0.954432i 0.403538π-0.403538\pi
0.298428 + 0.954432i 0.403538π0.403538\pi
194194 −16.8541 −1.21005
195195 −1.47214 −0.105422
196196 0.618034 0.0441453
197197 −25.5066 −1.81727 −0.908634 0.417593i 0.862874π-0.862874\pi
−0.908634 + 0.417593i 0.862874π0.862874\pi
198198 −3.61803 −0.257122
199199 −6.90983 −0.489825 −0.244912 0.969545i 0.578759π-0.578759\pi
−0.244912 + 0.969545i 0.578759π0.578759\pi
200200 −10.3262 −0.730175
201201 5.09017 0.359033
202202 −6.70820 −0.471988
203203 8.23607 0.578059
204204 −4.14590 −0.290271
205205 0.909830 0.0635453
206206 12.0000 0.836080
207207 −1.00000 −0.0695048
208208 11.5623 0.801702
209209 −7.76393 −0.537042
210210 1.00000 0.0690066
211211 10.4164 0.717095 0.358548 0.933511i 0.383272π-0.383272\pi
0.358548 + 0.933511i 0.383272π0.383272\pi
212212 −8.09017 −0.555635
213213 −4.38197 −0.300247
214214 −5.38197 −0.367904
215215 1.00000 0.0681994
216216 −2.23607 −0.152145
217217 −6.70820 −0.455383
218218 −31.1803 −2.11180
219219 12.7082 0.858741
220220 −0.854102 −0.0575835
221221 −15.9787 −1.07484
222222 −17.7984 −1.19455
223223 −17.8541 −1.19560 −0.597800 0.801646i 0.703958π-0.703958\pi
−0.597800 + 0.801646i 0.703958π0.703958\pi
224224 −3.38197 −0.225967
225225 −4.61803 −0.307869
226226 1.47214 0.0979250
227227 24.3262 1.61459 0.807295 0.590149i 0.200931π-0.200931\pi
0.807295 + 0.590149i 0.200931π0.200931\pi
228228 2.14590 0.142116
229229 −16.3262 −1.07887 −0.539434 0.842028i 0.681362π-0.681362\pi
−0.539434 + 0.842028i 0.681362π0.681362\pi
230230 −1.00000 −0.0659380
231231 2.23607 0.147122
232232 −18.4164 −1.20910
233233 −11.0902 −0.726541 −0.363271 0.931684i 0.618340π-0.618340\pi
−0.363271 + 0.931684i 0.618340π0.618340\pi
234234 3.85410 0.251951
235235 4.47214 0.291730
236236 5.79837 0.377442
237237 9.47214 0.615281
238238 10.8541 0.703567
239239 −4.79837 −0.310381 −0.155191 0.987885i 0.549599π-0.549599\pi
−0.155191 + 0.987885i 0.549599π0.549599\pi
240240 −3.00000 −0.193649
241241 −11.0000 −0.708572 −0.354286 0.935137i 0.615276π-0.615276\pi
−0.354286 + 0.935137i 0.615276π0.615276\pi
242242 9.70820 0.624067
243243 −1.00000 −0.0641500
244244 −3.00000 −0.192055
245245 −0.618034 −0.0394847
246246 −2.38197 −0.151869
247247 8.27051 0.526240
248248 15.0000 0.952501
249249 9.18034 0.581780
250250 −9.61803 −0.608298
251251 23.1246 1.45961 0.729806 0.683654i 0.239610π-0.239610\pi
0.729806 + 0.683654i 0.239610π0.239610\pi
252252 −0.618034 −0.0389325
253253 −2.23607 −0.140580
254254 −36.0344 −2.26100
255255 4.14590 0.259626
256256 13.5623 0.847644
257257 −3.23607 −0.201860 −0.100930 0.994894i 0.532182π-0.532182\pi
−0.100930 + 0.994894i 0.532182π0.532182\pi
258258 −2.61803 −0.162992
259259 11.0000 0.683507
260260 0.909830 0.0564253
261261 −8.23607 −0.509800
262262 −24.5623 −1.51746
263263 −0.0557281 −0.00343634 −0.00171817 0.999999i 0.500547π-0.500547\pi
−0.00171817 + 0.999999i 0.500547π0.500547\pi
264264 −5.00000 −0.307729
265265 8.09017 0.496975
266266 −5.61803 −0.344464
267267 −11.6180 −0.711012
268268 −3.14590 −0.192166
269269 −32.0902 −1.95657 −0.978286 0.207259i 0.933546π-0.933546\pi
−0.978286 + 0.207259i 0.933546π0.933546\pi
270270 −1.00000 −0.0608581
271271 21.9443 1.33302 0.666510 0.745496i 0.267787π-0.267787\pi
0.666510 + 0.745496i 0.267787π0.267787\pi
272272 −32.5623 −1.97438
273273 −2.38197 −0.144163
274274 26.5623 1.60469
275275 −10.3262 −0.622696
276276 0.618034 0.0372013
277277 4.27051 0.256590 0.128295 0.991736i 0.459050π-0.459050\pi
0.128295 + 0.991736i 0.459050π0.459050\pi
278278 18.4164 1.10454
279279 6.70820 0.401610
280280 1.38197 0.0825883
281281 −3.70820 −0.221213 −0.110606 0.993864i 0.535279π-0.535279\pi
−0.110606 + 0.993864i 0.535279π0.535279\pi
282282 −11.7082 −0.697213
283283 −26.2148 −1.55831 −0.779154 0.626833i 0.784351π-0.784351\pi
−0.779154 + 0.626833i 0.784351π0.784351\pi
284284 2.70820 0.160702
285285 −2.14590 −0.127112
286286 8.61803 0.509595
287287 1.47214 0.0868974
