Properties

Label 483.2.a.e.1.2
Level $483$
Weight $2$
Character 483.1
Self dual yes
Analytic conductor $3.857$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 483.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034 q^{2} +1.00000 q^{3} -1.61803 q^{4} +3.61803 q^{5} +0.618034 q^{6} +1.00000 q^{7} -2.23607 q^{8} +1.00000 q^{9} +2.23607 q^{10} +1.00000 q^{11} -1.61803 q^{12} +0.618034 q^{13} +0.618034 q^{14} +3.61803 q^{15} +1.85410 q^{16} -5.47214 q^{17} +0.618034 q^{18} +4.23607 q^{19} -5.85410 q^{20} +1.00000 q^{21} +0.618034 q^{22} +1.00000 q^{23} -2.23607 q^{24} +8.09017 q^{25} +0.381966 q^{26} +1.00000 q^{27} -1.61803 q^{28} +1.76393 q^{29} +2.23607 q^{30} -8.70820 q^{31} +5.61803 q^{32} +1.00000 q^{33} -3.38197 q^{34} +3.61803 q^{35} -1.61803 q^{36} +0.236068 q^{37} +2.61803 q^{38} +0.618034 q^{39} -8.09017 q^{40} -3.47214 q^{41} +0.618034 q^{42} -3.85410 q^{43} -1.61803 q^{44} +3.61803 q^{45} +0.618034 q^{46} +11.7082 q^{47} +1.85410 q^{48} +1.00000 q^{49} +5.00000 q^{50} -5.47214 q^{51} -1.00000 q^{52} -0.0901699 q^{53} +0.618034 q^{54} +3.61803 q^{55} -2.23607 q^{56} +4.23607 q^{57} +1.09017 q^{58} -3.61803 q^{59} -5.85410 q^{60} -7.85410 q^{61} -5.38197 q^{62} +1.00000 q^{63} -0.236068 q^{64} +2.23607 q^{65} +0.618034 q^{66} -8.09017 q^{67} +8.85410 q^{68} +1.00000 q^{69} +2.23607 q^{70} -10.3262 q^{71} -2.23607 q^{72} +1.76393 q^{73} +0.145898 q^{74} +8.09017 q^{75} -6.85410 q^{76} +1.00000 q^{77} +0.381966 q^{78} -14.2361 q^{79} +6.70820 q^{80} +1.00000 q^{81} -2.14590 q^{82} -17.9443 q^{83} -1.61803 q^{84} -19.7984 q^{85} -2.38197 q^{86} +1.76393 q^{87} -2.23607 q^{88} +13.5623 q^{89} +2.23607 q^{90} +0.618034 q^{91} -1.61803 q^{92} -8.70820 q^{93} +7.23607 q^{94} +15.3262 q^{95} +5.61803 q^{96} +6.70820 q^{97} +0.618034 q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 2 q^{3} - q^{4} + 5 q^{5} - q^{6} + 2 q^{7} + 2 q^{9} + 2 q^{11} - q^{12} - q^{13} - q^{14} + 5 q^{15} - 3 q^{16} - 2 q^{17} - q^{18} + 4 q^{19} - 5 q^{20} + 2 q^{21} - q^{22} + 2 q^{23}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.618034 0.437016 0.218508 0.975835i \(-0.429881\pi\)
0.218508 + 0.975835i \(0.429881\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.61803 −0.809017
\(5\) 3.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(6\) 0.618034 0.252311
\(7\) 1.00000 0.377964
\(8\) −2.23607 −0.790569
\(9\) 1.00000 0.333333
\(10\) 2.23607 0.707107
\(11\) 1.00000 0.301511 0.150756 0.988571i \(-0.451829\pi\)
0.150756 + 0.988571i \(0.451829\pi\)
\(12\) −1.61803 −0.467086
\(13\) 0.618034 0.171412 0.0857059 0.996320i \(-0.472685\pi\)
0.0857059 + 0.996320i \(0.472685\pi\)
\(14\) 0.618034 0.165177
\(15\) 3.61803 0.934172
\(16\) 1.85410 0.463525
\(17\) −5.47214 −1.32719 −0.663594 0.748093i \(-0.730970\pi\)
−0.663594 + 0.748093i \(0.730970\pi\)
\(18\) 0.618034 0.145672
\(19\) 4.23607 0.971821 0.485910 0.874009i \(-0.338488\pi\)
0.485910 + 0.874009i \(0.338488\pi\)
\(20\) −5.85410 −1.30902
\(21\) 1.00000 0.218218
\(22\) 0.618034 0.131765
\(23\) 1.00000 0.208514
\(24\) −2.23607 −0.456435
\(25\) 8.09017 1.61803
\(26\) 0.381966 0.0749097
\(27\) 1.00000 0.192450
\(28\) −1.61803 −0.305780
\(29\) 1.76393 0.327554 0.163777 0.986497i \(-0.447632\pi\)
0.163777 + 0.986497i \(0.447632\pi\)
\(30\) 2.23607 0.408248
\(31\) −8.70820 −1.56404 −0.782020 0.623254i \(-0.785810\pi\)
−0.782020 + 0.623254i \(0.785810\pi\)
\(32\) 5.61803 0.993137
\(33\) 1.00000 0.174078
\(34\) −3.38197 −0.580002
\(35\) 3.61803 0.611559
\(36\) −1.61803 −0.269672
\(37\) 0.236068 0.0388093 0.0194047 0.999812i \(-0.493823\pi\)
0.0194047 + 0.999812i \(0.493823\pi\)
\(38\) 2.61803 0.424701
\(39\) 0.618034 0.0989646
\(40\) −8.09017 −1.27917
\(41\) −3.47214 −0.542257 −0.271128 0.962543i \(-0.587397\pi\)
−0.271128 + 0.962543i \(0.587397\pi\)
\(42\) 0.618034 0.0953647
\(43\) −3.85410 −0.587745 −0.293873 0.955845i \(-0.594944\pi\)
−0.293873 + 0.955845i \(0.594944\pi\)
\(44\) −1.61803 −0.243928
\(45\) 3.61803 0.539345
\(46\) 0.618034 0.0911241
\(47\) 11.7082 1.70782 0.853909 0.520423i \(-0.174226\pi\)
0.853909 + 0.520423i \(0.174226\pi\)
\(48\) 1.85410 0.267617
\(49\) 1.00000 0.142857
\(50\) 5.00000 0.707107
\(51\) −5.47214 −0.766252
\(52\) −1.00000 −0.138675
\(53\) −0.0901699 −0.0123858 −0.00619290 0.999981i \(-0.501971\pi\)
−0.00619290 + 0.999981i \(0.501971\pi\)
\(54\) 0.618034 0.0841038
\(55\) 3.61803 0.487856
\(56\) −2.23607 −0.298807
\(57\) 4.23607 0.561081
\(58\) 1.09017 0.143146
\(59\) −3.61803 −0.471028 −0.235514 0.971871i \(-0.575677\pi\)
−0.235514 + 0.971871i \(0.575677\pi\)
\(60\) −5.85410 −0.755761
\(61\) −7.85410 −1.00561 −0.502807 0.864398i \(-0.667699\pi\)
−0.502807 + 0.864398i \(0.667699\pi\)
\(62\) −5.38197 −0.683510
\(63\) 1.00000 0.125988
\(64\) −0.236068 −0.0295085
\(65\) 2.23607 0.277350
\(66\) 0.618034 0.0760747
\(67\) −8.09017 −0.988372 −0.494186 0.869356i \(-0.664534\pi\)
−0.494186 + 0.869356i \(0.664534\pi\)
\(68\) 8.85410 1.07372
\(69\) 1.00000 0.120386
\(70\) 2.23607 0.267261
\(71\) −10.3262 −1.22550 −0.612749 0.790277i \(-0.709937\pi\)
−0.612749 + 0.790277i \(0.709937\pi\)
\(72\) −2.23607 −0.263523
