Properties

Label 483.2.a.e.1.2
Level 483483
Weight 22
Character 483.1
Self dual yes
Analytic conductor 3.8573.857
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 483=3723 483 = 3 \cdot 7 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 3.856774417633.85677441763
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ10)+\Q(\zeta_{10})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 0.618034-0.618034 of defining polynomial
Character χ\chi == 483.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.618034q2+1.00000q31.61803q4+3.61803q5+0.618034q6+1.00000q72.23607q8+1.00000q9+2.23607q10+1.00000q111.61803q12+0.618034q13+0.618034q14+3.61803q15+1.85410q165.47214q17+0.618034q18+4.23607q195.85410q20+1.00000q21+0.618034q22+1.00000q232.23607q24+8.09017q25+0.381966q26+1.00000q271.61803q28+1.76393q29+2.23607q308.70820q31+5.61803q32+1.00000q333.38197q34+3.61803q351.61803q36+0.236068q37+2.61803q38+0.618034q398.09017q403.47214q41+0.618034q423.85410q431.61803q44+3.61803q45+0.618034q46+11.7082q47+1.85410q48+1.00000q49+5.00000q505.47214q511.00000q520.0901699q53+0.618034q54+3.61803q552.23607q56+4.23607q57+1.09017q583.61803q595.85410q607.85410q615.38197q62+1.00000q630.236068q64+2.23607q65+0.618034q668.09017q67+8.85410q68+1.00000q69+2.23607q7010.3262q712.23607q72+1.76393q73+0.145898q74+8.09017q756.85410q76+1.00000q77+0.381966q7814.2361q79+6.70820q80+1.00000q812.14590q8217.9443q831.61803q8419.7984q852.38197q86+1.76393q872.23607q88+13.5623q89+2.23607q90+0.618034q911.61803q928.70820q93+7.23607q94+15.3262q95+5.61803q96+6.70820q97+0.618034q98+1.00000q99+O(q100)q+0.618034 q^{2} +1.00000 q^{3} -1.61803 q^{4} +3.61803 q^{5} +0.618034 q^{6} +1.00000 q^{7} -2.23607 q^{8} +1.00000 q^{9} +2.23607 q^{10} +1.00000 q^{11} -1.61803 q^{12} +0.618034 q^{13} +0.618034 q^{14} +3.61803 q^{15} +1.85410 q^{16} -5.47214 q^{17} +0.618034 q^{18} +4.23607 q^{19} -5.85410 q^{20} +1.00000 q^{21} +0.618034 q^{22} +1.00000 q^{23} -2.23607 q^{24} +8.09017 q^{25} +0.381966 q^{26} +1.00000 q^{27} -1.61803 q^{28} +1.76393 q^{29} +2.23607 q^{30} -8.70820 q^{31} +5.61803 q^{32} +1.00000 q^{33} -3.38197 q^{34} +3.61803 q^{35} -1.61803 q^{36} +0.236068 q^{37} +2.61803 q^{38} +0.618034 q^{39} -8.09017 q^{40} -3.47214 q^{41} +0.618034 q^{42} -3.85410 q^{43} -1.61803 q^{44} +3.61803 q^{45} +0.618034 q^{46} +11.7082 q^{47} +1.85410 q^{48} +1.00000 q^{49} +5.00000 q^{50} -5.47214 q^{51} -1.00000 q^{52} -0.0901699 q^{53} +0.618034 q^{54} +3.61803 q^{55} -2.23607 q^{56} +4.23607 q^{57} +1.09017 q^{58} -3.61803 q^{59} -5.85410 q^{60} -7.85410 q^{61} -5.38197 q^{62} +1.00000 q^{63} -0.236068 q^{64} +2.23607 q^{65} +0.618034 q^{66} -8.09017 q^{67} +8.85410 q^{68} +1.00000 q^{69} +2.23607 q^{70} -10.3262 q^{71} -2.23607 q^{72} +1.76393 q^{73} +0.145898 q^{74} +8.09017 q^{75} -6.85410 q^{76} +1.00000 q^{77} +0.381966 q^{78} -14.2361 q^{79} +6.70820 q^{80} +1.00000 q^{81} -2.14590 q^{82} -17.9443 q^{83} -1.61803 q^{84} -19.7984 q^{85} -2.38197 q^{86} +1.76393 q^{87} -2.23607 q^{88} +13.5623 q^{89} +2.23607 q^{90} +0.618034 q^{91} -1.61803 q^{92} -8.70820 q^{93} +7.23607 q^{94} +15.3262 q^{95} +5.61803 q^{96} +6.70820 q^{97} +0.618034 q^{98} +1.00000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2+2q3q4+5q5q6+2q7+2q9+2q11q12q13q14+5q153q162q17q18+4q195q20+2q21q22+2q23++2q99+O(q100) 2 q - q^{2} + 2 q^{3} - q^{4} + 5 q^{5} - q^{6} + 2 q^{7} + 2 q^{9} + 2 q^{11} - q^{12} - q^{13} - q^{14} + 5 q^{15} - 3 q^{16} - 2 q^{17} - q^{18} + 4 q^{19} - 5 q^{20} + 2 q^{21} - q^{22} + 2 q^{23}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.618034 0.437016 0.218508 0.975835i 0.429881π-0.429881\pi
0.218508 + 0.975835i 0.429881π0.429881\pi
33 1.00000 0.577350
44 −1.61803 −0.809017
55 3.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
66 0.618034 0.252311
77 1.00000 0.377964
88 −2.23607 −0.790569
99 1.00000 0.333333
1010 2.23607 0.707107
1111 1.00000 0.301511 0.150756 0.988571i 0.451829π-0.451829\pi
0.150756 + 0.988571i 0.451829π0.451829\pi
1212 −1.61803 −0.467086
1313 0.618034 0.171412 0.0857059 0.996320i 0.472685π-0.472685\pi
0.0857059 + 0.996320i 0.472685π0.472685\pi
1414 0.618034 0.165177
1515 3.61803 0.934172
1616 1.85410 0.463525
1717 −5.47214 −1.32719 −0.663594 0.748093i 0.730970π-0.730970\pi
−0.663594 + 0.748093i 0.730970π0.730970\pi
1818 0.618034 0.145672
1919 4.23607 0.971821 0.485910 0.874009i 0.338488π-0.338488\pi
0.485910 + 0.874009i 0.338488π0.338488\pi
2020 −5.85410 −1.30902
2121 1.00000 0.218218
2222 0.618034 0.131765
2323 1.00000 0.208514
2424 −2.23607 −0.456435
2525 8.09017 1.61803
2626 0.381966 0.0749097
2727 1.00000 0.192450
2828 −1.61803 −0.305780
2929 1.76393 0.327554 0.163777 0.986497i 0.447632π-0.447632\pi
0.163777 + 0.986497i 0.447632π0.447632\pi
3030 2.23607 0.408248
3131 −8.70820 −1.56404 −0.782020 0.623254i 0.785810π-0.785810\pi
−0.782020 + 0.623254i 0.785810π0.785810\pi
3232 5.61803 0.993137
3333 1.00000 0.174078
3434 −3.38197 −0.580002
3535 3.61803 0.611559
3636 −1.61803 −0.269672
3737 0.236068 0.0388093 0.0194047 0.999812i 0.493823π-0.493823\pi
0.0194047 + 0.999812i 0.493823π0.493823\pi
3838 2.61803 0.424701
3939 0.618034 0.0989646
4040 −8.09017 −1.27917
4141 −3.47214 −0.542257 −0.271128 0.962543i 0.587397π-0.587397\pi
−0.271128 + 0.962543i 0.587397π0.587397\pi
4242 0.618034 0.0953647
4343 −3.85410 −0.587745 −0.293873 0.955845i 0.594944π-0.594944\pi