288288 3.38197 0.199284
289289 28.0000 1.64706
290290 −8.23607 −0.483639
291291 −10.4164 −0.610621
292292 −7.85410 −0.459627
293293 12.0000 0.701047 0.350524 0.936554i 0.386004π-0.386004\pi
0.350524 + 0.936554i 0.386004π0.386004\pi
294294 1.61803 0.0943657
295295 −5.79837 −0.337594
296296 −24.5967 −1.42966
297297 −2.23607 −0.129750
298298 31.1246 1.80300
299299 2.38197 0.137753
300300 2.85410 0.164782
301301 1.61803 0.0932619
302302 24.6525 1.41859
303303 −4.14590 −0.238176
304304 16.8541 0.966649
305305 3.00000 0.171780
306306 −10.8541 −0.620488
307307 16.1246 0.920280 0.460140 0.887846i 0.347799π-0.347799\pi
0.460140 + 0.887846i 0.347799π0.347799\pi
308308 −1.38197 −0.0787448
309309 7.41641 0.421905
310310 6.70820 0.381000
311311 15.3262 0.869071 0.434536 0.900655i 0.356913π-0.356913\pi
0.434536 + 0.900655i 0.356913π0.356913\pi
312312 5.32624 0.301539
313313 −2.47214 −0.139733 −0.0698667 0.997556i 0.522257π-0.522257\pi
−0.0698667 + 0.997556i 0.522257π0.522257\pi
314314 0.472136 0.0266442
315315 0.618034 0.0348223
316316 −5.85410 −0.329319
317317 14.5066 0.814771 0.407385 0.913256i 0.366441π-0.366441\pi
0.407385 + 0.913256i 0.366441π0.366441\pi
318318 −21.1803 −1.18773
319319 −18.4164 −1.03112
320320 −2.61803 −0.146353
321321 −3.32624 −0.185652
322322 −1.61803 −0.0901695
323323 −23.2918 −1.29599
324324 0.618034 0.0343352
325325 11.0000 0.610170
326326 1.00000 0.0553849
327327 −19.2705 −1.06566
328328 −3.29180 −0.181759
329329 7.23607 0.398937
330330 −2.23607 −0.123091
331331 −13.4164 −0.737432 −0.368716 0.929542i 0.620203π-0.620203\pi
−0.368716 + 0.929542i 0.620203π0.620203\pi
332332 −5.67376 −0.311388
333333 −11.0000 −0.602796
334334 11.6180 0.635711
335335 3.14590 0.171879
336336 −4.85410 −0.264813
337337 −7.50658 −0.408909 −0.204455 0.978876i 0.565542π-0.565542\pi
−0.204455 + 0.978876i 0.565542π0.565542\pi
338338 11.8541 0.644778
339339 0.909830 0.0494152
340340 −2.56231 −0.138961
341341 15.0000 0.812296
342342 5.61803 0.303788
343343 −1.00000 −0.0539949
344344 −3.61803 −0.195071
345345 −0.618034 −0.0332738
346346 5.61803 0.302027
347347 5.18034 0.278095 0.139048 0.990286i 0.455596π-0.455596\pi
0.139048 + 0.990286i 0.455596π0.455596\pi
348348 5.09017 0.272862
349349 −11.8541 −0.634536 −0.317268 0.948336i 0.602765π-0.602765\pi
−0.317268 + 0.948336i 0.602765π0.602765\pi
350350 −7.47214 −0.399402
351351 2.38197 0.127140
352352 7.56231 0.403072
353353 30.3050 1.61297 0.806485 0.591255i 0.201367π-0.201367\pi
0.806485 + 0.591255i 0.201367π0.201367\pi
354354 15.1803 0.806826
355355 −2.70820 −0.143737
356356 7.18034 0.380557
357357 6.70820 0.355036
358358 −3.00000 −0.158555
359359 23.0902 1.21865 0.609326 0.792920i 0.291440π-0.291440\pi
0.609326 + 0.792920i 0.291440π0.291440\pi
360360 −1.38197 −0.0728360
361361 −6.94427 −0.365488
362362 3.14590 0.165345
363363 6.00000 0.314918
364364 1.47214 0.0771609
365365 7.85410 0.411102
366366 −7.85410 −0.410540
367367 10.8541 0.566580 0.283290 0.959034i 0.408574π-0.408574\pi
0.283290 + 0.959034i 0.408574π0.408574\pi
368368 4.85410 0.253038
369369 −1.47214 −0.0766363
370370 −11.0000 −0.571863
371371 13.0902 0.679608
372372 −4.14590 −0.214955
373373 24.4164 1.26423 0.632117 0.774873i 0.282186π-0.282186\pi
0.632117 + 0.774873i 0.282186π0.282186\pi
374374 −24.2705 −1.25500
375375 −5.94427 −0.306961
376376 −16.1803 −0.834437
377377 19.6180 1.01038
378378 −1.61803 −0.0832227
379379 7.41641 0.380955 0.190478 0.981692i 0.438996π-0.438996\pi
0.190478 + 0.981692i 0.438996π0.438996\pi
380380 1.32624 0.0680346
381381 −22.2705 −1.14095
382382 −26.1803 −1.33950
383383 −0.708204 −0.0361875 −0.0180938 0.999836i 0.505760π-0.505760\pi
−0.0180938 + 0.999836i 0.505760π0.505760\pi
384384 13.6180 0.694942
385385 1.38197 0.0704315
386386 −13.4164 −0.682877
387387 −1.61803 −0.0822493
388388 6.43769 0.326824
389389 5.29180 0.268305 0.134152 0.990961i 0.457169π-0.457169\pi