\(73\) 1.76393 0.206453 0.103226 0.994658i \(-0.467083\pi\)
0.103226 + 0.994658i \(0.467083\pi\)
\(74\) 0.145898 0.0169603
\(75\) 8.09017 0.934172
\(76\) −6.85410 −0.786219
\(77\) 1.00000 0.113961
\(78\) 0.381966 0.0432491
\(79\) −14.2361 −1.60168 −0.800841 0.598877i \(-0.795614\pi\)
−0.800841 + 0.598877i \(0.795614\pi\)
\(80\) 6.70820 0.750000
\(81\) 1.00000 0.111111
\(82\) −2.14590 −0.236975
\(83\) −17.9443 −1.96964 −0.984820 0.173579i \(-0.944467\pi\)
−0.984820 + 0.173579i \(0.944467\pi\)
\(84\) −1.61803 −0.176542
\(85\) −19.7984 −2.14744
\(86\) −2.38197 −0.256854
\(87\) 1.76393 0.189113
\(88\) −2.23607 −0.238366
\(89\) 13.5623 1.43760 0.718801 0.695216i \(-0.244691\pi\)
0.718801 + 0.695216i \(0.244691\pi\)
\(90\) 2.23607 0.235702
\(91\) 0.618034 0.0647876
\(92\) −1.61803 −0.168692
\(93\) −8.70820 −0.902999
\(94\) 7.23607 0.746343
\(95\) 15.3262 1.57244
\(96\) 5.61803 0.573388
\(97\) 6.70820 0.681115 0.340557 0.940224i \(-0.389384\pi\)
0.340557 + 0.940224i \(0.389384\pi\)
\(98\) 0.618034 0.0624309
\(99\) 1.00000 0.100504
\(100\) −13.0902 −1.30902
\(101\) 2.09017 0.207980 0.103990 0.994578i \(-0.466839\pi\)
0.103990 + 0.994578i \(0.466839\pi\)
\(102\) −3.38197 −0.334865
\(103\) −18.4721 −1.82011 −0.910057 0.414484i \(-0.863962\pi\)
−0.910057 + 0.414484i \(0.863962\pi\)
\(104\) −1.38197 −0.135513
\(105\) 3.61803 0.353084
\(106\) −0.0557281 −0.00541279
\(107\) −2.90983 −0.281304 −0.140652 0.990059i \(-0.544920\pi\)
−0.140652 + 0.990059i \(0.544920\pi\)
\(108\) −1.61803 −0.155695
\(109\) 2.38197 0.228151 0.114075 0.993472i \(-0.463609\pi\)
0.114075 + 0.993472i \(0.463609\pi\)
\(110\) 2.23607 0.213201
\(111\) 0.236068 0.0224066
\(112\) 1.85410 0.175196
\(113\) 14.0902 1.32549 0.662746 0.748844i \(-0.269391\pi\)
0.662746 + 0.748844i \(0.269391\pi\)
\(114\) 2.61803 0.245201
\(115\) 3.61803 0.337383
\(116\) −2.85410 −0.264997
\(117\) 0.618034 0.0571373
\(118\) −2.23607 −0.205847
\(119\) −5.47214 −0.501630
\(120\) −8.09017 −0.738528
\(121\) −10.0000 −0.909091
\(122\) −4.85410 −0.439470
\(123\) −3.47214 −0.313072
\(124\) 14.0902 1.26533
\(125\) 11.1803 1.00000
\(126\) 0.618034 0.0550588
\(127\) −7.85410 −0.696939 −0.348469 0.937320i \(-0.613298\pi\)
−0.348469 + 0.937320i \(0.613298\pi\)
\(128\) −11.3820 −1.00603
\(129\) −3.85410 −0.339335
\(130\) 1.38197 0.121206
\(131\) −3.29180 −0.287606 −0.143803 0.989606i \(-0.545933\pi\)
−0.143803 + 0.989606i \(0.545933\pi\)
\(132\) −1.61803 −0.140832
\(133\) 4.23607 0.367314
\(134\) −5.00000 −0.431934
\(135\) 3.61803 0.311391
\(136\) 12.2361 1.04923
\(137\) 15.1803 1.29694 0.648472 0.761239i \(-0.275408\pi\)
0.648472 + 0.761239i \(0.275408\pi\)
\(138\) 0.618034 0.0526105
\(139\) 21.0344 1.78412 0.892059 0.451919i \(-0.149260\pi\)
0.892059 + 0.451919i \(0.149260\pi\)
\(140\) −5.85410 −0.494762
\(141\) 11.7082 0.986009
\(142\) −6.38197 −0.535563
\(143\) 0.618034 0.0516826
\(144\) 1.85410 0.154508
\(145\) 6.38197 0.529993
\(146\) 1.09017 0.0902231
\(147\) 1.00000 0.0824786
\(148\) −0.381966 −0.0313974
\(149\) 3.70820 0.303788 0.151894 0.988397i \(-0.451463\pi\)
0.151894 + 0.988397i \(0.451463\pi\)
\(150\) 5.00000 0.408248
\(151\) 8.65248 0.704128 0.352064 0.935976i \(-0.385480\pi\)
0.352064 + 0.935976i \(0.385480\pi\)
\(152\) −9.47214 −0.768292
\(153\) −5.47214 −0.442396
\(154\) 0.618034 0.0498026
\(155\) −31.5066 −2.53067
\(156\) −1.00000 −0.0800641
\(157\) 8.76393 0.699438 0.349719 0.936855i \(-0.386277\pi\)
0.349719 + 0.936855i \(0.386277\pi\)
\(158\) −8.79837 −0.699961
\(159\) −0.0901699 −0.00715094
\(160\) 20.3262 1.60693
\(161\) 1.00000 0.0788110
\(162\) 0.618034 0.0485573
\(163\) −20.2705 −1.58771 −0.793854 0.608108i \(-0.791929\pi\)
−0.793854 + 0.608108i \(0.791929\pi\)
\(164\) 5.61803 0.438695
\(165\) 3.61803 0.281664
\(166\) −11.0902 −0.860764
\(167\) 10.7082 0.828626 0.414313 0.910135i \(-0.364022\pi\)
0.414313 + 0.910135i \(0.364022\pi\)
\(168\) −2.23607 −0.172516
\(169\) −12.6180 −0.970618
\(170\) −12.2361 −0.938464
\(171\) 4.23607 0.323940
\(172\) 6.23607 0.475496
\(173\) −6.41641 −0.487830 −0.243915 0.969797i \(-0.578432\pi\)
−0.243915 + 0.969797i \(0.578432\pi\)
\(174\) 1.09017 0.0826456
\(175\) 8.09017 0.611559
\(176\) 1.85410 0.139758
\(177\) −3.61803 −0.271948
\(178\) 8.38197 0.628255
\(179\) −13.7984 −1.03134 −0.515669 0.856788i \(-0.672457\pi\)
−0.515669 + 0.856788i \(0.672457\pi\)
\(180\) −5.85410 −0.436339
\(181\) −3.18034 −0.236393 −0.118196 0.992990i \(-0.537711\pi\)
−0.118196 + 0.992990i \(0.537711\pi\)
\(182\) 0.381966 0.0283132
\(183\) −7.85410 −0.580592
\(184\) −2.23607 −0.164845
\(185\) 0.854102 0.0627948
\(186\) −5.38197 −0.394625
\(187\) −5.47214 −0.400162
\(188\) −18.9443 −1.38165
\(189\) 1.00000 0.0727393
\(190\) 9.47214 0.687181
\(191\) 14.1803 1.02605 0.513027 0.858373i \(-0.328524\pi\)
0.513027 + 0.858373i \(0.328524\pi\)
\(192\) −0.236068 −0.0170367
\(193\) 0.763932 0.0549890 0.0274945 0.999622i \(-0.491247\pi\)
0.0274945 + 0.999622i \(0.491247\pi\)
\(194\) 4.14590 0.297658
\(195\) 2.23607 0.160128
\(196\) −1.61803 −0.115574
\(197\) 11.5623 0.823780 0.411890 0.911234i \(-0.364869\pi\)
0.411890 + 0.911234i \(0.364869\pi\)