−0.293873 + 0.955845i 0.594944π0.594944\pi
4444 −1.61803 −0.243928
4545 3.61803 0.539345
4646 0.618034 0.0911241
4747 11.7082 1.70782 0.853909 0.520423i 0.174226π-0.174226\pi
0.853909 + 0.520423i 0.174226π0.174226\pi
4848 1.85410 0.267617
4949 1.00000 0.142857
5050 5.00000 0.707107
5151 −5.47214 −0.766252
5252 −1.00000 −0.138675
5353 −0.0901699 −0.0123858 −0.00619290 0.999981i 0.501971π-0.501971\pi
−0.00619290 + 0.999981i 0.501971π0.501971\pi
5454 0.618034 0.0841038
5555 3.61803 0.487856
5656 −2.23607 −0.298807
5757 4.23607 0.561081
5858 1.09017 0.143146
5959 −3.61803 −0.471028 −0.235514 0.971871i 0.575677π-0.575677\pi
−0.235514 + 0.971871i 0.575677π0.575677\pi
6060 −5.85410 −0.755761
6161 −7.85410 −1.00561 −0.502807 0.864398i 0.667699π-0.667699\pi
−0.502807 + 0.864398i 0.667699π0.667699\pi
6262 −5.38197 −0.683510
6363 1.00000 0.125988
6464 −0.236068 −0.0295085
6565 2.23607 0.277350
6666 0.618034 0.0760747
6767 −8.09017 −0.988372 −0.494186 0.869356i 0.664534π-0.664534\pi
−0.494186 + 0.869356i 0.664534π0.664534\pi
6868 8.85410 1.07372
6969 1.00000 0.120386
7070 2.23607 0.267261
7171 −10.3262 −1.22550 −0.612749 0.790277i 0.709937π-0.709937\pi
−0.612749 + 0.790277i 0.709937π0.709937\pi
7272 −2.23607 −0.263523
7373 1.76393 0.206453 0.103226 0.994658i 0.467083π-0.467083\pi
0.103226 + 0.994658i 0.467083π0.467083\pi
7474 0.145898 0.0169603
7575 8.09017 0.934172
7676 −6.85410 −0.786219
7777 1.00000 0.113961
7878 0.381966 0.0432491
7979 −14.2361 −1.60168 −0.800841 0.598877i 0.795614π-0.795614\pi
−0.800841 + 0.598877i 0.795614π0.795614\pi
8080 6.70820 0.750000
8181 1.00000 0.111111
8282 −2.14590 −0.236975
8383 −17.9443 −1.96964 −0.984820 0.173579i 0.944467π-0.944467\pi
−0.984820 + 0.173579i 0.944467π0.944467\pi
8484 −1.61803 −0.176542
8585 −19.7984 −2.14744
8686 −2.38197 −0.256854
8787 1.76393 0.189113
8888 −2.23607 −0.238366
8989 13.5623 1.43760 0.718801 0.695216i 0.244691π-0.244691\pi
0.718801 + 0.695216i 0.244691π0.244691\pi
9090 2.23607 0.235702
9191 0.618034 0.0647876
9292 −1.61803 −0.168692
9393 −8.70820 −0.902999
9494 7.23607 0.746343
9595 15.3262 1.57244
9696 5.61803 0.573388
9797 6.70820 0.681115 0.340557 0.940224i 0.389384π-0.389384\pi
0.340557 + 0.940224i 0.389384π0.389384\pi
9898 0.618034 0.0624309
9999 1.00000 0.100504
100100 −13.0902 −1.30902
101101 2.09017 0.207980 0.103990 0.994578i 0.466839π-0.466839\pi
0.103990 + 0.994578i 0.466839π0.466839\pi
102102 −3.38197 −0.334865
103103 −18.4721 −1.82011 −0.910057 0.414484i 0.863962π-0.863962\pi
−0.910057 + 0.414484i 0.863962π0.863962\pi
104104 −1.38197 −0.135513
105105 3.61803 0.353084
106106 −0.0557281 −0.00541279
107107 −2.90983 −0.281304 −0.140652 0.990059i 0.544920π-0.544920\pi
−0.140652 + 0.990059i 0.544920π0.544920\pi
108108 −1.61803 −0.155695
109109 2.38197 0.228151 0.114075 0.993472i 0.463609π-0.463609\pi
0.114075 + 0.993472i 0.463609π0.463609\pi
110110 2.23607 0.213201
111111 0.236068 0.0224066
112112 1.85410 0.175196
113113 14.0902 1.32549 0.662746 0.748844i 0.269391π-0.269391\pi
0.662746 + 0.748844i 0.269391π0.269391\pi
114114 2.61803 0.245201
115115 3.61803 0.337383
116116 −2.85410 −0.264997
117117 0.618034 0.0571373
118118 −2.23607 −0.205847
119119 −5.47214 −0.501630
120120 −8.09017 −0.738528
121121 −10.0000 −0.909091
122122 −4.85410 −0.439470
123123 −3.47214 −0.313072
124124 14.0902 1.26533
125125 11.1803 1.00000
126126 0.618034 0.0550588
127127 −7.85410 −0.696939 −0.348469 0.937320i 0.613298π-0.613298\pi
−0.348469 + 0.937320i 0.613298π0.613298\pi
128128 −11.3820 −1.00603
129129 −3.85410 −0.339335
130130 1.38197 0.121206
131131 −3.29180 −0.287606 −0.143803 0.989606i 0.545933π-0.545933\pi
−0.143803 + 0.989606i 0.545933π0.545933\pi
132132 −1.61803 −0.140832
133133 4.23607 0.367314
134134 −5.00000 −0.431934
135135 3.61803 0.311391
136136 12.2361 1.04923
137137 15.1803 1.29694 0.648472 0.761239i 0.275408π-0.275408\pi
0.648472 + 0.761239i 0.275408π0.275408\pi
138138 0.618034 0.0526105
139139 21.0344 1.78412 0.892059 0.451919i 0.149260π-0.149260\pi
0.892059 + 0.451919i 0.149260π0.149260\pi
140140 −5.85410 −0.494762
141141 11.7082 0.986009
142142 −6.38197 −0.535563
143143 0.618034 0.0516826
144144 1.85410 0.154508
145145 6.38197 0.529993
146146 1.09017 0.0902231
147147 1.00000 0.0824786
148148 −0.381966 −0.0313974
149149 3.70820 0.303788 0.151894 0.988397i 0.451463π-0.451463\pi
0.151894 + 0.988397i 0.451463π0.451463\pi
150150 5.00000 0.408248
151151 8.65248 0.704128 0.352064 0.935976i 0.385480π-0.385480\pi
0.352064 + 0.935976i 0.385480π0.385480\pi
152152 −9.47214 −0.768292
153153 −5.47214 −0.442396
154154 0.618034 0.0498026
155155 −31.5066 −2.53067
156156 −1.00000 −0.0800641
157157 8.76393 0.699438 0.349719 0.936855i 0.386277π-0.386277\pi
0.349719 + 0.936855i 0.386277π0.386277\pi
158158 −8.79837 −0.699961
159159 −0.0901699 −0.00715094
160160 20.3262 1.60693
161161 1.00000 0.0788110
162162 0.618034 0.0485573
163163 −20.2705 −1.58771 −0.793854 0.608108i 0.791929π-0.791929\pi
−0.793854 + 0.608108i 0.791929π0.791929\pi
164164 5.61803 0.438695
165165 3.61803 0.281664
166166 −11.0902 −0.860764
167167 10.7082 0.828626 0.414313 0.910135i 0.364022π-0.364022\pi
0.414313 + 0.910135i 0.364022π0.364022\pi
168168 −2.23607 −0.172516
169169 −12.6180 −0.970618
170170 −12.2361 −0.938464
171171 4.23607 0.323940
172172 6.23607 0.475496
173173 −6.41641 −0.487830 −0.243915 0.969797i 0.578432π-0.578432\pi