0.134152 + 0.990961i 0.457169π0.457169\pi
390390 2.38197 0.120616
391391 −6.70820 −0.339248
392392 2.23607 0.112938
393393 −15.1803 −0.765747
394394 41.2705 2.07918
395395 5.85410 0.294552
396396 1.38197 0.0694464
397397 22.0689 1.10761 0.553803 0.832648i 0.313176π-0.313176\pi
0.553803 + 0.832648i 0.313176π0.313176\pi
398398 11.1803 0.560420
399399 −3.47214 −0.173824
400400 22.4164 1.12082
401401 33.1803 1.65695 0.828474 0.560028i 0.189210π-0.189210\pi
0.828474 + 0.560028i 0.189210π0.189210\pi
402402 −8.23607 −0.410778
403403 −15.9787 −0.795956
404404 2.56231 0.127479
405405 −0.618034 −0.0307104
406406 −13.3262 −0.661370
407407 −24.5967 −1.21922
408408 −15.0000 −0.742611
409409 6.41641 0.317271 0.158635 0.987337i 0.449291π-0.449291\pi
0.158635 + 0.987337i 0.449291π0.449291\pi
410410 −1.47214 −0.0727036
411411 16.4164 0.809762
412412 −4.58359 −0.225817
413413 −9.38197 −0.461656
414414 1.61803 0.0795220
415415 5.67376 0.278514
416416 −8.05573 −0.394965
417417 11.3820 0.557377
418418 12.5623 0.614442
419419 15.6738 0.765713 0.382857 0.923808i 0.374940π-0.374940\pi
0.382857 + 0.923808i 0.374940π0.374940\pi
420420 −0.381966 −0.0186380
421421 −10.2705 −0.500554 −0.250277 0.968174i 0.580522π-0.580522\pi
−0.250277 + 0.968174i 0.580522π0.580522\pi
422422 −16.8541 −0.820445
423423 −7.23607 −0.351830
424424 −29.2705 −1.42150
425425 −30.9787 −1.50269
426426 7.09017 0.343520
427427 4.85410 0.234906
428428 2.05573 0.0993674
429429 5.32624 0.257153
430430 −1.61803 −0.0780285
431431 0.673762 0.0324540 0.0162270 0.999868i 0.494835π-0.494835\pi
0.0162270 + 0.999868i 0.494835π0.494835\pi
432432 4.85410 0.233543
433433 19.1246 0.919070 0.459535 0.888160i 0.348016π-0.348016\pi
0.459535 + 0.888160i 0.348016π0.348016\pi
434434 10.8541 0.521014
435435 −5.09017 −0.244055
436436 11.9098 0.570377
437437 3.47214 0.166095
438438 −20.5623 −0.982505
439439 23.6525 1.12887 0.564436 0.825477i 0.309094π-0.309094\pi
0.564436 + 0.825477i 0.309094π0.309094\pi
440440 −3.09017 −0.147318
441441 1.00000 0.0476190
442442 25.8541 1.22975
443443 −9.52786 −0.452682 −0.226341 0.974048i 0.572676π-0.572676\pi
−0.226341 + 0.974048i 0.572676π0.572676\pi
444444 6.79837 0.322637
445445 −7.18034 −0.340381
446446 28.8885 1.36791
447447 19.2361 0.909835
448448 −4.23607 −0.200135
449449 −18.4377 −0.870129 −0.435064 0.900399i 0.643274π-0.643274\pi
−0.435064 + 0.900399i 0.643274π0.643274\pi
450450 7.47214 0.352240
451451 −3.29180 −0.155005
452452 −0.562306 −0.0264486
453453 15.2361 0.715853
454454 −39.3607 −1.84729
455455 −1.47214 −0.0690148
456456 7.76393 0.363579
457457 −14.3262 −0.670153 −0.335077 0.942191i 0.608762π-0.608762\pi
−0.335077 + 0.942191i 0.608762π0.608762\pi
458458 26.4164 1.23436
459459 −6.70820 −0.313112
460460 0.381966 0.0178093
461461 25.4508 1.18536 0.592682 0.805436i 0.298069π-0.298069\pi
0.592682 + 0.805436i 0.298069π0.298069\pi
462462 −3.61803 −0.168326
463463 17.2918 0.803618 0.401809 0.915724i 0.368382π-0.368382\pi
0.401809 + 0.915724i 0.368382π0.368382\pi
464464 39.9787 1.85597
465465 4.14590 0.192261
466466 17.9443 0.831252
467467 −15.1803 −0.702462 −0.351231 0.936289i 0.614237π-0.614237\pi
−0.351231 + 0.936289i 0.614237π0.614237\pi
468468 −1.47214 −0.0680495
469469 5.09017 0.235042
470470 −7.23607 −0.333775
471471 0.291796 0.0134453
472472 20.9787 0.965624
473473 −3.61803 −0.166357
474474 −15.3262 −0.703957
475475 16.0344 0.735711
476476 −4.14590 −0.190027
477477 −13.0902 −0.599358
478478 7.76393 0.355114
479479 21.0000 0.959514 0.479757 0.877401i 0.340725π-0.340725\pi
0.479757 + 0.877401i 0.340725π0.340725\pi
480480 2.09017 0.0954028
481481 26.2016 1.19469
482482 17.7984 0.810694
483483 −1.00000 −0.0455016
484484 −3.70820 −0.168555
485485 −6.43769 −0.292321
486486 1.61803 0.0733955
487487 −29.2918 −1.32734 −0.663669 0.748026i 0.731002π-0.731002\pi
−0.663669 + 0.748026i 0.731002π0.731002\pi
488488 −10.8541 −0.491342
489489 0.618034 0.0279485