\(198\) 0.618034 0.0439218
\(199\) 1.43769 0.101915 0.0509577 0.998701i \(-0.483773\pi\)
0.0509577 + 0.998701i \(0.483773\pi\)
\(200\) −18.0902 −1.27917
\(201\) −8.09017 −0.570637
\(202\) 1.29180 0.0908905
\(203\) 1.76393 0.123804
\(204\) 8.85410 0.619911
\(205\) −12.5623 −0.877390
\(206\) −11.4164 −0.795419
\(207\) 1.00000 0.0695048
\(208\) 1.14590 0.0794537
\(209\) 4.23607 0.293015
\(210\) 2.23607 0.154303
\(211\) 8.88854 0.611913 0.305956 0.952046i \(-0.401024\pi\)
0.305956 + 0.952046i \(0.401024\pi\)
\(212\) 0.145898 0.0100203
\(213\) −10.3262 −0.707542
\(214\) −1.79837 −0.122934
\(215\) −13.9443 −0.950991
\(216\) −2.23607 −0.152145
\(217\) −8.70820 −0.591151
\(218\) 1.47214 0.0997056
\(219\) 1.76393 0.119195
\(220\) −5.85410 −0.394683
\(221\) −3.38197 −0.227496
\(222\) 0.145898 0.00979203
\(223\) 1.61803 0.108352 0.0541758 0.998531i \(-0.482747\pi\)
0.0541758 + 0.998531i \(0.482747\pi\)
\(224\) 5.61803 0.375371
\(225\) 8.09017 0.539345
\(226\) 8.70820 0.579261
\(227\) 23.9787 1.59152 0.795762 0.605610i \(-0.207071\pi\)
0.795762 + 0.605610i \(0.207071\pi\)
\(228\) −6.85410 −0.453924
\(229\) 27.7984 1.83697 0.918484 0.395458i \(-0.129414\pi\)
0.918484 + 0.395458i \(0.129414\pi\)
\(230\) 2.23607 0.147442
\(231\) 1.00000 0.0657952
\(232\) −3.94427 −0.258954
\(233\) 8.67376 0.568237 0.284119 0.958789i \(-0.408299\pi\)
0.284119 + 0.958789i \(0.408299\pi\)
\(234\) 0.381966 0.0249699
\(235\) 42.3607 2.76331
\(236\) 5.85410 0.381070
\(237\) −14.2361 −0.924732
\(238\) −3.38197 −0.219220
\(239\) 15.7984 1.02191 0.510956 0.859607i \(-0.329292\pi\)
0.510956 + 0.859607i \(0.329292\pi\)
\(240\) 6.70820 0.433013
\(241\) −3.29180 −0.212043 −0.106022 0.994364i \(-0.533811\pi\)
−0.106022 + 0.994364i \(0.533811\pi\)
\(242\) −6.18034 −0.397287
\(243\) 1.00000 0.0641500
\(244\) 12.7082 0.813559
\(245\) 3.61803 0.231148
\(246\) −2.14590 −0.136817
\(247\) 2.61803 0.166582
\(248\) 19.4721 1.23648
\(249\) −17.9443 −1.13717
\(250\) 6.90983 0.437016
\(251\) 17.7082 1.11773 0.558866 0.829258i \(-0.311237\pi\)
0.558866 + 0.829258i \(0.311237\pi\)
\(252\) −1.61803 −0.101927
\(253\) 1.00000 0.0628695
\(254\) −4.85410 −0.304573
\(255\) −19.7984 −1.23982
\(256\) −6.56231 −0.410144
\(257\) 23.7082 1.47888 0.739439 0.673224i \(-0.235091\pi\)
0.739439 + 0.673224i \(0.235091\pi\)
\(258\) −2.38197 −0.148295
\(259\) 0.236068 0.0146686
\(260\) −3.61803 −0.224381
\(261\) 1.76393 0.109185
\(262\) −2.03444 −0.125688
\(263\) 21.6525 1.33515 0.667574 0.744543i \(-0.267333\pi\)
0.667574 + 0.744543i \(0.267333\pi\)
\(264\) −2.23607 −0.137620
\(265\) −0.326238 −0.0200406
\(266\) 2.61803 0.160522
\(267\) 13.5623 0.830000
\(268\) 13.0902 0.799609
\(269\) 15.7426 0.959846 0.479923 0.877311i \(-0.340665\pi\)
0.479923 + 0.877311i \(0.340665\pi\)
\(270\) 2.23607 0.136083
\(271\) −15.4721 −0.939865 −0.469933 0.882702i \(-0.655722\pi\)
−0.469933 + 0.882702i \(0.655722\pi\)
\(272\) −10.1459 −0.615185
\(273\) 0.618034 0.0374051
\(274\) 9.38197 0.566785
\(275\) 8.09017 0.487856
\(276\) −1.61803 −0.0973942
\(277\) −24.3262 −1.46162 −0.730811 0.682580i \(-0.760858\pi\)
−0.730811 + 0.682580i \(0.760858\pi\)
\(278\) 13.0000 0.779688
\(279\) −8.70820 −0.521347
\(280\) −8.09017 −0.483480
\(281\) −14.6525 −0.874093 −0.437047 0.899439i \(-0.643976\pi\)
−0.437047 + 0.899439i \(0.643976\pi\)
\(282\) 7.23607 0.430902
\(283\) 25.3262 1.50549 0.752744 0.658313i \(-0.228730\pi\)
0.752744 + 0.658313i \(0.228730\pi\)
\(284\) 16.7082 0.991449
\(285\) 15.3262 0.907848
\(286\) 0.381966 0.0225861
\(287\) −3.47214 −0.204954
\(288\) 5.61803 0.331046
\(289\) 12.9443 0.761428
\(290\) 3.94427 0.231616
\(291\) 6.70820 0.393242
\(292\) −2.85410 −0.167024
\(293\) −22.8328 −1.33391 −0.666954 0.745099i \(-0.732402\pi\)
−0.666954 + 0.745099i \(0.732402\pi\)
\(294\) 0.618034 0.0360445
\(295\) −13.0902 −0.762139
\(296\) −0.527864 −0.0306815
\(297\) 1.00000 0.0580259
\(298\) 2.29180 0.132760
\(299\) 0.618034 0.0357418
\(300\) −13.0902 −0.755761
\(301\) −3.85410 −0.222147
\(302\) 5.34752 0.307715
\(303\) 2.09017 0.120077
\(304\) 7.85410 0.450464
\(305\) −28.4164 −1.62712
\(306\) −3.38197 −0.193334
\(307\) −34.1246 −1.94759 −0.973797 0.227418i \(-0.926972\pi\)
−0.973797 + 0.227418i \(0.926972\pi\)
\(308\) −1.61803 −0.0921960
\(309\) −18.4721 −1.05084
\(310\) −19.4721 −1.10594
\(311\) −10.5066 −0.595773 −0.297887 0.954601i \(-0.596282\pi\)
−0.297887 + 0.954601i \(0.596282\pi\)
\(312\) −1.38197 −0.0782384
\(313\) 33.8885 1.91549 0.957747 0.287612i \(-0.0928615\pi\)
0.957747 + 0.287612i \(0.0928615\pi\)
\(314\) 5.41641 0.305666
\(315\) 3.61803 0.203853
\(316\) 23.0344 1.29579
\(317\) −0.0901699 −0.00506445 −0.00253222 0.999997i \(-0.500806\pi\)
−0.00253222 + 0.999997i \(0.500806\pi\)
\(318\) −0.0557281 −0.00312508
\(319\) 1.76393 0.0987612
\(320\) −0.854102 −0.0477458
\(321\) −2.90983 −0.162411
\(322\) 0.618034 0.0344417
\(323\) −23.1803 −1.28979
\(324\) −1.61803 −0.0898908
\(325\) 5.00000 0.277350
\(326\) −12.5279 −0.693854
\(327\) 2.38197 0.131723
\(328\) 7.76393 0.428691
\(329\) 11.7082 0.645494
\(330\) 2.23607 0.123091
\(331\) 7.88854 0.433594 0.216797 0.976217i \(-0.430439\pi\)