−0.243915 + 0.969797i 0.578432π0.578432\pi
174174 1.09017 0.0826456
175175 8.09017 0.611559
176176 1.85410 0.139758
177177 −3.61803 −0.271948
178178 8.38197 0.628255
179179 −13.7984 −1.03134 −0.515669 0.856788i 0.672457π-0.672457\pi
−0.515669 + 0.856788i 0.672457π0.672457\pi
180180 −5.85410 −0.436339
181181 −3.18034 −0.236393 −0.118196 0.992990i 0.537711π-0.537711\pi
−0.118196 + 0.992990i 0.537711π0.537711\pi
182182 0.381966 0.0283132
183183 −7.85410 −0.580592
184184 −2.23607 −0.164845
185185 0.854102 0.0627948
186186 −5.38197 −0.394625
187187 −5.47214 −0.400162
188188 −18.9443 −1.38165
189189 1.00000 0.0727393
190190 9.47214 0.687181
191191 14.1803 1.02605 0.513027 0.858373i 0.328524π-0.328524\pi
0.513027 + 0.858373i 0.328524π0.328524\pi
192192 −0.236068 −0.0170367
193193 0.763932 0.0549890 0.0274945 0.999622i 0.491247π-0.491247\pi
0.0274945 + 0.999622i 0.491247π0.491247\pi
194194 4.14590 0.297658
195195 2.23607 0.160128
196196 −1.61803 −0.115574
197197 11.5623 0.823780 0.411890 0.911234i 0.364869π-0.364869\pi
0.411890 + 0.911234i 0.364869π0.364869\pi
198198 0.618034 0.0439218
199199 1.43769 0.101915 0.0509577 0.998701i 0.483773π-0.483773\pi
0.0509577 + 0.998701i 0.483773π0.483773\pi
200200 −18.0902 −1.27917
201201 −8.09017 −0.570637
202202 1.29180 0.0908905
203203 1.76393 0.123804
204204 8.85410 0.619911
205205 −12.5623 −0.877390
206206 −11.4164 −0.795419
207207 1.00000 0.0695048
208208 1.14590 0.0794537
209209 4.23607 0.293015
210210 2.23607 0.154303
211211 8.88854 0.611913 0.305956 0.952046i 0.401024π-0.401024\pi
0.305956 + 0.952046i 0.401024π0.401024\pi
212212 0.145898 0.0100203
213213 −10.3262 −0.707542
214214 −1.79837 −0.122934
215215 −13.9443 −0.950991
216216 −2.23607 −0.152145
217217 −8.70820 −0.591151
218218 1.47214 0.0997056
219219 1.76393 0.119195
220220 −5.85410 −0.394683
221221 −3.38197 −0.227496
222222 0.145898 0.00979203
223223 1.61803 0.108352 0.0541758 0.998531i 0.482747π-0.482747\pi
0.0541758 + 0.998531i 0.482747π0.482747\pi
224224 5.61803 0.375371
225225 8.09017 0.539345
226226 8.70820 0.579261
227227 23.9787 1.59152 0.795762 0.605610i 0.207071π-0.207071\pi
0.795762 + 0.605610i 0.207071π0.207071\pi
228228 −6.85410 −0.453924
229229 27.7984 1.83697 0.918484 0.395458i 0.129414π-0.129414\pi
0.918484 + 0.395458i 0.129414π0.129414\pi
230230 2.23607 0.147442
231231 1.00000 0.0657952
232232 −3.94427 −0.258954
233233 8.67376 0.568237 0.284119 0.958789i 0.408299π-0.408299\pi
0.284119 + 0.958789i 0.408299π0.408299\pi
234234 0.381966 0.0249699
235235 42.3607 2.76331
236236 5.85410 0.381070
237237 −14.2361 −0.924732
238238 −3.38197 −0.219220
239239 15.7984 1.02191 0.510956 0.859607i 0.329292π-0.329292\pi
0.510956 + 0.859607i 0.329292π0.329292\pi
240240 6.70820 0.433013
241241 −3.29180 −0.212043 −0.106022 0.994364i 0.533811π-0.533811\pi
−0.106022 + 0.994364i 0.533811π0.533811\pi
242242 −6.18034 −0.397287
243243 1.00000 0.0641500
244244 12.7082 0.813559
245245 3.61803 0.231148
246246 −2.14590 −0.136817
247247 2.61803 0.166582
248248 19.4721 1.23648
249249 −17.9443 −1.13717
250250 6.90983 0.437016
251251 17.7082 1.11773 0.558866 0.829258i 0.311237π-0.311237\pi
0.558866 + 0.829258i 0.311237π0.311237\pi
252252 −1.61803 −0.101927
253253 1.00000 0.0628695
254254 −4.85410 −0.304573
255255 −19.7984 −1.23982
256256 −6.56231 −0.410144
257257 23.7082 1.47888 0.739439 0.673224i 0.235091π-0.235091\pi
0.739439 + 0.673224i 0.235091π0.235091\pi
258258 −2.38197 −0.148295
259259 0.236068 0.0146686
260260 −3.61803 −0.224381
261261 1.76393 0.109185
262262 −2.03444 −0.125688
263263 21.6525 1.33515 0.667574 0.744543i 0.267333π-0.267333\pi
0.667574 + 0.744543i 0.267333π0.267333\pi
264264 −2.23607 −0.137620
265265 −0.326238 −0.0200406
266266 2.61803 0.160522
267267 13.5623 0.830000
268268 13.0902 0.799609
269269 15.7426 0.959846 0.479923 0.877311i 0.340665π-0.340665\pi
0.479923 + 0.877311i 0.340665π0.340665\pi
270270 2.23607 0.136083
271271 −15.4721 −0.939865 −0.469933 0.882702i 0.655722π-0.655722\pi
−0.469933 + 0.882702i 0.655722π0.655722\pi
272272 −10.1459 −0.615185
273273 0.618034 0.0374051
274274 9.38197 0.566785
275275 8.09017 0.487856
276276 −1.61803 −0.0973942
277277 −24.3262 −1.46162 −0.730811 0.682580i 0.760858π-0.760858\pi
−0.730811 + 0.682580i 0.760858π0.760858\pi
278278 13.0000 0.779688
279279 −8.70820 −0.521347
280280 −8.09017 −0.483480
281281 −14.6525 −0.874093 −0.437047 0.899439i 0.643976π-0.643976\pi
−0.437047 + 0.899439i 0.643976π0.643976\pi
282282 7.23607 0.430902
283283 25.3262 1.50549 0.752744 0.658313i 0.228730π-0.228730\pi
0.752744 + 0.658313i 0.228730π0.228730\pi
284284 16.7082 0.991449
285285 15.3262 0.907848
286286 0.381966 0.0225861
287287 −3.47214 −0.204954
288288 5.61803 0.331046
289289 12.9443 0.761428
290290 3.94427 0.231616
291291 6.70820 0.393242
292292 −2.85410 −0.167024
293293 −22.8328 −1.33391 −0.666954 0.745099i 0.732402π-0.732402\pi
−0.666954 + 0.745099i 0.732402π0.732402\pi
294294 0.618034 0.0360445
295295 −13.0902 −0.762139
296296 −0.527864 −0.0306815
297297 1.00000 0.0580259
298298 2.29180 0.132760
299299 0.618034 0.0357418
300300 −13.0902 −0.755761
301301 −3.85410 −0.222147
302302 5.34752 0.307715
303303 2.09017 0.120077
304304 7.85410 0.450464
305305 −28.4164 −1.62712
306306 −3.38197 −0.193334
307307 −34.1246 −1.94759 −0.973797 0.227418i 0.926972π-0.926972\pi
−0.973797 + 0.227418i 0.926972π0.926972\pi