490490 1.00000 0.0451754
491491 9.79837 0.442194 0.221097 0.975252i 0.429036π-0.429036\pi
0.221097 + 0.975252i 0.429036π0.429036\pi
492492 0.909830 0.0410183
493493 −55.2492 −2.48830
494494 −13.3820 −0.602083
495495 −1.38197 −0.0621148
496496 −32.5623 −1.46209
497497 −4.38197 −0.196558
498498 −14.8541 −0.665628
499499 −38.3951 −1.71880 −0.859401 0.511302i 0.829163π-0.829163\pi
−0.859401 + 0.511302i 0.829163π0.829163\pi
500500 3.67376 0.164296
501501 7.18034 0.320794
502502 −37.4164 −1.66998
503503 36.3262 1.61971 0.809853 0.586632i 0.199547π-0.199547\pi
0.809853 + 0.586632i 0.199547π0.199547\pi
504504 −2.23607 −0.0996024
505505 −2.56231 −0.114021
506506 3.61803 0.160841
507507 7.32624 0.325370
508508 13.7639 0.610676
509509 −15.5967 −0.691314 −0.345657 0.938361i 0.612344π-0.612344\pi
−0.345657 + 0.938361i 0.612344π0.612344\pi
510510 −6.70820 −0.297044
511511 12.7082 0.562178
512512 5.29180 0.233867
513513 3.47214 0.153299
514514 5.23607 0.230953
515515 4.58359 0.201977
516516 1.00000 0.0440225
517517 −16.1803 −0.711611
518518 −17.7984 −0.782016
519519 3.47214 0.152410
520520 3.29180 0.144355
521521 3.52786 0.154559 0.0772793 0.997009i 0.475377π-0.475377\pi
0.0772793 + 0.997009i 0.475377π0.475377\pi
522522 13.3262 0.583274
523523 21.4164 0.936474 0.468237 0.883603i 0.344889π-0.344889\pi
0.468237 + 0.883603i 0.344889π0.344889\pi
524524 9.38197 0.409853
525525 −4.61803 −0.201548
526526 0.0901699 0.00393160
527527 45.0000 1.96023
528528 10.8541 0.472364
529529 1.00000 0.0434783
530530 −13.0902 −0.568601
531531 9.38197 0.407143
532532 2.14590 0.0930365
533533 3.50658 0.151887
534534 18.7984 0.813485
535535 −2.05573 −0.0888769
536536 −11.3820 −0.491626
537537 −1.85410 −0.0800104
538538 51.9230 2.23856
539539 2.23607 0.0963143
540540 0.381966 0.0164372
541541 −5.12461 −0.220324 −0.110162 0.993914i 0.535137π-0.535137\pi
−0.110162 + 0.993914i 0.535137π0.535137\pi
542542 −35.5066 −1.52514
543543 1.94427 0.0834367
544544 22.6869 0.972694
545545 −11.9098 −0.510161
546546 3.85410 0.164940
547547 12.7984 0.547219 0.273609 0.961841i 0.411782π-0.411782\pi
0.273609 + 0.961841i 0.411782π0.411782\pi
548548 −10.1459 −0.433411
549549 −4.85410 −0.207168
550550 16.7082 0.712440
551551 28.5967 1.21826
552552 2.23607 0.0951734
553553 9.47214 0.402796
554554 −6.90983 −0.293571
555555 −6.79837 −0.288575
556556 −7.03444 −0.298327
557557 −5.81966 −0.246587 −0.123293 0.992370i 0.539346π-0.539346\pi
−0.123293 + 0.992370i 0.539346π0.539346\pi
558558 −10.8541 −0.459491
559559 3.85410 0.163011
560560 −3.00000 −0.126773
561561 −15.0000 −0.633300
562562 6.00000 0.253095
563563 −23.5066 −0.990684 −0.495342 0.868698i 0.664957π-0.664957\pi
−0.495342 + 0.868698i 0.664957π0.664957\pi
564564 4.47214 0.188311
565565 0.562306 0.0236564
566566 42.4164 1.78289
567567 −1.00000 −0.0419961
568568 9.79837 0.411131
569569 −16.3607 −0.685875 −0.342938 0.939358i 0.611422π-0.611422\pi
−0.342938 + 0.939358i 0.611422π0.611422\pi
570570 3.47214 0.145432
571571 −44.4164 −1.85877 −0.929384 0.369113i 0.879661π-0.879661\pi
−0.929384 + 0.369113i 0.879661π0.879661\pi
572572 −3.29180 −0.137637
573573 −16.1803 −0.675943
574574 −2.38197 −0.0994213
575575 4.61803 0.192585
576576 4.23607 0.176503
577577 −36.8328 −1.53337 −0.766685 0.642023i 0.778095π-0.778095\pi
−0.766685 + 0.642023i 0.778095π0.778095\pi
578578 −45.3050 −1.88444
579579 −8.29180 −0.344595
580580 3.14590 0.130626
581581 9.18034 0.380865
582582 16.8541 0.698625
583583 −29.2705 −1.21226
584584 −28.4164 −1.17588
585585 1.47214 0.0608653
586586 −19.4164 −0.802084
587587 −31.0344 −1.28093 −0.640464 0.767988i 0.721258π-0.721258\pi
−0.640464 + 0.767988i 0.721258π0.721258\pi
588588 −0.618034 −0.0254873
589589 −23.2918 −0.959722
590590 9.38197 0.386249
591591 25.5066 1.04920
592592 53.3951 2.19453
593593 −32.0689 −1.31691 −0.658456 0.752620i 0.728790π-0.728790\pi
−0.658456 + 0.752620i 0.728790π0.728790\pi
594594 3.61803 0.148450