0.216797 + 0.976217i \(0.430439\pi\)
\(332\) 29.0344 1.59347
\(333\) 0.236068 0.0129364
\(334\) 6.61803 0.362123
\(335\) −29.2705 −1.59922
\(336\) 1.85410 0.101150
\(337\) 10.0344 0.546611 0.273305 0.961927i \(-0.411883\pi\)
0.273305 + 0.961927i \(0.411883\pi\)
\(338\) −7.79837 −0.424176
\(339\) 14.0902 0.765273
\(340\) 32.0344 1.73731
\(341\) −8.70820 −0.471576
\(342\) 2.61803 0.141567
\(343\) 1.00000 0.0539949
\(344\) 8.61803 0.464653
\(345\) 3.61803 0.194788
\(346\) −3.96556 −0.213190
\(347\) −7.29180 −0.391444 −0.195722 0.980659i \(-0.562705\pi\)
−0.195722 + 0.980659i \(0.562705\pi\)
\(348\) −2.85410 −0.152996
\(349\) −19.7984 −1.05978 −0.529891 0.848066i \(-0.677767\pi\)
−0.529891 + 0.848066i \(0.677767\pi\)
\(350\) 5.00000 0.267261
\(351\) 0.618034 0.0329882
\(352\) 5.61803 0.299442
\(353\) 6.41641 0.341511 0.170755 0.985313i \(-0.445379\pi\)
0.170755 + 0.985313i \(0.445379\pi\)
\(354\) −2.23607 −0.118846
\(355\) −37.3607 −1.98290
\(356\) −21.9443 −1.16304
\(357\) −5.47214 −0.289616
\(358\) −8.52786 −0.450712
\(359\) 8.56231 0.451901 0.225951 0.974139i \(-0.427451\pi\)
0.225951 + 0.974139i \(0.427451\pi\)
\(360\) −8.09017 −0.426389
\(361\) −1.05573 −0.0555646
\(362\) −1.96556 −0.103307
\(363\) −10.0000 −0.524864
\(364\) −1.00000 −0.0524142
\(365\) 6.38197 0.334047
\(366\) −4.85410 −0.253728
\(367\) 13.2705 0.692715 0.346357 0.938103i \(-0.387418\pi\)
0.346357 + 0.938103i \(0.387418\pi\)
\(368\) 1.85410 0.0966517
\(369\) −3.47214 −0.180752
\(370\) 0.527864 0.0274423
\(371\) −0.0901699 −0.00468139
\(372\) 14.0902 0.730541
\(373\) 34.1246 1.76691 0.883453 0.468520i \(-0.155213\pi\)
0.883453 + 0.468520i \(0.155213\pi\)
\(374\) −3.38197 −0.174877
\(375\) 11.1803 0.577350
\(376\) −26.1803 −1.35015
\(377\) 1.09017 0.0561466
\(378\) 0.618034 0.0317882
\(379\) −25.5279 −1.31128 −0.655639 0.755074i \(-0.727601\pi\)
−0.655639 + 0.755074i \(0.727601\pi\)
\(380\) −24.7984 −1.27213
\(381\) −7.85410 −0.402378
\(382\) 8.76393 0.448402
\(383\) −3.94427 −0.201543 −0.100771 0.994910i \(-0.532131\pi\)
−0.100771 + 0.994910i \(0.532131\pi\)
\(384\) −11.3820 −0.580834
\(385\) 3.61803 0.184392
\(386\) 0.472136 0.0240311
\(387\) −3.85410 −0.195915
\(388\) −10.8541 −0.551034
\(389\) −19.9443 −1.01121 −0.505607 0.862764i \(-0.668732\pi\)
−0.505607 + 0.862764i \(0.668732\pi\)
\(390\) 1.38197 0.0699786
\(391\) −5.47214 −0.276738
\(392\) −2.23607 −0.112938
\(393\) −3.29180 −0.166049
\(394\) 7.14590 0.360005
\(395\) −51.5066 −2.59158
\(396\) −1.61803 −0.0813093
\(397\) 22.1803 1.11320 0.556600 0.830781i \(-0.312106\pi\)
0.556600 + 0.830781i \(0.312106\pi\)
\(398\) 0.888544 0.0445387
\(399\) 4.23607 0.212069
\(400\) 15.0000 0.750000
\(401\) −5.00000 −0.249688 −0.124844 0.992176i \(-0.539843\pi\)
−0.124844 + 0.992176i \(0.539843\pi\)
\(402\) −5.00000 −0.249377
\(403\) −5.38197 −0.268095
\(404\) −3.38197 −0.168259
\(405\) 3.61803 0.179782
\(406\) 1.09017 0.0541042
\(407\) 0.236068 0.0117015
\(408\) 12.2361 0.605776
\(409\) −24.8885 −1.23066 −0.615330 0.788270i \(-0.710977\pi\)
−0.615330 + 0.788270i \(0.710977\pi\)
\(410\) −7.76393 −0.383433
\(411\) 15.1803 0.748791
\(412\) 29.8885 1.47250
\(413\) −3.61803 −0.178032
\(414\) 0.618034 0.0303747
\(415\) −64.9230 −3.18694
\(416\) 3.47214 0.170235
\(417\) 21.0344 1.03006
\(418\) 2.61803 0.128052
\(419\) 13.9098 0.679540 0.339770 0.940509i \(-0.389651\pi\)
0.339770 + 0.940509i \(0.389651\pi\)
\(420\) −5.85410 −0.285651
\(421\) −29.5623 −1.44078 −0.720389 0.693570i \(-0.756037\pi\)
−0.720389 + 0.693570i \(0.756037\pi\)
\(422\) 5.49342 0.267416
\(423\) 11.7082 0.569272
\(424\) 0.201626 0.00979183
\(425\) −44.2705 −2.14744
\(426\) −6.38197 −0.309207
\(427\) −7.85410 −0.380087
\(428\) 4.70820 0.227580
\(429\) 0.618034 0.0298390
\(430\) −8.61803 −0.415599
\(431\) 11.2705 0.542881 0.271441 0.962455i \(-0.412500\pi\)
0.271441 + 0.962455i \(0.412500\pi\)
\(432\) 1.85410 0.0892055
\(433\) 20.7639 0.997851 0.498925 0.866645i \(-0.333728\pi\)
0.498925 + 0.866645i \(0.333728\pi\)
\(434\) −5.38197 −0.258343
\(435\) 6.38197 0.305992
\(436\) −3.85410 −0.184578
\(437\) 4.23607 0.202639
\(438\) 1.09017 0.0520903
\(439\) 9.18034 0.438154 0.219077 0.975708i \(-0.429695\pi\)
0.219077 + 0.975708i \(0.429695\pi\)
\(440\) −8.09017 −0.385684
\(441\) 1.00000 0.0476190
\(442\) −2.09017 −0.0994192
\(443\) −26.8328 −1.27487 −0.637433 0.770506i \(-0.720004\pi\)
−0.637433 + 0.770506i \(0.720004\pi\)
\(444\) −0.381966 −0.0181273
\(445\) 49.0689 2.32609
\(446\) 1.00000 0.0473514
\(447\) 3.70820 0.175392
\(448\) −0.236068 −0.0111532
\(449\) 40.2705 1.90048 0.950241 0.311514i \(-0.100836\pi\)
0.950241 + 0.311514i \(0.100836\pi\)
\(450\) 5.00000 0.235702
\(451\) −3.47214 −0.163496
\(452\) −22.7984 −1.07235
\(453\) 8.65248 0.406529
\(454\) 14.8197 0.695521
\(455\) 2.23607 0.104828
\(456\) −9.47214 −0.443573
\(457\) −2.74265 −0.128296 −0.0641478 0.997940i \(-0.520433\pi\)
−0.0641478 + 0.997940i \(0.520433\pi\)
\(458\) 17.1803 0.802785
\(459\) −5.47214 −0.255417
\(460\) −5.85410 −0.272949
\(461\) −5.32624 −0.248068 −0.124034 0.992278i \(-0.539583\pi\)