308308 −1.61803 −0.0921960
309309 −18.4721 −1.05084
310310 −19.4721 −1.10594
311311 −10.5066 −0.595773 −0.297887 0.954601i 0.596282π-0.596282\pi
−0.297887 + 0.954601i 0.596282π0.596282\pi
312312 −1.38197 −0.0782384
313313 33.8885 1.91549 0.957747 0.287612i 0.0928615π-0.0928615\pi
0.957747 + 0.287612i 0.0928615π0.0928615\pi
314314 5.41641 0.305666
315315 3.61803 0.203853
316316 23.0344 1.29579
317317 −0.0901699 −0.00506445 −0.00253222 0.999997i 0.500806π-0.500806\pi
−0.00253222 + 0.999997i 0.500806π0.500806\pi
318318 −0.0557281 −0.00312508
319319 1.76393 0.0987612
320320 −0.854102 −0.0477458
321321 −2.90983 −0.162411
322322 0.618034 0.0344417
323323 −23.1803 −1.28979
324324 −1.61803 −0.0898908
325325 5.00000 0.277350
326326 −12.5279 −0.693854
327327 2.38197 0.131723
328328 7.76393 0.428691
329329 11.7082 0.645494
330330 2.23607 0.123091
331331 7.88854 0.433594 0.216797 0.976217i 0.430439π-0.430439\pi
0.216797 + 0.976217i 0.430439π0.430439\pi
332332 29.0344 1.59347
333333 0.236068 0.0129364
334334 6.61803 0.362123
335335 −29.2705 −1.59922
336336 1.85410 0.101150
337337 10.0344 0.546611 0.273305 0.961927i 0.411883π-0.411883\pi
0.273305 + 0.961927i 0.411883π0.411883\pi
338338 −7.79837 −0.424176
339339 14.0902 0.765273
340340 32.0344 1.73731
341341 −8.70820 −0.471576
342342 2.61803 0.141567
343343 1.00000 0.0539949
344344 8.61803 0.464653
345345 3.61803 0.194788
346346 −3.96556 −0.213190
347347 −7.29180 −0.391444 −0.195722 0.980659i 0.562705π-0.562705\pi
−0.195722 + 0.980659i 0.562705π0.562705\pi
348348 −2.85410 −0.152996
349349 −19.7984 −1.05978 −0.529891 0.848066i 0.677767π-0.677767\pi
−0.529891 + 0.848066i 0.677767π0.677767\pi
350350 5.00000 0.267261
351351 0.618034 0.0329882
352352 5.61803 0.299442
353353 6.41641 0.341511 0.170755 0.985313i 0.445379π-0.445379\pi
0.170755 + 0.985313i 0.445379π0.445379\pi
354354 −2.23607 −0.118846
355355 −37.3607 −1.98290
356356 −21.9443 −1.16304
357357 −5.47214 −0.289616
358358 −8.52786 −0.450712
359359 8.56231 0.451901 0.225951 0.974139i 0.427451π-0.427451\pi
0.225951 + 0.974139i 0.427451π0.427451\pi
360360 −8.09017 −0.426389
361361 −1.05573 −0.0555646
362362 −1.96556 −0.103307
363363 −10.0000 −0.524864
364364 −1.00000 −0.0524142
365365 6.38197 0.334047
366366 −4.85410 −0.253728
367367 13.2705 0.692715 0.346357 0.938103i 0.387418π-0.387418\pi
0.346357 + 0.938103i 0.387418π0.387418\pi
368368 1.85410 0.0966517
369369 −3.47214 −0.180752
370370 0.527864 0.0274423
371371 −0.0901699 −0.00468139
372372 14.0902 0.730541
373373 34.1246 1.76691 0.883453 0.468520i 0.155213π-0.155213\pi
0.883453 + 0.468520i 0.155213π0.155213\pi
374374 −3.38197 −0.174877
375375 11.1803 0.577350
376376 −26.1803 −1.35015
377377 1.09017 0.0561466
378378 0.618034 0.0317882
379379 −25.5279 −1.31128 −0.655639 0.755074i 0.727601π-0.727601\pi
−0.655639 + 0.755074i 0.727601π0.727601\pi
380380 −24.7984 −1.27213
381381 −7.85410 −0.402378
382382 8.76393 0.448402
383383 −3.94427 −0.201543 −0.100771 0.994910i 0.532131π-0.532131\pi
−0.100771 + 0.994910i 0.532131π0.532131\pi
384384 −11.3820 −0.580834
385385 3.61803 0.184392
386386 0.472136 0.0240311
387387 −3.85410 −0.195915
388388 −10.8541 −0.551034
389389 −19.9443 −1.01121 −0.505607 0.862764i 0.668732π-0.668732\pi
−0.505607 + 0.862764i 0.668732π0.668732\pi
390390 1.38197 0.0699786
391391 −5.47214 −0.276738
392392 −2.23607 −0.112938
393393 −3.29180 −0.166049
394394 7.14590 0.360005
395395 −51.5066 −2.59158
396396 −1.61803 −0.0813093
397397 22.1803 1.11320 0.556600 0.830781i 0.312106π-0.312106\pi
0.556600 + 0.830781i 0.312106π0.312106\pi
398398 0.888544 0.0445387
399399 4.23607 0.212069
400400 15.0000 0.750000
401401 −5.00000 −0.249688 −0.124844 0.992176i 0.539843π-0.539843\pi
−0.124844 + 0.992176i 0.539843π0.539843\pi
402402 −5.00000 −0.249377
403403 −5.38197 −0.268095
404404 −3.38197 −0.168259
405405 3.61803 0.179782
406406 1.09017 0.0541042
407407 0.236068 0.0117015
408408 12.2361 0.605776
409409 −24.8885 −1.23066 −0.615330 0.788270i 0.710977π-0.710977\pi
−0.615330 + 0.788270i 0.710977π0.710977\pi
410410 −7.76393 −0.383433
411411 15.1803 0.748791
412412 29.8885 1.47250
413413 −3.61803 −0.178032
414414 0.618034 0.0303747
415415 −64.9230 −3.18694
416416 3.47214 0.170235
417417 21.0344 1.03006
418418 2.61803 0.128052
419419 13.9098 0.679540 0.339770 0.940509i 0.389651π-0.389651\pi
0.339770 + 0.940509i 0.389651π0.389651\pi
420420 −5.85410 −0.285651
421421 −29.5623 −1.44078 −0.720389 0.693570i 0.756037π-0.756037\pi
−0.720389 + 0.693570i 0.756037π0.756037\pi
422422 5.49342 0.267416
423423 11.7082 0.569272
424424 0.201626 0.00979183
425425 −44.2705 −2.14744
426426 −6.38197 −0.309207
427427 −7.85410 −0.380087
428428 4.70820 0.227580
429429 0.618034 0.0298390
430430 −8.61803 −0.415599
431431 11.2705 0.542881 0.271441 0.962455i 0.412500π-0.412500\pi
0.271441 + 0.962455i 0.412500π0.412500\pi
432432 1.85410 0.0892055
433433 20.7639 0.997851 0.498925 0.866645i 0.333728π-0.333728\pi
0.498925 + 0.866645i 0.333728π0.333728\pi
434434 −5.38197 −0.258343
435435 6.38197 0.305992
436436 −3.85410 −0.184578
437437 4.23607 0.202639
438438 1.09017 0.0520903
439439 9.18034 0.438154 0.219077 0.975708i 0.429695π-0.429695\pi
0.219077 + 0.975708i 0.429695π0.429695\pi
440440 −8.09017 −0.385684
441441 1.00000 0.0476190
442442 −2.09017 −0.0994192
443443 −26.8328 −1.27487 −0.637433 0.770506i 0.720004π-0.720004\pi