595595 4.14590 0.169965
596596 −11.8885 −0.486974
597597 6.90983 0.282801
598598 −3.85410 −0.157606
599599 −15.5066 −0.633582 −0.316791 0.948495i 0.602605π-0.602605\pi
−0.316791 + 0.948495i 0.602605π0.602605\pi
600600 10.3262 0.421567
601601 0.909830 0.0371127 0.0185564 0.999828i 0.494093π-0.494093\pi
0.0185564 + 0.999828i 0.494093π0.494093\pi
602602 −2.61803 −0.106703
603603 −5.09017 −0.207288
604604 −9.41641 −0.383148
605605 3.70820 0.150760
606606 6.70820 0.272502
607607 −33.7984 −1.37183 −0.685917 0.727680i 0.740599π-0.740599\pi
−0.685917 + 0.727680i 0.740599π0.740599\pi
608608 −11.7426 −0.476227
609609 −8.23607 −0.333742
610610 −4.85410 −0.196537
611611 17.2361 0.697297
612612 4.14590 0.167588
613613 −11.6525 −0.470639 −0.235320 0.971918i 0.575614π-0.575614\pi
−0.235320 + 0.971918i 0.575614π0.575614\pi
614614 −26.0902 −1.05291
615615 −0.909830 −0.0366879
616616 −5.00000 −0.201456
617617 −2.67376 −0.107642 −0.0538208 0.998551i 0.517140π-0.517140\pi
−0.0538208 + 0.998551i 0.517140π0.517140\pi
618618 −12.0000 −0.482711
619619 −19.6180 −0.788515 −0.394258 0.919000i 0.628998π-0.628998\pi
−0.394258 + 0.919000i 0.628998π0.628998\pi
620620 −2.56231 −0.102905
621621 1.00000 0.0401286
622622 −24.7984 −0.994324
623623 −11.6180 −0.465467
624624 −11.5623 −0.462863
625625 19.4164 0.776656
626626 4.00000 0.159872
627627 7.76393 0.310062
628628 −0.180340 −0.00719634
629629 −73.7902 −2.94221
630630 −1.00000 −0.0398410
631631 16.1246 0.641911 0.320955 0.947094i 0.395996π-0.395996\pi
0.320955 + 0.947094i 0.395996π0.395996\pi
632632 −21.1803 −0.842509
633633 −10.4164 −0.414015
634634 −23.4721 −0.932198
635635 −13.7639 −0.546205
636636 8.09017 0.320796
637637 −2.38197 −0.0943769
638638 29.7984 1.17973
639639 4.38197 0.173348
640640 8.41641 0.332688
641641 17.7984 0.702994 0.351497 0.936189i 0.385673π-0.385673\pi
0.351497 + 0.936189i 0.385673π0.385673\pi
642642 5.38197 0.212409
643643 −11.9787 −0.472394 −0.236197 0.971705i 0.575901π-0.575901\pi
−0.236197 + 0.971705i 0.575901π0.575901\pi
644644 0.618034 0.0243540
645645 −1.00000 −0.0393750
646646 37.6869 1.48277
647647 −24.0344 −0.944891 −0.472446 0.881360i 0.656629π-0.656629\pi
−0.472446 + 0.881360i 0.656629π0.656629\pi
648648 2.23607 0.0878410
649649 20.9787 0.823487
650650 −17.7984 −0.698110
651651 6.70820 0.262915
652652 −0.381966 −0.0149589
653653 27.7426 1.08565 0.542827 0.839845i 0.317354π-0.317354\pi
0.542827 + 0.839845i 0.317354π0.317354\pi
654654 31.1803 1.21925
655655 −9.38197 −0.366584
656656 7.14590 0.279000
657657 −12.7082 −0.495794
658658 −11.7082 −0.456433
659659 9.65248 0.376007 0.188004 0.982168i 0.439798π-0.439798\pi
0.188004 + 0.982168i 0.439798π0.439798\pi
660660 0.854102 0.0332459
661661 14.4164 0.560733 0.280367 0.959893i 0.409544π-0.409544\pi
0.280367 + 0.959893i 0.409544π0.409544\pi
662662 21.7082 0.843713
663663 15.9787 0.620562
664664 −20.5279 −0.796636
665665 −2.14590 −0.0832144
666666 17.7984 0.689673
667667 8.23607 0.318902
668668 −4.43769 −0.171700
669669 17.8541 0.690279
670670 −5.09017 −0.196650
671671 −10.8541 −0.419018
672672 3.38197 0.130462
673673 12.4164 0.478617 0.239309 0.970944i 0.423079π-0.423079\pi
0.239309 + 0.970944i 0.423079π0.423079\pi
674674 12.1459 0.467843
675675 4.61803 0.177748
676676 −4.52786 −0.174149
677677 −1.25735 −0.0483240 −0.0241620 0.999708i 0.507692π-0.507692\pi
−0.0241620 + 0.999708i 0.507692π0.507692\pi
678678 −1.47214 −0.0565370
679679 −10.4164 −0.399745
680680 −9.27051 −0.355508
681681 −24.3262 −0.932183
682682 −24.2705 −0.929366
683683 26.0132 0.995366 0.497683 0.867359i 0.334184π-0.334184\pi
0.497683 + 0.867359i 0.334184π0.334184\pi
684684 −2.14590 −0.0820505
685685 10.1459 0.387655
686686 1.61803 0.0617768
687687 16.3262 0.622885
688688 7.85410 0.299435
689689 31.1803 1.18788
690690 1.00000 0.0380693
691691 −7.72949 −0.294044 −0.147022 0.989133i 0.546969π-0.546969\pi
−0.147022 + 0.989133i 0.546969π0.546969\pi