−0.124034 + 0.992278i \(0.539583\pi\)
\(462\) 0.618034 0.0287535
\(463\) 14.1246 0.656426 0.328213 0.944604i \(-0.393554\pi\)
0.328213 + 0.944604i \(0.393554\pi\)
\(464\) 3.27051 0.151830
\(465\) −31.5066 −1.46108
\(466\) 5.36068 0.248329
\(467\) −32.8885 −1.52190 −0.760950 0.648810i \(-0.775267\pi\)
−0.760950 + 0.648810i \(0.775267\pi\)
\(468\) −1.00000 −0.0462250
\(469\) −8.09017 −0.373569
\(470\) 26.1803 1.20761
\(471\) 8.76393 0.403821
\(472\) 8.09017 0.372380
\(473\) −3.85410 −0.177212
\(474\) −8.79837 −0.404123
\(475\) 34.2705 1.57244
\(476\) 8.85410 0.405827
\(477\) −0.0901699 −0.00412860
\(478\) 9.76393 0.446592
\(479\) −22.7082 −1.03756 −0.518782 0.854906i \(-0.673614\pi\)
−0.518782 + 0.854906i \(0.673614\pi\)
\(480\) 20.3262 0.927762
\(481\) 0.145898 0.00665238
\(482\) −2.03444 −0.0926663
\(483\) 1.00000 0.0455016
\(484\) 16.1803 0.735470
\(485\) 24.2705 1.10207
\(486\) 0.618034 0.0280346
\(487\) −30.1246 −1.36508 −0.682538 0.730850i \(-0.739124\pi\)
−0.682538 + 0.730850i \(0.739124\pi\)
\(488\) 17.5623 0.795008
\(489\) −20.2705 −0.916664
\(490\) 2.23607 0.101015
\(491\) −2.43769 −0.110012 −0.0550058 0.998486i \(-0.517518\pi\)
−0.0550058 + 0.998486i \(0.517518\pi\)
\(492\) 5.61803 0.253281
\(493\) −9.65248 −0.434726
\(494\) 1.61803 0.0727988
\(495\) 3.61803 0.162619
\(496\) −16.1459 −0.724972
\(497\) −10.3262 −0.463195
\(498\) −11.0902 −0.496962
\(499\) 16.5623 0.741431 0.370715 0.928747i \(-0.379113\pi\)
0.370715 + 0.928747i \(0.379113\pi\)
\(500\) −18.0902 −0.809017
\(501\) 10.7082 0.478407
\(502\) 10.9443 0.488467
\(503\) −25.6869 −1.14532 −0.572662 0.819792i \(-0.694089\pi\)
−0.572662 + 0.819792i \(0.694089\pi\)
\(504\) −2.23607 −0.0996024
\(505\) 7.56231 0.336518
\(506\) 0.618034 0.0274750
\(507\) −12.6180 −0.560387
\(508\) 12.7082 0.563835
\(509\) 30.7639 1.36359 0.681794 0.731545i \(-0.261200\pi\)
0.681794 + 0.731545i \(0.261200\pi\)
\(510\) −12.2361 −0.541822
\(511\) 1.76393 0.0780318
\(512\) 18.7082 0.826794
\(513\) 4.23607 0.187027
\(514\) 14.6525 0.646293
\(515\) −66.8328 −2.94501
\(516\) 6.23607 0.274528
\(517\) 11.7082 0.514926
\(518\) 0.145898 0.00641039
\(519\) −6.41641 −0.281649
\(520\) −5.00000 −0.219265
\(521\) −21.4164 −0.938270 −0.469135 0.883127i \(-0.655434\pi\)
−0.469135 + 0.883127i \(0.655434\pi\)
\(522\) 1.09017 0.0477154
\(523\) −10.5836 −0.462788 −0.231394 0.972860i \(-0.574329\pi\)
−0.231394 + 0.972860i \(0.574329\pi\)
\(524\) 5.32624 0.232678
\(525\) 8.09017 0.353084
\(526\) 13.3820 0.583481
\(527\) 47.6525 2.07577
\(528\) 1.85410 0.0806894
\(529\) 1.00000 0.0434783
\(530\) −0.201626 −0.00875808
\(531\) −3.61803 −0.157009
\(532\) −6.85410 −0.297163
\(533\) −2.14590 −0.0929492
\(534\) 8.38197 0.362723
\(535\) −10.5279 −0.455159
\(536\) 18.0902 0.781376
\(537\) −13.7984 −0.595444
\(538\) 9.72949 0.419468
\(539\) 1.00000 0.0430730
\(540\) −5.85410 −0.251920
\(541\) −15.7082 −0.675348 −0.337674 0.941263i \(-0.609640\pi\)
−0.337674 + 0.941263i \(0.609640\pi\)
\(542\) −9.56231 −0.410736
\(543\) −3.18034 −0.136481
\(544\) −30.7426 −1.31808
\(545\) 8.61803 0.369156
\(546\) 0.381966 0.0163466
\(547\) −38.8541 −1.66128 −0.830641 0.556809i \(-0.812026\pi\)
−0.830641 + 0.556809i \(0.812026\pi\)
\(548\) −24.5623 −1.04925
\(549\) −7.85410 −0.335205
\(550\) 5.00000 0.213201
\(551\) 7.47214 0.318324
\(552\) −2.23607 −0.0951734
\(553\) −14.2361 −0.605379
\(554\) −15.0344 −0.638752
\(555\) 0.854102 0.0362546
\(556\) −34.0344 −1.44338
\(557\) 12.7639 0.540825 0.270413 0.962745i \(-0.412840\pi\)
0.270413 + 0.962745i \(0.412840\pi\)
\(558\) −5.38197 −0.227837
\(559\) −2.38197 −0.100746
\(560\) 6.70820 0.283473
\(561\) −5.47214 −0.231034
\(562\) −9.05573 −0.381993
\(563\) 36.2148 1.52627 0.763136 0.646238i \(-0.223659\pi\)
0.763136 + 0.646238i \(0.223659\pi\)
\(564\) −18.9443 −0.797698
\(565\) 50.9787 2.14469
\(566\) 15.6525 0.657923
\(567\) 1.00000 0.0419961
\(568\) 23.0902 0.968842
\(569\) 25.8885 1.08530 0.542652 0.839958i \(-0.317420\pi\)
0.542652 + 0.839958i \(0.317420\pi\)
\(570\) 9.47214 0.396744
\(571\) −24.5967 −1.02934 −0.514671 0.857388i \(-0.672086\pi\)
−0.514671 + 0.857388i \(0.672086\pi\)
\(572\) −1.00000 −0.0418121
\(573\) 14.1803 0.592392
\(574\) −2.14590 −0.0895681
\(575\) 8.09017 0.337383
\(576\) −0.236068 −0.00983617
\(577\) −40.2492 −1.67560 −0.837799 0.545979i \(-0.816158\pi\)
−0.837799 + 0.545979i \(0.816158\pi\)
\(578\) 8.00000 0.332756
\(579\) 0.763932 0.0317479
\(580\) −10.3262 −0.428774
\(581\) −17.9443 −0.744454
\(582\) 4.14590 0.171853
\(583\) −0.0901699 −0.00373446
\(584\) −3.94427 −0.163215
\(585\) 2.23607 0.0924500
\(586\) −14.1115 −0.582939
\(587\) 44.7984 1.84903 0.924513 0.381150i \(-0.124472\pi\)
0.924513 + 0.381150i \(0.124472\pi\)
\(588\) −1.61803 −0.0667266
\(589\) −36.8885 −1.51997
\(590\) −8.09017 −0.333067
\(591\) 11.5623 0.475610
\(592\) 0.437694 0.0179891
\(593\) −45.1246 −1.85305 −0.926523 0.376238i \(-0.877217\pi\)
−0.926523 + 0.376238i \(0.877217\pi\)
\(594\) 0.618034 0.0253582
\(595\) −19.7984 −0.811654
\(596\) −6.00000 −0.245770
\(597\) 1.43769 0.0588409
\(598\) 0.381966 0.0156198
\(599\) −7.38197 −0.301619 −0.150809 0.988563i \(-0.548188\pi\)