−0.637433 + 0.770506i 0.720004π0.720004\pi
444444 −0.381966 −0.0181273
445445 49.0689 2.32609
446446 1.00000 0.0473514
447447 3.70820 0.175392
448448 −0.236068 −0.0111532
449449 40.2705 1.90048 0.950241 0.311514i 0.100836π-0.100836\pi
0.950241 + 0.311514i 0.100836π0.100836\pi
450450 5.00000 0.235702
451451 −3.47214 −0.163496
452452 −22.7984 −1.07235
453453 8.65248 0.406529
454454 14.8197 0.695521
455455 2.23607 0.104828
456456 −9.47214 −0.443573
457457 −2.74265 −0.128296 −0.0641478 0.997940i 0.520433π-0.520433\pi
−0.0641478 + 0.997940i 0.520433π0.520433\pi
458458 17.1803 0.802785
459459 −5.47214 −0.255417
460460 −5.85410 −0.272949
461461 −5.32624 −0.248068 −0.124034 0.992278i 0.539583π-0.539583\pi
−0.124034 + 0.992278i 0.539583π0.539583\pi
462462 0.618034 0.0287535
463463 14.1246 0.656426 0.328213 0.944604i 0.393554π-0.393554\pi
0.328213 + 0.944604i 0.393554π0.393554\pi
464464 3.27051 0.151830
465465 −31.5066 −1.46108
466466 5.36068 0.248329
467467 −32.8885 −1.52190 −0.760950 0.648810i 0.775267π-0.775267\pi
−0.760950 + 0.648810i 0.775267π0.775267\pi
468468 −1.00000 −0.0462250
469469 −8.09017 −0.373569
470470 26.1803 1.20761
471471 8.76393 0.403821
472472 8.09017 0.372380
473473 −3.85410 −0.177212
474474 −8.79837 −0.404123
475475 34.2705 1.57244
476476 8.85410 0.405827
477477 −0.0901699 −0.00412860
478478 9.76393 0.446592
479479 −22.7082 −1.03756 −0.518782 0.854906i 0.673614π-0.673614\pi
−0.518782 + 0.854906i 0.673614π0.673614\pi
480480 20.3262 0.927762
481481 0.145898 0.00665238
482482 −2.03444 −0.0926663
483483 1.00000 0.0455016
484484 16.1803 0.735470
485485 24.2705 1.10207
486486 0.618034 0.0280346
487487 −30.1246 −1.36508 −0.682538 0.730850i 0.739124π-0.739124\pi
−0.682538 + 0.730850i 0.739124π0.739124\pi
488488 17.5623 0.795008
489489 −20.2705 −0.916664
490490 2.23607 0.101015
491491 −2.43769 −0.110012 −0.0550058 0.998486i 0.517518π-0.517518\pi
−0.0550058 + 0.998486i 0.517518π0.517518\pi
492492 5.61803 0.253281
493493 −9.65248 −0.434726
494494 1.61803 0.0727988
495495 3.61803 0.162619
496496 −16.1459 −0.724972
497497 −10.3262 −0.463195
498498 −11.0902 −0.496962
499499 16.5623 0.741431 0.370715 0.928747i 0.379113π-0.379113\pi
0.370715 + 0.928747i 0.379113π0.379113\pi
500500 −18.0902 −0.809017
501501 10.7082 0.478407
502502 10.9443 0.488467
503503 −25.6869 −1.14532 −0.572662 0.819792i 0.694089π-0.694089\pi
−0.572662 + 0.819792i 0.694089π0.694089\pi
504504 −2.23607 −0.0996024
505505 7.56231 0.336518
506506 0.618034 0.0274750
507507 −12.6180 −0.560387
508508 12.7082 0.563835
509509 30.7639 1.36359 0.681794 0.731545i 0.261200π-0.261200\pi
0.681794 + 0.731545i 0.261200π0.261200\pi
510510 −12.2361 −0.541822
511511 1.76393 0.0780318
512512 18.7082 0.826794
513513 4.23607 0.187027
514514 14.6525 0.646293
515515 −66.8328 −2.94501
516516 6.23607 0.274528
517517 11.7082 0.514926
518518 0.145898 0.00641039
519519 −6.41641 −0.281649
520520 −5.00000 −0.219265
521521 −21.4164 −0.938270 −0.469135 0.883127i 0.655434π-0.655434\pi
−0.469135 + 0.883127i 0.655434π0.655434\pi
522522 1.09017 0.0477154
523523 −10.5836 −0.462788 −0.231394 0.972860i 0.574329π-0.574329\pi
−0.231394 + 0.972860i 0.574329π0.574329\pi
524524 5.32624 0.232678
525525 8.09017 0.353084
526526 13.3820 0.583481
527527 47.6525 2.07577
528528 1.85410 0.0806894
529529 1.00000 0.0434783
530530 −0.201626 −0.00875808
531531 −3.61803 −0.157009
532532 −6.85410 −0.297163
533533 −2.14590 −0.0929492
534534 8.38197 0.362723
535535 −10.5279 −0.455159
536536 18.0902 0.781376
537537 −13.7984 −0.595444
538538 9.72949 0.419468
539539 1.00000 0.0430730
540540 −5.85410 −0.251920
541541 −15.7082 −0.675348 −0.337674 0.941263i 0.609640π-0.609640\pi
−0.337674 + 0.941263i 0.609640π0.609640\pi
542542 −9.56231 −0.410736
543543 −3.18034 −0.136481
544544 −30.7426 −1.31808
545545 8.61803 0.369156
546546 0.381966 0.0163466
547547 −38.8541 −1.66128 −0.830641 0.556809i 0.812026π-0.812026\pi
−0.830641 + 0.556809i 0.812026π0.812026\pi
548548 −24.5623 −1.04925
549549 −7.85410 −0.335205
550550 5.00000 0.213201
551551 7.47214 0.318324
552552 −2.23607 −0.0951734
553553 −14.2361 −0.605379
554554 −15.0344 −0.638752
555555 0.854102 0.0362546
556556 −34.0344 −1.44338
557557 12.7639 0.540825 0.270413 0.962745i 0.412840π-0.412840\pi
0.270413 + 0.962745i 0.412840π0.412840\pi
558558 −5.38197 −0.227837
559559 −2.38197 −0.100746
560560 6.70820 0.283473
561561 −5.47214 −0.231034
562562 −9.05573 −0.381993
563563 36.2148 1.52627 0.763136 0.646238i 0.223659π-0.223659\pi
0.763136 + 0.646238i 0.223659π0.223659\pi
564564 −18.9443 −0.797698
565565 50.9787 2.14469
566566 15.6525 0.657923
567567 1.00000 0.0419961
568568 23.0902 0.968842
569569 25.8885 1.08530 0.542652 0.839958i 0.317420π-0.317420\pi
0.542652 + 0.839958i 0.317420π0.317420\pi
570570 9.47214 0.396744
571571 −24.5967 −1.02934 −0.514671 0.857388i 0.672086π-0.672086\pi
−0.514671 + 0.857388i 0.672086π0.672086\pi
572572 −1.00000 −0.0418121
573573 14.1803 0.592392
574574 −2.14590 −0.0895681
575575 8.09017 0.337383
576576 −0.236068 −0.00983617
577577 −40.2492 −1.67560 −0.837799 0.545979i 0.816158π-0.816158\pi
−0.837799 + 0.545979i 0.816158π0.816158\pi
578578 8.00000 0.332756
579579 0.763932 0.0317479
580580 −10.3262 −0.428774
581581 −17.9443 −0.744454
582582 4.14590 0.171853
583583 −0.0901699 −0.00373446
584584 −3.94427 −0.163215
585585 2.23607 0.0924500