692692 −2.14590 −0.0815748
693693 −2.23607 −0.0849412
694694 −8.38197 −0.318175
695695 7.03444 0.266832
696696 18.4164 0.698072
697697 −9.87539 −0.374057
698698 19.1803 0.725987
699699 11.0902 0.419469
700700 2.85410 0.107875
701701 37.4508 1.41450 0.707250 0.706964i 0.249936π-0.249936\pi
0.707250 + 0.706964i 0.249936π0.249936\pi
702702 −3.85410 −0.145464
703703 38.1935 1.44049
704704 9.47214 0.356995
705705 −4.47214 −0.168430
706706 −49.0344 −1.84544
707707 −4.14590 −0.155923
708708 −5.79837 −0.217916
709709 −2.56231 −0.0962294 −0.0481147 0.998842i 0.515321π-0.515321\pi
−0.0481147 + 0.998842i 0.515321π0.515321\pi
710710 4.38197 0.164452
711711 −9.47214 −0.355233
712712 25.9787 0.973593
713713 −6.70820 −0.251224
714714 −10.8541 −0.406205
715715 3.29180 0.123106
716716 1.14590 0.0428242
717717 4.79837 0.179199
718718 −37.3607 −1.39429
719719 −3.00000 −0.111881 −0.0559406 0.998434i 0.517816π-0.517816\pi
−0.0559406 + 0.998434i 0.517816π0.517816\pi
720720 3.00000 0.111803
721721 7.41641 0.276201
722722 11.2361 0.418163
723723 11.0000 0.409094
724724 −1.20163 −0.0446581
725725 38.0344 1.41256
726726 −9.70820 −0.360305
727727 18.8885 0.700537 0.350269 0.936649i 0.386090π-0.386090\pi
0.350269 + 0.936649i 0.386090π0.386090\pi
728728 5.32624 0.197404
729729 1.00000 0.0370370
730730 −12.7082 −0.470352
731731 −10.8541 −0.401453
732732 3.00000 0.110883
733733 25.5967 0.945437 0.472719 0.881213i 0.343273π-0.343273\pi
0.472719 + 0.881213i 0.343273π0.343273\pi
734734 −17.5623 −0.648237
735735 0.618034 0.0227965
736736 −3.38197 −0.124661
737737 −11.3820 −0.419260
738738 2.38197 0.0876814
739739 45.2492 1.66452 0.832260 0.554386i 0.187047π-0.187047\pi
0.832260 + 0.554386i 0.187047π0.187047\pi
740740 4.20163 0.154455
741741 −8.27051 −0.303825
742742 −21.1803 −0.777555
743743 11.6738 0.428269 0.214134 0.976804i 0.431307π-0.431307\pi
0.214134 + 0.976804i 0.431307π0.431307\pi
744744 −15.0000 −0.549927
745745 11.8885 0.435563
746746 −39.5066 −1.44644
747747 −9.18034 −0.335891
748748 9.27051 0.338963
749749 −3.32624 −0.121538
750750 9.61803 0.351201
751751 32.9787 1.20341 0.601705 0.798718i 0.294488π-0.294488\pi
0.601705 + 0.798718i 0.294488π0.294488\pi
752752 35.1246 1.28086
753753 −23.1246 −0.842708
754754 −31.7426 −1.15600
755755 9.41641 0.342698
756756 0.618034 0.0224777
757757 −17.0000 −0.617876 −0.308938 0.951082i 0.599973π-0.599973\pi
−0.308938 + 0.951082i 0.599973π0.599973\pi
758758 −12.0000 −0.435860
759759 2.23607 0.0811641
760760 4.79837 0.174055
761761 −14.4721 −0.524615 −0.262307 0.964984i 0.584483π-0.584483\pi
−0.262307 + 0.964984i 0.584483π0.584483\pi
762762 36.0344 1.30539
763763 −19.2705 −0.697639
764764 10.0000 0.361787
765765 −4.14590 −0.149895
766766 1.14590 0.0414030
767767 −22.3475 −0.806922
768768 −13.5623 −0.489388
769769 33.2361 1.19852 0.599262 0.800553i 0.295461π-0.295461\pi
0.599262 + 0.800553i 0.295461π0.295461\pi
770770 −2.23607 −0.0805823
771771 3.23607 0.116544
772772 5.12461 0.184439
773773 −19.9443 −0.717346 −0.358673 0.933463i 0.616771π-0.616771\pi
−0.358673 + 0.933463i 0.616771π0.616771\pi
774774 2.61803 0.0941033
775775 −30.9787 −1.11279
776776 23.2918 0.836127
777777 −11.0000 −0.394623
778778 −8.56231 −0.306974
779779 5.11146 0.183137
780780 −0.909830 −0.0325771
781781 9.79837 0.350613
782782 10.8541 0.388142
783783 8.23607 0.294333
784784 −4.85410 −0.173361
785785 0.180340 0.00643661
786786 24.5623 0.876108
787787 −48.5755 −1.73153 −0.865764 0.500452i 0.833167π-0.833167\pi
−0.865764 + 0.500452i 0.833167π0.833167\pi
788788 −15.7639 −0.561567
789789 0.0557281 0.00198397
790790 −9.47214 −0.337003
791791 0.909830 0.0323498
792792 5.00000 0.177667
793793 11.5623 0.410590
794794 −35.7082 −1.26724
795795 −8.09017 −0.286929
796796 −4.27051 −0.151364
797797 44.1803 1.56495 0.782474 0.622683i 0.213957π-0.213957\pi
0.782474 + 0.622683i 0.213957π0.213957\pi
798798 5.61803 0.198876
799799 −48.5410 −1.71726
