Properties

Label 483.2.d.d.461.6
Level $483$
Weight $2$
Character 483.461
Analytic conductor $3.857$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(461,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.461");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 461.6
Character \(\chi\) \(=\) 483.461
Dual form 483.2.d.d.461.40

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.52935i q^{2} +(0.292165 + 1.70723i) q^{3} -4.39759 q^{4} +0.707387 q^{5} +(4.31818 - 0.738987i) q^{6} +(-2.12498 - 1.57622i) q^{7} +6.06435i q^{8} +(-2.82928 + 0.997587i) q^{9} -1.78923i q^{10} -5.52115i q^{11} +(-1.28482 - 7.50771i) q^{12} +1.55101i q^{13} +(-3.98681 + 5.37480i) q^{14} +(0.206674 + 1.20767i) q^{15} +6.54364 q^{16} -4.61936 q^{17} +(2.52324 + 7.15623i) q^{18} -7.93197i q^{19} -3.11080 q^{20} +(2.07013 - 4.08834i) q^{21} -13.9649 q^{22} +1.00000i q^{23} +(-10.3532 + 1.77179i) q^{24} -4.49960 q^{25} +3.92303 q^{26} +(-2.52973 - 4.53877i) q^{27} +(9.34478 + 6.93158i) q^{28} -2.49930i q^{29} +(3.05463 - 0.522750i) q^{30} +5.71523i q^{31} -4.42245i q^{32} +(9.42589 - 1.61309i) q^{33} +11.6840i q^{34} +(-1.50318 - 1.11500i) q^{35} +(12.4420 - 4.38698i) q^{36} -0.902839 q^{37} -20.0627 q^{38} +(-2.64792 + 0.453149i) q^{39} +4.28984i q^{40} +3.75081 q^{41} +(-10.3408 - 5.23608i) q^{42} -9.08177 q^{43} +24.2798i q^{44} +(-2.00140 + 0.705680i) q^{45} +2.52935 q^{46} +9.85490 q^{47} +(1.91182 + 11.1715i) q^{48} +(2.03105 + 6.69887i) q^{49} +11.3811i q^{50} +(-1.34962 - 7.88632i) q^{51} -6.82069i q^{52} -5.71246i q^{53} +(-11.4801 + 6.39856i) q^{54} -3.90559i q^{55} +(9.55875 - 12.8866i) q^{56} +(13.5417 - 2.31745i) q^{57} -6.32158 q^{58} +12.0511 q^{59} +(-0.908867 - 5.31086i) q^{60} -9.47586i q^{61} +14.4558 q^{62} +(7.58457 + 2.33972i) q^{63} +1.90138 q^{64} +1.09716i q^{65} +(-4.08006 - 23.8413i) q^{66} -0.757531 q^{67} +20.3141 q^{68} +(-1.70723 + 0.292165i) q^{69} +(-2.82022 + 3.80207i) q^{70} -2.66408i q^{71} +(-6.04971 - 17.1577i) q^{72} +1.77391i q^{73} +2.28359i q^{74} +(-1.31463 - 7.68186i) q^{75} +34.8816i q^{76} +(-8.70256 + 11.7323i) q^{77} +(1.14617 + 6.69752i) q^{78} +6.58585 q^{79} +4.62889 q^{80} +(7.00964 - 5.64490i) q^{81} -9.48709i q^{82} +7.55664 q^{83} +(-9.10360 + 17.9789i) q^{84} -3.26768 q^{85} +22.9709i q^{86} +(4.26688 - 0.730207i) q^{87} +33.4822 q^{88} -12.1777 q^{89} +(1.78491 + 5.06222i) q^{90} +(2.44473 - 3.29585i) q^{91} -4.39759i q^{92} +(-9.75722 + 1.66979i) q^{93} -24.9265i q^{94} -5.61098i q^{95} +(7.55015 - 1.29209i) q^{96} +0.965637i q^{97} +(16.9438 - 5.13723i) q^{98} +(5.50783 + 15.6209i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 76 q^{4} - 8 q^{7} + 20 q^{9} + 4 q^{15} + 92 q^{16} + 4 q^{18} - 22 q^{21} + 12 q^{22} + 16 q^{25} + 16 q^{28} - 32 q^{30} - 112 q^{37} + 4 q^{39} - 12 q^{42} - 68 q^{43} + 4 q^{46} + 44 q^{49}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.52935i 1.78852i −0.447550 0.894259i \(-0.647703\pi\)
0.447550 0.894259i \(-0.352297\pi\)
\(3\) 0.292165 + 1.70723i 0.168682 + 0.985671i
\(4\) −4.39759 −2.19880
\(5\) 0.707387 0.316353 0.158177 0.987411i \(-0.449438\pi\)
0.158177 + 0.987411i \(0.449438\pi\)
\(6\) 4.31818 0.738987i 1.76289 0.301690i
\(7\) −2.12498 1.57622i −0.803166 0.595756i
\(8\) 6.06435i 2.14407i
\(9\) −2.82928 + 0.997587i −0.943093 + 0.332529i
\(10\) 1.78923i 0.565803i
\(11\) 5.52115i 1.66469i −0.554258 0.832345i \(-0.686998\pi\)
0.554258 0.832345i \(-0.313002\pi\)