586586 −14.1115 −0.582939
587587 44.7984 1.84903 0.924513 0.381150i 0.124472π-0.124472\pi
0.924513 + 0.381150i 0.124472π0.124472\pi
588588 −1.61803 −0.0667266
589589 −36.8885 −1.51997
590590 −8.09017 −0.333067
591591 11.5623 0.475610
592592 0.437694 0.0179891
593593 −45.1246 −1.85305 −0.926523 0.376238i 0.877217π-0.877217\pi
−0.926523 + 0.376238i 0.877217π0.877217\pi
594594 0.618034 0.0253582
595595 −19.7984 −0.811654
596596 −6.00000 −0.245770
597597 1.43769 0.0588409
598598 0.381966 0.0156198
599599 −7.38197 −0.301619 −0.150809 0.988563i 0.548188π-0.548188\pi
−0.150809 + 0.988563i 0.548188π0.548188\pi
600600 −18.0902 −0.738528
601601 31.6869 1.29254 0.646268 0.763110i 0.276329π-0.276329\pi
0.646268 + 0.763110i 0.276329π0.276329\pi
602602 −2.38197 −0.0970817
603603 −8.09017 −0.329457
604604 −14.0000 −0.569652
605605 −36.1803 −1.47094
606606 1.29180 0.0524756
607607 6.50658 0.264094 0.132047 0.991243i 0.457845π-0.457845\pi
0.132047 + 0.991243i 0.457845π0.457845\pi
608608 23.7984 0.965152
609609 1.76393 0.0714781
610610 −17.5623 −0.711077
611611 7.23607 0.292740
612612 8.85410 0.357906
613613 −21.8328 −0.881819 −0.440910 0.897552i 0.645344π-0.645344\pi
−0.440910 + 0.897552i 0.645344π0.645344\pi
614614 −21.0902 −0.851130
615615 −12.5623 −0.506561
616616 −2.23607 −0.0900937
617617 −7.74265 −0.311707 −0.155854 0.987780i 0.549813π-0.549813\pi
−0.155854 + 0.987780i 0.549813π0.549813\pi
618618 −11.4164 −0.459235
619619 4.90983 0.197343 0.0986714 0.995120i 0.468541π-0.468541\pi
0.0986714 + 0.995120i 0.468541π0.468541\pi
620620 50.9787 2.04735
621621 1.00000 0.0401286
622622 −6.49342 −0.260363
623623 13.5623 0.543362
624624 1.14590 0.0458726
625625 0 0
626626 20.9443 0.837101
627627 4.23607 0.169172
628628 −14.1803 −0.565857
629629 −1.29180 −0.0515073
630630 2.23607 0.0890871
631631 5.00000 0.199047 0.0995234 0.995035i 0.468268π-0.468268\pi
0.0995234 + 0.995035i 0.468268π0.468268\pi
632632 31.8328 1.26624
633633 8.88854 0.353288
634634 −0.0557281 −0.00221325
635635 −28.4164 −1.12767
636636 0.145898 0.00578523
637637 0.618034 0.0244874
638638 1.09017 0.0431602
639639 −10.3262 −0.408500
640640 −41.1803 −1.62780
641641 −24.7984 −0.979477 −0.489738 0.871869i 0.662908π-0.662908\pi
−0.489738 + 0.871869i 0.662908π0.662908\pi
642642 −1.79837 −0.0709762
643643 3.96556 0.156386 0.0781932 0.996938i 0.475085π-0.475085\pi
0.0781932 + 0.996938i 0.475085π0.475085\pi
644644 −1.61803 −0.0637595
645645 −13.9443 −0.549055
646646 −14.3262 −0.563658
647647 40.2705 1.58320 0.791599 0.611042i 0.209249π-0.209249\pi
0.791599 + 0.611042i 0.209249π0.209249\pi
648648 −2.23607 −0.0878410
649649 −3.61803 −0.142020
650650 3.09017 0.121206
651651 −8.70820 −0.341301
652652 32.7984 1.28448
653653 4.09017 0.160061 0.0800304 0.996792i 0.474498π-0.474498\pi
0.0800304 + 0.996792i 0.474498π0.474498\pi
654654 1.47214 0.0575651
655655 −11.9098 −0.465356
656656 −6.43769 −0.251350
657657 1.76393 0.0688175
658658 7.23607 0.282091
659659 −35.9443 −1.40019 −0.700095 0.714050i 0.746859π-0.746859\pi
−0.700095 + 0.714050i 0.746859π0.746859\pi
660660 −5.85410 −0.227871
661661 23.6525 0.919975 0.459987 0.887925i 0.347854π-0.347854\pi
0.459987 + 0.887925i 0.347854π0.347854\pi
662662 4.87539 0.189487
663663 −3.38197 −0.131345
664664 40.1246 1.55714
665665 15.3262 0.594326
666666 0.145898 0.00565343
667667 1.76393 0.0682997
668668 −17.3262 −0.670372
669669 1.61803 0.0625568
670670 −18.0902 −0.698884
671671 −7.85410 −0.303204
672672 5.61803 0.216720
673673 −34.4164 −1.32666 −0.663328 0.748329i 0.730856π-0.730856\pi
−0.663328 + 0.748329i 0.730856π0.730856\pi
674674 6.20163 0.238878
675675 8.09017 0.311391
676676 20.4164 0.785246
677677 34.3262 1.31926 0.659632 0.751589i 0.270712π-0.270712\pi
0.659632 + 0.751589i 0.270712π0.270712\pi
678678 8.70820 0.334437
679679 6.70820 0.257437
680680 44.2705 1.69770
681681 23.9787 0.918866
682682 −5.38197 −0.206086
683683 14.1246 0.540463 0.270232 0.962795i 0.412900π-0.412900\pi
0.270232 + 0.962795i 0.412900π0.412900\pi
684684 −6.85410 −0.262073
685685 54.9230 2.09850
686686 0.618034 0.0235966
687687 27.7984 1.06057
688688 −7.14590 −0.272435
689689 −0.0557281 −0.00212307
690690 2.23607 0.0851257
691691 −20.6180 −0.784347 −0.392173 0.919891i 0.628277π-0.628277\pi
−0.392173 + 0.919891i 0.628277π0.628277\pi
692692 10.3820 0.394663
693693 1.00000 0.0379869
694694 −4.50658 −0.171067
695695 76.1033 2.88676
696696 −3.94427 −0.149507
697697 19.0000 0.719676
698698 −12.2361 −0.463142
699699 8.67376 0.328072
700700 −13.0902 −0.494762
701701 8.09017 0.305562 0.152781 0.988260i 0.451177π-0.451177\pi
0.152781 + 0.988260i 0.451177π0.451177\pi
702702 0.381966 0.0144164
703703 1.00000 0.0377157
704704 −0.236068 −0.00889715
705705 42.3607 1.59540
706706 3.96556 0.149246
707707 2.09017 0.0786089
708708 5.85410 0.220011
709709 8.72949 0.327843 0.163921 0.986473i 0.447586π-0.447586\pi
0.163921 + 0.986473i 0.447586π0.447586\pi
710710 −23.0902 −0.866559
711711 −14.2361 −0.533894
712712 −30.3262 −1.13652
713713 −8.70820 −0.326125
714714 −3.38197 −0.126567
715715 2.23607 0.0836242
716716 22.3262 0.834371
717717 15.7984 0.590001
718718 5.29180 0.197488
719719 32.8885 1.22654 0.613268 0.789875i 0.289855π-0.289855\pi
0.613268 + 0.789875i 0.289855π0.289855\pi
720720 6.70820 0.250000
721721 −18.4721 −0.687938
722722 −0.652476 −0.0242826
723723 −3.29180 −0.122423
724724 5.14590 0.191246