800800 −15.6180 −0.552181
801801 11.6180 0.410503
802802 −53.6869 −1.89575
803803 −28.4164 −1.00279
804804 3.14590 0.110947
805805 −0.618034 −0.0217828
806806 25.8541 0.910672
807807 32.0902 1.12963
808808 9.27051 0.326135
809809 −9.43769 −0.331812 −0.165906 0.986142i 0.553055π-0.553055\pi
−0.165906 + 0.986142i 0.553055π0.553055\pi
810810 1.00000 0.0351364
811811 8.52786 0.299454 0.149727 0.988727i 0.452161π-0.452161\pi
0.149727 + 0.988727i 0.452161π0.452161\pi
812812 5.09017 0.178630
813813 −21.9443 −0.769619
814814 39.7984 1.39493
815815 0.381966 0.0133797
816816 32.5623 1.13991
817817 5.61803 0.196550
818818 −10.3820 −0.362997
819819 2.38197 0.0832326
820820 0.562306 0.0196366
821821 −29.1246 −1.01646 −0.508228 0.861223i 0.669699π-0.669699\pi
−0.508228 + 0.861223i 0.669699π0.669699\pi
822822 −26.5623 −0.926467
823823 −39.8541 −1.38923 −0.694613 0.719383i 0.744425π-0.744425\pi
−0.694613 + 0.719383i 0.744425π0.744425\pi
824824 −16.5836 −0.577717
825825 10.3262 0.359513
826826 15.1803 0.528192
827827 −28.2148 −0.981124 −0.490562 0.871406i 0.663208π-0.663208\pi
−0.490562 + 0.871406i 0.663208π0.663208\pi
828828 −0.618034 −0.0214782
829829 −30.4164 −1.05641 −0.528203 0.849118i 0.677134π-0.677134\pi
−0.528203 + 0.849118i 0.677134π0.677134\pi
830830 −9.18034 −0.318654
831831 −4.27051 −0.148142
832832 −10.0902 −0.349814
833833 6.70820 0.232425
834834 −18.4164 −0.637708
835835 4.43769 0.153573
836836 −4.79837 −0.165955
837837 −6.70820 −0.231869
838838 −25.3607 −0.876070
839839 16.7426 0.578020 0.289010 0.957326i 0.406674π-0.406674\pi
0.289010 + 0.957326i 0.406674π0.406674\pi
840840 −1.38197 −0.0476824
841841 38.8328 1.33906
842842 16.6180 0.572695
843843 3.70820 0.127717
844844 6.43769 0.221595
845845 4.52786 0.155763
846846 11.7082 0.402536
847847 6.00000 0.206162
848848 63.5410 2.18201
849849 26.2148 0.899689
850850 50.1246 1.71926
851851 11.0000 0.377075
852852 −2.70820 −0.0927815
853853 −47.1246 −1.61352 −0.806758 0.590882i 0.798780π-0.798780\pi
−0.806758 + 0.590882i 0.798780π0.798780\pi
854854 −7.85410 −0.268762
855855 2.14590 0.0733882
856856 7.43769 0.254215
857857 39.7082 1.35641 0.678203 0.734874i 0.262759π-0.262759\pi
0.678203 + 0.734874i 0.262759π0.262759\pi
858858 −8.61803 −0.294215
859859 −14.0000 −0.477674 −0.238837 0.971060i 0.576766π-0.576766\pi
−0.238837 + 0.971060i 0.576766π0.576766\pi
860860 0.618034 0.0210748
861861 −1.47214 −0.0501703
862862 −1.09017 −0.0371313
863863 −8.06888 −0.274668 −0.137334 0.990525i 0.543853π-0.543853\pi
−0.137334 + 0.990525i 0.543853π0.543853\pi
864864 −3.38197 −0.115057
865865 2.14590 0.0729627
866866 −30.9443 −1.05153
867867 −28.0000 −0.950930
868868 −4.14590 −0.140721
869869 −21.1803 −0.718494
870870 8.23607 0.279229
871871 12.1246 0.410827
872872 43.0902 1.45922
873873 10.4164 0.352542
874874 −5.61803 −0.190033
875875 −5.94427 −0.200953
876876 7.85410 0.265366
877877 16.5836 0.559988 0.279994 0.960002i 0.409667π-0.409667\pi
0.279994 + 0.960002i 0.409667π0.409667\pi
878878 −38.2705 −1.29157
879879 −12.0000 −0.404750
880880 6.70820 0.226134
881881 1.81966 0.0613059 0.0306530 0.999530i 0.490241π-0.490241\pi
0.0306530 + 0.999530i 0.490241π0.490241\pi
882882 −1.61803 −0.0544820
883883 −3.90983 −0.131576 −0.0657881 0.997834i 0.520956π-0.520956\pi
−0.0657881 + 0.997834i 0.520956π0.520956\pi
884884 −9.87539 −0.332145
885885 5.79837 0.194910
886886 15.4164 0.517924
887887 9.79837 0.328997 0.164499 0.986377i 0.447399π-0.447399\pi
0.164499 + 0.986377i 0.447399π0.447399\pi
888888 24.5967 0.825413
889889 −22.2705 −0.746929
890890 11.6180 0.389437
891891 2.23607 0.0749111
892892 −11.0344 −0.369460
893893 25.1246 0.840763
894894 −31.1246 −1.04096
895895 −1.14590 −0.0383031
896896 13.6180 0.454947
897897 −2.38197 −0.0795315
898898 29.8328 0.995534
899899 −55.2492 −1.84266
900900 −2.85410 −0.0951367
901901 −87.8115 −2.92543
902902 5.32624 0.177344
903903 −1.61803 −0.0538448