−0.150809 + 0.988563i \(0.548188\pi\)
\(600\) −18.0902 −0.738528
\(601\) 31.6869 1.29254 0.646268 0.763110i \(-0.276329\pi\)
0.646268 + 0.763110i \(0.276329\pi\)
\(602\) −2.38197 −0.0970817
\(603\) −8.09017 −0.329457
\(604\) −14.0000 −0.569652
\(605\) −36.1803 −1.47094
\(606\) 1.29180 0.0524756
\(607\) 6.50658 0.264094 0.132047 0.991243i \(-0.457845\pi\)
0.132047 + 0.991243i \(0.457845\pi\)
\(608\) 23.7984 0.965152
\(609\) 1.76393 0.0714781
\(610\) −17.5623 −0.711077
\(611\) 7.23607 0.292740
\(612\) 8.85410 0.357906
\(613\) −21.8328 −0.881819 −0.440910 0.897552i \(-0.645344\pi\)
−0.440910 + 0.897552i \(0.645344\pi\)
\(614\) −21.0902 −0.851130
\(615\) −12.5623 −0.506561
\(616\) −2.23607 −0.0900937
\(617\) −7.74265 −0.311707 −0.155854 0.987780i \(-0.549813\pi\)
−0.155854 + 0.987780i \(0.549813\pi\)
\(618\) −11.4164 −0.459235
\(619\) 4.90983 0.197343 0.0986714 0.995120i \(-0.468541\pi\)
0.0986714 + 0.995120i \(0.468541\pi\)
\(620\) 50.9787 2.04735
\(621\) 1.00000 0.0401286
\(622\) −6.49342 −0.260363
\(623\) 13.5623 0.543362
\(624\) 1.14590 0.0458726
\(625\) 0 0
\(626\) 20.9443 0.837101
\(627\) 4.23607 0.169172
\(628\) −14.1803 −0.565857
\(629\) −1.29180 −0.0515073
\(630\) 2.23607 0.0890871
\(631\) 5.00000 0.199047 0.0995234 0.995035i \(-0.468268\pi\)
0.0995234 + 0.995035i \(0.468268\pi\)
\(632\) 31.8328 1.26624
\(633\) 8.88854 0.353288
\(634\) −0.0557281 −0.00221325
\(635\) −28.4164 −1.12767
\(636\) 0.145898 0.00578523
\(637\) 0.618034 0.0244874
\(638\) 1.09017 0.0431602
\(639\) −10.3262 −0.408500
\(640\) −41.1803 −1.62780
\(641\) −24.7984 −0.979477 −0.489738 0.871869i \(-0.662908\pi\)
−0.489738 + 0.871869i \(0.662908\pi\)
\(642\) −1.79837 −0.0709762
\(643\) 3.96556 0.156386 0.0781932 0.996938i \(-0.475085\pi\)
0.0781932 + 0.996938i \(0.475085\pi\)
\(644\) −1.61803 −0.0637595
\(645\) −13.9443 −0.549055
\(646\) −14.3262 −0.563658
\(647\) 40.2705 1.58320 0.791599 0.611042i \(-0.209249\pi\)
0.791599 + 0.611042i \(0.209249\pi\)
\(648\) −2.23607 −0.0878410
\(649\) −3.61803 −0.142020
\(650\) 3.09017 0.121206
\(651\) −8.70820 −0.341301
\(652\) 32.7984 1.28448
\(653\) 4.09017 0.160061 0.0800304 0.996792i \(-0.474498\pi\)
0.0800304 + 0.996792i \(0.474498\pi\)
\(654\) 1.47214 0.0575651
\(655\) −11.9098 −0.465356
\(656\) −6.43769 −0.251350
\(657\) 1.76393 0.0688175
\(658\) 7.23607 0.282091
\(659\) −35.9443 −1.40019 −0.700095 0.714050i \(-0.746859\pi\)
−0.700095 + 0.714050i \(0.746859\pi\)
\(660\) −5.85410 −0.227871
\(661\) 23.6525 0.919975 0.459987 0.887925i \(-0.347854\pi\)
0.459987 + 0.887925i \(0.347854\pi\)
\(662\) 4.87539 0.189487
\(663\) −3.38197 −0.131345
\(664\) 40.1246 1.55714
\(665\) 15.3262 0.594326
\(666\) 0.145898 0.00565343
\(667\) 1.76393 0.0682997
\(668\) −17.3262 −0.670372
\(669\) 1.61803 0.0625568
\(670\) −18.0902 −0.698884
\(671\) −7.85410 −0.303204
\(672\) 5.61803 0.216720
\(673\) −34.4164 −1.32666 −0.663328 0.748329i \(-0.730856\pi\)
−0.663328 + 0.748329i \(0.730856\pi\)
\(674\) 6.20163 0.238878
\(675\) 8.09017 0.311391
\(676\) 20.4164 0.785246
\(677\) 34.3262 1.31926 0.659632 0.751589i \(-0.270712\pi\)
0.659632 + 0.751589i \(0.270712\pi\)
\(678\) 8.70820 0.334437
\(679\) 6.70820 0.257437
\(680\) 44.2705 1.69770
\(681\) 23.9787 0.918866
\(682\) −5.38197 −0.206086
\(683\) 14.1246 0.540463 0.270232 0.962795i \(-0.412900\pi\)
0.270232 + 0.962795i \(0.412900\pi\)
\(684\) −6.85410 −0.262073
\(685\) 54.9230 2.09850
\(686\) 0.618034 0.0235966
\(687\) 27.7984 1.06057
\(688\) −7.14590 −0.272435
\(689\) −0.0557281 −0.00212307
\(690\) 2.23607 0.0851257
\(691\) −20.6180 −0.784347 −0.392173 0.919891i \(-0.628277\pi\)
−0.392173 + 0.919891i \(0.628277\pi\)
\(692\) 10.3820 0.394663
\(693\) 1.00000 0.0379869
\(694\) −4.50658 −0.171067
\(695\) 76.1033 2.88676
\(696\) −3.94427 −0.149507
\(697\) 19.0000 0.719676
\(698\) −12.2361 −0.463142
\(699\) 8.67376 0.328072
\(700\) −13.0902 −0.494762
\(701\) 8.09017 0.305562 0.152781 0.988260i \(-0.451177\pi\)
0.152781 + 0.988260i \(0.451177\pi\)
\(702\) 0.381966 0.0144164
\(703\) 1.00000 0.0377157
\(704\) −0.236068 −0.00889715
\(705\) 42.3607 1.59540
\(706\) 3.96556 0.149246
\(707\) 2.09017 0.0786089
\(708\) 5.85410 0.220011
\(709\) 8.72949 0.327843 0.163921 0.986473i \(-0.447586\pi\)
0.163921 + 0.986473i \(0.447586\pi\)
\(710\) −23.0902 −0.866559
\(711\) −14.2361 −0.533894
\(712\) −30.3262 −1.13652
\(713\) −8.70820 −0.326125
\(714\) −3.38197 −0.126567
\(715\) 2.23607 0.0836242
\(716\) 22.3262 0.834371
\(717\) 15.7984 0.590001
\(718\) 5.29180 0.197488
\(719\) 32.8885 1.22654 0.613268 0.789875i \(-0.289855\pi\)
0.613268 + 0.789875i \(0.289855\pi\)
\(720\) 6.70820 0.250000
\(721\) −18.4721 −0.687938
\(722\) −0.652476 −0.0242826
\(723\) −3.29180 −0.122423
\(724\) 5.14590 0.191246
\(725\) 14.2705 0.529993
\(726\) −6.18034 −0.229374
\(727\) 51.5410 1.91155 0.955775 0.294098i \(-0.0950192\pi\)
0.955775 + 0.294098i \(0.0950192\pi\)
\(728\) −1.38197 −0.0512191
\(729\) 1.00000 0.0370370
\(730\) 3.94427 0.145984
\(731\) 21.0902 0.780048
\(732\) 12.7082 0.469709
\(733\) 47.2361 1.74470 0.872352 0.488878i \(-0.162594\pi\)
0.872352 + 0.488878i \(0.162594\pi\)