725725 14.2705 0.529993
726726 −6.18034 −0.229374
727727 51.5410 1.91155 0.955775 0.294098i 0.0950192π-0.0950192\pi
0.955775 + 0.294098i 0.0950192π0.0950192\pi
728728 −1.38197 −0.0512191
729729 1.00000 0.0370370
730730 3.94427 0.145984
731731 21.0902 0.780048
732732 12.7082 0.469709
733733 47.2361 1.74470 0.872352 0.488878i 0.162594π-0.162594\pi
0.872352 + 0.488878i 0.162594π0.162594\pi
734734 8.20163 0.302728
735735 3.61803 0.133453
736736 5.61803 0.207083
737737 −8.09017 −0.298005
738738 −2.14590 −0.0789916
739739 −31.4721 −1.15772 −0.578861 0.815427i 0.696502π-0.696502\pi
−0.578861 + 0.815427i 0.696502π0.696502\pi
740740 −1.38197 −0.0508021
741741 2.61803 0.0961759
742742 −0.0557281 −0.00204584
743743 15.6180 0.572970 0.286485 0.958085i 0.407513π-0.407513\pi
0.286485 + 0.958085i 0.407513π0.407513\pi
744744 19.4721 0.713883
745745 13.4164 0.491539
746746 21.0902 0.772166
747747 −17.9443 −0.656547
748748 8.85410 0.323738
749749 −2.90983 −0.106323
750750 6.90983 0.252311
751751 10.4508 0.381357 0.190678 0.981653i 0.438931π-0.438931\pi
0.190678 + 0.981653i 0.438931π0.438931\pi
752752 21.7082 0.791617
753753 17.7082 0.645323
754754 0.673762 0.0245370
755755 31.3050 1.13930
756756 −1.61803 −0.0588473
757757 53.6525 1.95003 0.975016 0.222134i 0.0713022π-0.0713022\pi
0.975016 + 0.222134i 0.0713022π0.0713022\pi
758758 −15.7771 −0.573050
759759 1.00000 0.0362977
760760 −34.2705 −1.24312
761761 41.8885 1.51846 0.759229 0.650823i 0.225576π-0.225576\pi
0.759229 + 0.650823i 0.225576π0.225576\pi
762762 −4.85410 −0.175846
763763 2.38197 0.0862330
764764 −22.9443 −0.830095
765765 −19.7984 −0.715812
766766 −2.43769 −0.0880775
767767 −2.23607 −0.0807397
768768 −6.56231 −0.236797
769769 −10.6525 −0.384138 −0.192069 0.981381i 0.561520π-0.561520\pi
−0.192069 + 0.981381i 0.561520π0.561520\pi
770770 2.23607 0.0805823
771771 23.7082 0.853830
772772 −1.23607 −0.0444871
773773 −20.5967 −0.740814 −0.370407 0.928870i 0.620782π-0.620782\pi
−0.370407 + 0.928870i 0.620782π0.620782\pi
774774 −2.38197 −0.0856180
775775 −70.4508 −2.53067
776776 −15.0000 −0.538469
777777 0.236068 0.00846889
778778 −12.3262 −0.441917
779779 −14.7082 −0.526976
780780 −3.61803 −0.129546
781781 −10.3262 −0.369502
782782 −3.38197 −0.120939
783783 1.76393 0.0630378
784784 1.85410 0.0662179
785785 31.7082 1.13171
786786 −2.03444 −0.0725661
787787 13.7984 0.491859 0.245929 0.969288i 0.420907π-0.420907\pi
0.245929 + 0.969288i 0.420907π0.420907\pi
788788 −18.7082 −0.666452
789789 21.6525 0.770849
790790 −31.8328 −1.13256
791791 14.0902 0.500989
792792 −2.23607 −0.0794552
793793 −4.85410 −0.172374
794794 13.7082 0.486486
795795 −0.326238 −0.0115705
796796 −2.32624 −0.0824513
797797 7.12461 0.252367 0.126183 0.992007i 0.459727π-0.459727\pi
0.126183 + 0.992007i 0.459727π0.459727\pi
798798 2.61803 0.0926774
799799 −64.0689 −2.26659
800800 45.4508 1.60693
801801 13.5623 0.479201
802802 −3.09017 −0.109118
803803 1.76393 0.0622478
804804 13.0902 0.461655
805805 3.61803 0.127519
806806 −3.32624 −0.117162
807807 15.7426 0.554167
808808 −4.67376 −0.164422
809809 −6.72949 −0.236596 −0.118298 0.992978i 0.537744π-0.537744\pi
−0.118298 + 0.992978i 0.537744π0.537744\pi
810810 2.23607 0.0785674
811811 −12.3050 −0.432085 −0.216043 0.976384i 0.569315π-0.569315\pi
−0.216043 + 0.976384i 0.569315π0.569315\pi
812812 −2.85410 −0.100159
813813 −15.4721 −0.542631
814814 0.145898 0.00511372
815815 −73.3394 −2.56897
816816 −10.1459 −0.355177
817817 −16.3262 −0.571183
818818 −15.3820 −0.537818
819819 0.618034 0.0215959
820820 20.3262 0.709823
821821 −30.5410 −1.06589 −0.532944 0.846150i 0.678915π-0.678915\pi
−0.532944 + 0.846150i 0.678915π0.678915\pi
822822 9.38197 0.327234
823823 43.2148 1.50637 0.753186 0.657807i 0.228516π-0.228516\pi
0.753186 + 0.657807i 0.228516π0.228516\pi
824824 41.3050 1.43893
825825 8.09017 0.281664
826826 −2.23607 −0.0778028
827827 −0.854102 −0.0297000 −0.0148500 0.999890i 0.504727π-0.504727\pi
−0.0148500 + 0.999890i 0.504727π0.504727\pi
828828 −1.61803 −0.0562306
829829 38.7771 1.34678 0.673392 0.739286i 0.264837π-0.264837\pi
0.673392 + 0.739286i 0.264837π0.264837\pi
830830 −40.1246 −1.39275
831831 −24.3262 −0.843868
832832 −0.145898 −0.00505810
833833 −5.47214 −0.189598
834834 13.0000 0.450153
835835 38.7426 1.34074
836836 −6.85410 −0.237054
837837 −8.70820 −0.301000
838838 8.59675 0.296970
839839 −0.978714 −0.0337890 −0.0168945 0.999857i 0.505378π-0.505378\pi
−0.0168945 + 0.999857i 0.505378π0.505378\pi
840840 −8.09017 −0.279137
841841 −25.8885 −0.892708
842842 −18.2705 −0.629643
843843 −14.6525 −0.504658
844844 −14.3820 −0.495048
845845 −45.6525 −1.57049
846846 7.23607 0.248781
847847 −10.0000 −0.343604
848848 −0.167184 −0.00574113
849849 25.3262 0.869194
850850 −27.3607 −0.938464
851851 0.236068 0.00809231
852852 16.7082 0.572414
853853 22.0689 0.755624 0.377812 0.925882i 0.376677π-0.376677\pi
0.377812 + 0.925882i 0.376677π0.376677\pi
854854 −4.85410 −0.166104
855855 15.3262 0.524146
856856 6.50658 0.222390
857857 1.12461 0.0384160 0.0192080 0.999816i 0.493886π-0.493886\pi
0.0192080 + 0.999816i 0.493886π0.493886\pi
858858 0.381966 0.0130401
859859 −1.63932 −0.0559329 −0.0279664 0.999609i 0.508903π-0.508903\pi
−0.0279664 + 0.999609i 0.508903π0.508903\pi
860860 22.5623 0.769368
861861 −3.47214 −0.118330
862862 6.96556 0.237248
863863 7.81966 0.266184 0.133092 0.991104i 0.457509π-0.457509\pi