904904 −2.03444 −0.0676645
905905 1.20163 0.0399434
906906 −24.6525 −0.819024
907907 48.9787 1.62631 0.813156 0.582046i 0.197748π-0.197748\pi
0.813156 + 0.582046i 0.197748π0.197748\pi
908908 15.0344 0.498935
909909 4.14590 0.137511
910910 2.38197 0.0789614
911911 −7.59675 −0.251691 −0.125846 0.992050i 0.540164π-0.540164\pi
−0.125846 + 0.992050i 0.540164π0.540164\pi
912912 −16.8541 −0.558095
913913 −20.5279 −0.679373
914914 23.1803 0.766737
915915 −3.00000 −0.0991769
916916 −10.0902 −0.333389
917917 −15.1803 −0.501299
918918 10.8541 0.358239
919919 −50.1246 −1.65346 −0.826729 0.562600i 0.809801π-0.809801\pi
−0.826729 + 0.562600i 0.809801π0.809801\pi
920920 1.38197 0.0455621
921921 −16.1246 −0.531324
922922 −41.1803 −1.35620
923923 −10.4377 −0.343561
924924 1.38197 0.0454633
925925 50.7984 1.67024
926926 −27.9787 −0.919438
927927 −7.41641 −0.243587
928928 −27.8541 −0.914356
929929 28.9098 0.948501 0.474250 0.880390i 0.342719π-0.342719\pi
0.474250 + 0.880390i 0.342719π0.342719\pi
930930 −6.70820 −0.219971
931931 −3.47214 −0.113795
932932 −6.85410 −0.224514
933933 −15.3262 −0.501759
934934 24.5623 0.803703
935935 −9.27051 −0.303178
936936 −5.32624 −0.174094
937937 2.70820 0.0884732 0.0442366 0.999021i 0.485914π-0.485914\pi
0.0442366 + 0.999021i 0.485914π0.485914\pi
938938 −8.23607 −0.268917
939939 2.47214 0.0806751
940940 2.76393 0.0901495
941941 −15.0557 −0.490803 −0.245401 0.969422i 0.578920π-0.578920\pi
−0.245401 + 0.969422i 0.578920π0.578920\pi
942942 −0.472136 −0.0153830
943943 1.47214 0.0479393
944944 −45.5410 −1.48223
945945 −0.618034 −0.0201046
946946 5.85410 0.190333
947947 −18.9443 −0.615606 −0.307803 0.951450i 0.599594π-0.599594\pi
−0.307803 + 0.951450i 0.599594π0.599594\pi
948948 5.85410 0.190132
949949 30.2705 0.982622
950950 −25.9443 −0.841743
951951 −14.5066 −0.470408
952952 −15.0000 −0.486153
953953 12.1591 0.393870 0.196935 0.980417i 0.436901π-0.436901\pi
0.196935 + 0.980417i 0.436901π0.436901\pi
954954 21.1803 0.685739
955955 −10.0000 −0.323592
956956 −2.96556 −0.0959130
957957 18.4164 0.595318
958958 −33.9787 −1.09780
959959 16.4164 0.530113
960960 2.61803 0.0844967
961961 14.0000 0.451613
962962 −42.3951 −1.36687
963963 3.32624 0.107187
964964 −6.79837 −0.218961
965965 −5.12461 −0.164967
966966 1.61803 0.0520594
967967 50.3607 1.61949 0.809745 0.586782i 0.199605π-0.199605\pi
0.809745 + 0.586782i 0.199605π0.199605\pi
968968 −13.4164 −0.431220
969969 23.2918 0.748240
970970 10.4164 0.334451
971971 −19.6869 −0.631783 −0.315892 0.948795i 0.602304π-0.602304\pi
−0.315892 + 0.948795i 0.602304π0.602304\pi
972972 −0.618034 −0.0198234
973973 11.3820 0.364889
974974 47.3951 1.51864
975975 −11.0000 −0.352282
976976 23.5623 0.754211
977977 49.7984 1.59319 0.796596 0.604513i 0.206632π-0.206632\pi
0.796596 + 0.604513i 0.206632π0.206632\pi
978978 −1.00000 −0.0319765
979979 25.9787 0.830283
980980 −0.381966 −0.0122015
981981 19.2705 0.615260
982982 −15.8541 −0.505925
983983 −7.40325 −0.236127 −0.118064 0.993006i 0.537669π-0.537669\pi
−0.118064 + 0.993006i 0.537669π0.537669\pi
984984 3.29180 0.104939
985985 15.7639 0.502281
986986 89.3951 2.84692
987987 −7.23607 −0.230327
988988 5.11146 0.162617
989989 1.61803 0.0514505
990990 2.23607 0.0710669
991991 −35.5755 −1.13009 −0.565046 0.825059i 0.691142π-0.691142\pi
−0.565046 + 0.825059i 0.691142π0.691142\pi
992992 22.6869 0.720310
993993 13.4164 0.425757
994994 7.09017 0.224887
995995 4.27051 0.135384
996996 5.67376 0.179780
997997 57.7214 1.82805 0.914027 0.405654i 0.132956π-0.132956\pi
0.914027 + 0.405654i 0.132956π0.132956\pi
998998 62.1246 1.96652
999999 11.0000 0.348025
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.a.d.1.1 2
3.2 odd 2 1449.2.a.h.1.2 2
4.3 odd 2 7728.2.a.bn.1.1 2
7.6 odd 2 3381.2.a.r.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.a.d.1.1 2 1.1 even 1 trivial
1449.2.a.h.1.2 2 3.2 odd 2
3381.2.a.r.1.1 2 7.6 odd 2
7728.2.a.bn.1.1 2 4.3 odd 2