\(734\) 8.20163 0.302728
\(735\) 3.61803 0.133453
\(736\) 5.61803 0.207083
\(737\) −8.09017 −0.298005
\(738\) −2.14590 −0.0789916
\(739\) −31.4721 −1.15772 −0.578861 0.815427i \(-0.696502\pi\)
−0.578861 + 0.815427i \(0.696502\pi\)
\(740\) −1.38197 −0.0508021
\(741\) 2.61803 0.0961759
\(742\) −0.0557281 −0.00204584
\(743\) 15.6180 0.572970 0.286485 0.958085i \(-0.407513\pi\)
0.286485 + 0.958085i \(0.407513\pi\)
\(744\) 19.4721 0.713883
\(745\) 13.4164 0.491539
\(746\) 21.0902 0.772166
\(747\) −17.9443 −0.656547
\(748\) 8.85410 0.323738
\(749\) −2.90983 −0.106323
\(750\) 6.90983 0.252311
\(751\) 10.4508 0.381357 0.190678 0.981653i \(-0.438931\pi\)
0.190678 + 0.981653i \(0.438931\pi\)
\(752\) 21.7082 0.791617
\(753\) 17.7082 0.645323
\(754\) 0.673762 0.0245370
\(755\) 31.3050 1.13930
\(756\) −1.61803 −0.0588473
\(757\) 53.6525 1.95003 0.975016 0.222134i \(-0.0713022\pi\)
0.975016 + 0.222134i \(0.0713022\pi\)
\(758\) −15.7771 −0.573050
\(759\) 1.00000 0.0362977
\(760\) −34.2705 −1.24312
\(761\) 41.8885 1.51846 0.759229 0.650823i \(-0.225576\pi\)
0.759229 + 0.650823i \(0.225576\pi\)
\(762\) −4.85410 −0.175846
\(763\) 2.38197 0.0862330
\(764\) −22.9443 −0.830095
\(765\) −19.7984 −0.715812
\(766\) −2.43769 −0.0880775
\(767\) −2.23607 −0.0807397
\(768\) −6.56231 −0.236797
\(769\) −10.6525 −0.384138 −0.192069 0.981381i \(-0.561520\pi\)
−0.192069 + 0.981381i \(0.561520\pi\)
\(770\) 2.23607 0.0805823
\(771\) 23.7082 0.853830
\(772\) −1.23607 −0.0444871
\(773\) −20.5967 −0.740814 −0.370407 0.928870i \(-0.620782\pi\)
−0.370407 + 0.928870i \(0.620782\pi\)
\(774\) −2.38197 −0.0856180
\(775\) −70.4508 −2.53067
\(776\) −15.0000 −0.538469
\(777\) 0.236068 0.00846889
\(778\) −12.3262 −0.441917
\(779\) −14.7082 −0.526976
\(780\) −3.61803 −0.129546
\(781\) −10.3262 −0.369502
\(782\) −3.38197 −0.120939
\(783\) 1.76393 0.0630378
\(784\) 1.85410 0.0662179
\(785\) 31.7082 1.13171
\(786\) −2.03444 −0.0725661
\(787\) 13.7984 0.491859 0.245929 0.969288i \(-0.420907\pi\)
0.245929 + 0.969288i \(0.420907\pi\)
\(788\) −18.7082 −0.666452
\(789\) 21.6525 0.770849
\(790\) −31.8328 −1.13256
\(791\) 14.0902 0.500989
\(792\) −2.23607 −0.0794552
\(793\) −4.85410 −0.172374
\(794\) 13.7082 0.486486
\(795\) −0.326238 −0.0115705
\(796\) −2.32624 −0.0824513
\(797\) 7.12461 0.252367 0.126183 0.992007i \(-0.459727\pi\)
0.126183 + 0.992007i \(0.459727\pi\)
\(798\) 2.61803 0.0926774
\(799\) −64.0689 −2.26659
\(800\) 45.4508 1.60693
\(801\) 13.5623 0.479201
\(802\) −3.09017 −0.109118
\(803\) 1.76393 0.0622478
\(804\) 13.0902 0.461655
\(805\) 3.61803 0.127519
\(806\) −3.32624 −0.117162
\(807\) 15.7426 0.554167
\(808\) −4.67376 −0.164422
\(809\) −6.72949 −0.236596 −0.118298 0.992978i \(-0.537744\pi\)
−0.118298 + 0.992978i \(0.537744\pi\)
\(810\) 2.23607 0.0785674
\(811\) −12.3050 −0.432085 −0.216043 0.976384i \(-0.569315\pi\)
−0.216043 + 0.976384i \(0.569315\pi\)
\(812\) −2.85410 −0.100159
\(813\) −15.4721 −0.542631
\(814\) 0.145898 0.00511372
\(815\) −73.3394 −2.56897
\(816\) −10.1459 −0.355177
\(817\) −16.3262 −0.571183
\(818\) −15.3820 −0.537818
\(819\) 0.618034 0.0215959
\(820\) 20.3262 0.709823
\(821\) −30.5410 −1.06589 −0.532944 0.846150i \(-0.678915\pi\)
−0.532944 + 0.846150i \(0.678915\pi\)
\(822\) 9.38197 0.327234
\(823\) 43.2148 1.50637 0.753186 0.657807i \(-0.228516\pi\)
0.753186 + 0.657807i \(0.228516\pi\)
\(824\) 41.3050 1.43893
\(825\) 8.09017 0.281664
\(826\) −2.23607 −0.0778028
\(827\) −0.854102 −0.0297000 −0.0148500 0.999890i \(-0.504727\pi\)
−0.0148500 + 0.999890i \(0.504727\pi\)
\(828\) −1.61803 −0.0562306
\(829\) 38.7771 1.34678 0.673392 0.739286i \(-0.264837\pi\)
0.673392 + 0.739286i \(0.264837\pi\)
\(830\) −40.1246 −1.39275
\(831\) −24.3262 −0.843868
\(832\) −0.145898 −0.00505810
\(833\) −5.47214 −0.189598
\(834\) 13.0000 0.450153
\(835\) 38.7426 1.34074
\(836\) −6.85410 −0.237054
\(837\) −8.70820 −0.301000
\(838\) 8.59675 0.296970
\(839\) −0.978714 −0.0337890 −0.0168945 0.999857i \(-0.505378\pi\)
−0.0168945 + 0.999857i \(0.505378\pi\)
\(840\) −8.09017 −0.279137
\(841\) −25.8885 −0.892708
\(842\) −18.2705 −0.629643
\(843\) −14.6525 −0.504658
\(844\) −14.3820 −0.495048
\(845\) −45.6525 −1.57049
\(846\) 7.23607 0.248781
\(847\) −10.0000 −0.343604
\(848\) −0.167184 −0.00574113
\(849\) 25.3262 0.869194
\(850\) −27.3607 −0.938464
\(851\) 0.236068 0.00809231
\(852\) 16.7082 0.572414
\(853\) 22.0689 0.755624 0.377812 0.925882i \(-0.376677\pi\)
0.377812 + 0.925882i \(0.376677\pi\)
\(854\) −4.85410 −0.166104
\(855\) 15.3262 0.524146
\(856\) 6.50658 0.222390
\(857\) 1.12461 0.0384160 0.0192080 0.999816i \(-0.493886\pi\)
0.0192080 + 0.999816i \(0.493886\pi\)
\(858\) 0.381966 0.0130401
\(859\) −1.63932 −0.0559329 −0.0279664 0.999609i \(-0.508903\pi\)
−0.0279664 + 0.999609i \(0.508903\pi\)
\(860\) 22.5623 0.769368
\(861\) −3.47214 −0.118330
\(862\) 6.96556 0.237248
\(863\) 7.81966 0.266184 0.133092 0.991104i \(-0.457509\pi\)
0.133092 + 0.991104i \(0.457509\pi\)
\(864\) 5.61803 0.191129
\(865\) −23.2148 −0.789326
\(866\) 12.8328 0.436077
\(867\) 12.9443 0.439611
\(868\) 14.0902 0.478252
\(869\) −14.2361 −0.482926