0.133092 + 0.991104i 0.457509π0.457509\pi
864864 5.61803 0.191129
865865 −23.2148 −0.789326
866866 12.8328 0.436077
867867 12.9443 0.439611
868868 14.0902 0.478252
869869 −14.2361 −0.482926
870870 3.94427 0.133723
871871 −5.00000 −0.169419
872872 −5.32624 −0.180369
873873 6.70820 0.227038
874874 2.61803 0.0885563
875875 11.1803 0.377964
876876 −2.85410 −0.0964312
877877 20.0000 0.675352 0.337676 0.941262i 0.390359π-0.390359\pi
0.337676 + 0.941262i 0.390359π0.390359\pi
878878 5.67376 0.191480
879879 −22.8328 −0.770132
880880 6.70820 0.226134
881881 −34.2918 −1.15532 −0.577660 0.816277i 0.696034π-0.696034\pi
−0.577660 + 0.816277i 0.696034π0.696034\pi
882882 0.618034 0.0208103
883883 4.90983 0.165229 0.0826145 0.996582i 0.473673π-0.473673\pi
0.0826145 + 0.996582i 0.473673π0.473673\pi
884884 5.47214 0.184048
885885 −13.0902 −0.440021
886886 −16.5836 −0.557137
887887 3.02129 0.101445 0.0507224 0.998713i 0.483848π-0.483848\pi
0.0507224 + 0.998713i 0.483848π0.483848\pi
888888 −0.527864 −0.0177140
889889 −7.85410 −0.263418
890890 30.3262 1.01654
891891 1.00000 0.0335013
892892 −2.61803 −0.0876583
893893 49.5967 1.65969
894894 2.29180 0.0766491
895895 −49.9230 −1.66874
896896 −11.3820 −0.380245
897897 0.618034 0.0206356
898898 24.8885 0.830541
899899 −15.3607 −0.512307
900900 −13.0902 −0.436339
901901 0.493422 0.0164383
902902 −2.14590 −0.0714506
903903 −3.85410 −0.128256
904904 −31.5066 −1.04789
905905 −11.5066 −0.382492
906906 5.34752 0.177660
907907 −2.27051 −0.0753910 −0.0376955 0.999289i 0.512002π-0.512002\pi
−0.0376955 + 0.999289i 0.512002π0.512002\pi
908908 −38.7984 −1.28757
909909 2.09017 0.0693266
910910 1.38197 0.0458117
911911 −41.0132 −1.35883 −0.679413 0.733756i 0.737766π-0.737766\pi
−0.679413 + 0.733756i 0.737766π0.737766\pi
912912 7.85410 0.260075
913913 −17.9443 −0.593869
914914 −1.69505 −0.0560672
915915 −28.4164 −0.939417
916916 −44.9787 −1.48614
917917 −3.29180 −0.108705
918918 −3.38197 −0.111622
919919 −42.1935 −1.39183 −0.695917 0.718122i 0.745002π-0.745002\pi
−0.695917 + 0.718122i 0.745002π0.745002\pi
920920 −8.09017 −0.266725
921921 −34.1246 −1.12444
922922 −3.29180 −0.108410
923923 −6.38197 −0.210065
924924 −1.61803 −0.0532294
925925 1.90983 0.0627948
926926 8.72949 0.286869
927927 −18.4721 −0.606705
928928 9.90983 0.325306
929929 −34.9230 −1.14579 −0.572893 0.819630i 0.694179π-0.694179\pi
−0.572893 + 0.819630i 0.694179π0.694179\pi
930930 −19.4721 −0.638516
931931 4.23607 0.138832
932932 −14.0344 −0.459713
933933 −10.5066 −0.343970
934934 −20.3262 −0.665095
935935 −19.7984 −0.647476
936936 −1.38197 −0.0451710
937937 21.3607 0.697823 0.348911 0.937156i 0.386551π-0.386551\pi
0.348911 + 0.937156i 0.386551π0.386551\pi
938938 −5.00000 −0.163256
939939 33.8885 1.10591
940940 −68.5410 −2.23556
941941 −0.360680 −0.0117578 −0.00587891 0.999983i 0.501871π-0.501871\pi
−0.00587891 + 0.999983i 0.501871π0.501871\pi
942942 5.41641 0.176476
943943 −3.47214 −0.113068
944944 −6.70820 −0.218333
945945 3.61803 0.117695
946946 −2.38197 −0.0774444
947947 −26.5836 −0.863851 −0.431925 0.901909i 0.642166π-0.642166\pi
−0.431925 + 0.901909i 0.642166π0.642166\pi
948948 23.0344 0.748124
949949 1.09017 0.0353884
950950 21.1803 0.687181
951951 −0.0901699 −0.00292396
952952 12.2361 0.396573
953953 12.9787 0.420422 0.210211 0.977656i 0.432585π-0.432585\pi
0.210211 + 0.977656i 0.432585π0.432585\pi
954954 −0.0557281 −0.00180426
955955 51.3050 1.66019
956956 −25.5623 −0.826744
957957 1.76393 0.0570198
958958 −14.0344 −0.453432
959959 15.1803 0.490199
960960 −0.854102 −0.0275660
961961 44.8328 1.44622
962962 0.0901699 0.00290720
963963 −2.90983 −0.0937680
964964 5.32624 0.171547
965965 2.76393 0.0889741
966966 0.618034 0.0198849
967967 27.8885 0.896835 0.448418 0.893824i 0.351988π-0.351988\pi
0.448418 + 0.893824i 0.351988π0.351988\pi
968968 22.3607 0.718699
969969 −23.1803 −0.744660
970970 15.0000 0.481621
971971 50.0344 1.60568 0.802841 0.596193i 0.203321π-0.203321\pi
0.802841 + 0.596193i 0.203321π0.203321\pi
972972 −1.61803 −0.0518985
973973 21.0344 0.674333
974974 −18.6180 −0.596560
975975 5.00000 0.160128
976976 −14.5623 −0.466128
977977 −12.2148 −0.390785 −0.195393 0.980725i 0.562598π-0.562598\pi
−0.195393 + 0.980725i 0.562598π0.562598\pi
978978 −12.5279 −0.400597
979979 13.5623 0.433453
980980 −5.85410 −0.187002
981981 2.38197 0.0760503
982982 −1.50658 −0.0480768
983983 5.00000 0.159475 0.0797376 0.996816i 0.474592π-0.474592\pi
0.0797376 + 0.996816i 0.474592π0.474592\pi
984984 7.76393 0.247505
985985 41.8328 1.33290
986986 −5.96556 −0.189982
987987 11.7082 0.372676
988988 −4.23607 −0.134767
989989 −3.85410 −0.122553
990990 2.23607 0.0710669
991991 −50.6180 −1.60793 −0.803967 0.594673i 0.797281π-0.797281\pi
−0.803967 + 0.594673i 0.797281π0.797281\pi
992992 −48.9230 −1.55331
993993 7.88854 0.250335
994994 −6.38197 −0.202424
995995 5.20163 0.164903
996996 29.0344 0.919991
997997 40.3050 1.27647 0.638235 0.769841i 0.279665π-0.279665\pi
0.638235 + 0.769841i 0.279665π0.279665\pi
998998 10.2361 0.324017
999999 0.236068 0.00746886
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.a.e.1.2 2
3.2 odd 2 1449.2.a.g.1.1 2
4.3 odd 2 7728.2.a.be.1.2 2
7.6 odd 2 3381.2.a.o.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.a.e.1.2 2 1.1 even 1 trivial
1449.2.a.g.1.1 2 3.2 odd 2
3381.2.a.o.1.2 2 7.6 odd 2
7728.2.a.be.1.2 2 4.3 odd 2