\(870\) 3.94427 0.133723
\(871\) −5.00000 −0.169419
\(872\) −5.32624 −0.180369
\(873\) 6.70820 0.227038
\(874\) 2.61803 0.0885563
\(875\) 11.1803 0.377964
\(876\) −2.85410 −0.0964312
\(877\) 20.0000 0.675352 0.337676 0.941262i \(-0.390359\pi\)
0.337676 + 0.941262i \(0.390359\pi\)
\(878\) 5.67376 0.191480
\(879\) −22.8328 −0.770132
\(880\) 6.70820 0.226134
\(881\) −34.2918 −1.15532 −0.577660 0.816277i \(-0.696034\pi\)
−0.577660 + 0.816277i \(0.696034\pi\)
\(882\) 0.618034 0.0208103
\(883\) 4.90983 0.165229 0.0826145 0.996582i \(-0.473673\pi\)
0.0826145 + 0.996582i \(0.473673\pi\)
\(884\) 5.47214 0.184048
\(885\) −13.0902 −0.440021
\(886\) −16.5836 −0.557137
\(887\) 3.02129 0.101445 0.0507224 0.998713i \(-0.483848\pi\)
0.0507224 + 0.998713i \(0.483848\pi\)
\(888\) −0.527864 −0.0177140
\(889\) −7.85410 −0.263418
\(890\) 30.3262 1.01654
\(891\) 1.00000 0.0335013
\(892\) −2.61803 −0.0876583
\(893\) 49.5967 1.65969
\(894\) 2.29180 0.0766491
\(895\) −49.9230 −1.66874
\(896\) −11.3820 −0.380245
\(897\) 0.618034 0.0206356
\(898\) 24.8885 0.830541
\(899\) −15.3607 −0.512307
\(900\) −13.0902 −0.436339
\(901\) 0.493422 0.0164383
\(902\) −2.14590 −0.0714506
\(903\) −3.85410 −0.128256
\(904\) −31.5066 −1.04789
\(905\) −11.5066 −0.382492
\(906\) 5.34752 0.177660
\(907\) −2.27051 −0.0753910 −0.0376955 0.999289i \(-0.512002\pi\)
−0.0376955 + 0.999289i \(0.512002\pi\)
\(908\) −38.7984 −1.28757
\(909\) 2.09017 0.0693266
\(910\) 1.38197 0.0458117
\(911\) −41.0132 −1.35883 −0.679413 0.733756i \(-0.737766\pi\)
−0.679413 + 0.733756i \(0.737766\pi\)
\(912\) 7.85410 0.260075
\(913\) −17.9443 −0.593869
\(914\) −1.69505 −0.0560672
\(915\) −28.4164 −0.939417
\(916\) −44.9787 −1.48614
\(917\) −3.29180 −0.108705
\(918\) −3.38197 −0.111622
\(919\) −42.1935 −1.39183 −0.695917 0.718122i \(-0.745002\pi\)
−0.695917 + 0.718122i \(0.745002\pi\)
\(920\) −8.09017 −0.266725
\(921\) −34.1246 −1.12444
\(922\) −3.29180 −0.108410
\(923\) −6.38197 −0.210065
\(924\) −1.61803 −0.0532294
\(925\) 1.90983 0.0627948
\(926\) 8.72949 0.286869
\(927\) −18.4721 −0.606705
\(928\) 9.90983 0.325306
\(929\) −34.9230 −1.14579 −0.572893 0.819630i \(-0.694179\pi\)
−0.572893 + 0.819630i \(0.694179\pi\)
\(930\) −19.4721 −0.638516
\(931\) 4.23607 0.138832
\(932\) −14.0344 −0.459713
\(933\) −10.5066 −0.343970
\(934\) −20.3262 −0.665095
\(935\) −19.7984 −0.647476
\(936\) −1.38197 −0.0451710
\(937\) 21.3607 0.697823 0.348911 0.937156i \(-0.386551\pi\)
0.348911 + 0.937156i \(0.386551\pi\)
\(938\) −5.00000 −0.163256
\(939\) 33.8885 1.10591
\(940\) −68.5410 −2.23556
\(941\) −0.360680 −0.0117578 −0.00587891 0.999983i \(-0.501871\pi\)
−0.00587891 + 0.999983i \(0.501871\pi\)
\(942\) 5.41641 0.176476
\(943\) −3.47214 −0.113068
\(944\) −6.70820 −0.218333
\(945\) 3.61803 0.117695
\(946\) −2.38197 −0.0774444
\(947\) −26.5836 −0.863851 −0.431925 0.901909i \(-0.642166\pi\)
−0.431925 + 0.901909i \(0.642166\pi\)
\(948\) 23.0344 0.748124
\(949\) 1.09017 0.0353884
\(950\) 21.1803 0.687181
\(951\) −0.0901699 −0.00292396
\(952\) 12.2361 0.396573
\(953\) 12.9787 0.420422 0.210211 0.977656i \(-0.432585\pi\)
0.210211 + 0.977656i \(0.432585\pi\)
\(954\) −0.0557281 −0.00180426
\(955\) 51.3050 1.66019
\(956\) −25.5623 −0.826744
\(957\) 1.76393 0.0570198
\(958\) −14.0344 −0.453432
\(959\) 15.1803 0.490199
\(960\) −0.854102 −0.0275660
\(961\) 44.8328 1.44622
\(962\) 0.0901699 0.00290720
\(963\) −2.90983 −0.0937680
\(964\) 5.32624 0.171547
\(965\) 2.76393 0.0889741
\(966\) 0.618034 0.0198849
\(967\) 27.8885 0.896835 0.448418 0.893824i \(-0.351988\pi\)
0.448418 + 0.893824i \(0.351988\pi\)
\(968\) 22.3607 0.718699
\(969\) −23.1803 −0.744660
\(970\) 15.0000 0.481621
\(971\) 50.0344 1.60568 0.802841 0.596193i \(-0.203321\pi\)
0.802841 + 0.596193i \(0.203321\pi\)
\(972\) −1.61803 −0.0518985
\(973\) 21.0344 0.674333
\(974\) −18.6180 −0.596560
\(975\) 5.00000 0.160128
\(976\) −14.5623 −0.466128
\(977\) −12.2148 −0.390785 −0.195393 0.980725i \(-0.562598\pi\)
−0.195393 + 0.980725i \(0.562598\pi\)
\(978\) −12.5279 −0.400597
\(979\) 13.5623 0.433453
\(980\) −5.85410 −0.187002
\(981\) 2.38197 0.0760503
\(982\) −1.50658 −0.0480768
\(983\) 5.00000 0.159475 0.0797376 0.996816i \(-0.474592\pi\)
0.0797376 + 0.996816i \(0.474592\pi\)
\(984\) 7.76393 0.247505
\(985\) 41.8328 1.33290
\(986\) −5.96556 −0.189982
\(987\) 11.7082 0.372676
\(988\) −4.23607 −0.134767
\(989\) −3.85410 −0.122553
\(990\) 2.23607 0.0710669
\(991\) −50.6180 −1.60793 −0.803967 0.594673i \(-0.797281\pi\)
−0.803967 + 0.594673i \(0.797281\pi\)
\(992\) −48.9230 −1.55331
\(993\) 7.88854 0.250335
\(994\) −6.38197 −0.202424
\(995\) 5.20163 0.164903
\(996\) 29.0344 0.919991
\(997\) 40.3050 1.27647 0.638235 0.769841i \(-0.279665\pi\)
0.638235 + 0.769841i \(0.279665\pi\)
\(998\) 10.2361 0.324017
\(999\) 0.236068 0.00746886
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.a.e.1.2 2
3.2 odd 2 1449.2.a.g.1.1 2
4.3 odd 2 7728.2.a.be.1.2 2
7.6 odd 2 3381.2.a.o.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.a.e.1.2 2 1.1 even 1 trivial
1449.2.a.g.1.1 2 3.2 odd 2
3381.2.a.o.1.2 2 7.6 odd 2
7728.2.a.be.1.2 2 4.3 odd 2