\(12\) −1.28482 7.50771i −0.370897 2.16729i
\(13\) 1.55101i 0.430171i 0.976595 + 0.215086i \(0.0690031\pi\)
−0.976595 + 0.215086i \(0.930997\pi\)
\(14\) −3.98681 + 5.37480i −1.06552 + 1.43648i
\(15\) 0.206674 + 1.20767i 0.0533629 + 0.311820i
\(16\) 6.54364 1.63591
\(17\) −4.61936 −1.12036 −0.560180 0.828371i \(-0.689268\pi\)
−0.560180 + 0.828371i \(0.689268\pi\)
\(18\) 2.52324 + 7.15623i 0.594734 + 1.68674i
\(19\) 7.93197i 1.81972i −0.414916 0.909860i \(-0.636189\pi\)
0.414916 0.909860i \(-0.363811\pi\)
\(20\) −3.11080 −0.695596
\(21\) 2.07013 4.08834i 0.451740 0.892150i
\(22\) −13.9649 −2.97733
\(23\) 1.00000i 0.208514i
\(24\) −10.3532 + 1.77179i −2.11335 + 0.361665i
\(25\) −4.49960 −0.899921
\(26\) 3.92303 0.769369
\(27\) −2.52973 4.53877i −0.486846 0.873488i
\(28\) 9.34478 + 6.93158i 1.76600 + 1.30995i
\(29\) 2.49930i 0.464108i −0.972703 0.232054i \(-0.925455\pi\)
0.972703 0.232054i \(-0.0745445\pi\)
\(30\) 3.05463 0.522750i 0.557696 0.0954406i
\(31\) 5.71523i 1.02649i 0.858244 + 0.513243i \(0.171556\pi\)
−0.858244 + 0.513243i \(0.828444\pi\)
\(32\) 4.42245i 0.781786i
\(33\) 9.42589 1.61309i 1.64084 0.280803i
\(34\) 11.6840i 2.00378i
\(35\) −1.50318 1.11500i −0.254084 0.188469i
\(36\) 12.4420 4.38698i 2.07367 0.731164i
\(37\) −0.902839 −0.148426 −0.0742129 0.997242i \(-0.523644\pi\)
−0.0742129 + 0.997242i \(0.523644\pi\)
\(38\) −20.0627 −3.25460
\(39\) −2.64792 + 0.453149i −0.424007 + 0.0725620i
\(40\) 4.28984i 0.678283i
\(41\) 3.75081 0.585778 0.292889 0.956147i \(-0.405383\pi\)
0.292889 + 0.956147i \(0.405383\pi\)
\(42\) −10.3408 5.23608i −1.59563 0.807945i
\(43\) −9.08177 −1.38496 −0.692479 0.721438i \(-0.743481\pi\)
−0.692479 + 0.721438i \(0.743481\pi\)
\(44\) 24.2798i 3.66032i
\(45\) −2.00140 + 0.705680i −0.298350 + 0.105197i
\(46\) 2.52935 0.372932
\(47\) 9.85490 1.43749 0.718743 0.695276i \(-0.244718\pi\)
0.718743 + 0.695276i \(0.244718\pi\)
\(48\) 1.91182 + 11.1715i 0.275948 + 1.61247i
\(49\) 2.03105 + 6.69887i 0.290150 + 0.956981i
\(50\) 11.3811i 1.60952i
\(51\) −1.34962 7.88632i −0.188984 1.10431i
\(52\) 6.82069i 0.945860i
\(53\) 5.71246i 0.784667i −0.919823 0.392333i \(-0.871668\pi\)
0.919823 0.392333i \(-0.128332\pi\)
\(54\) −11.4801 + 6.39856i −1.56225 + 0.870734i
\(55\) 3.90559i 0.526630i
\(56\) 9.55875 12.8866i 1.27734 1.72204i
\(57\) 13.5417 2.31745i 1.79364 0.306953i
\(58\) −6.32158 −0.830065
\(59\) 12.0511 1.56892 0.784459 0.620180i \(-0.212941\pi\)
0.784459 + 0.620180i \(0.212941\pi\)
\(60\) −0.908867 5.31086i −0.117334 0.685629i
\(61\) 9.47586i 1.21326i −0.794984 0.606630i \(-0.792521\pi\)
0.794984 0.606630i \(-0.207479\pi\)
\(62\) 14.4558 1.83589
\(63\) 7.58457 + 2.33972i 0.955566 + 0.294777i
\(64\) 1.90138 0.237672
\(65\) 1.09716i 0.136086i
\(66\) −4.08006 23.8413i −0.502220 2.93467i
\(67\) −0.757531 −0.0925472 −0.0462736 0.998929i \(-0.514735\pi\)
−0.0462736 + 0.998929i \(0.514735\pi\)
\(68\) 20.3141 2.46344
\(69\) −1.70723 + 0.292165i −0.205527 + 0.0351725i
\(70\) −2.82022 + 3.80207i −0.337081 + 0.454434i
\(71\) 2.66408i 0.316168i −0.987426 0.158084i \(-0.949468\pi\)
0.987426 0.158084i \(-0.0505317\pi\)
\(72\) −6.04971 17.1577i −0.712965 2.02206i
\(73\) 1.77391i 0.207620i 0.994597 + 0.103810i \(0.0331034\pi\)
−0.994597 + 0.103810i \(0.966897\pi\)
\(74\) 2.28359i 0.265462i
\(75\) −1.31463 7.68186i −0.151800 0.887025i
\(76\) 34.8816i 4.00119i
\(77\) −8.70256 + 11.7323i −0.991749 + 1.33702i
\(78\) 1.14617 + 6.69752i 0.129778 + 0.758345i
\(79\) 6.58585 0.740966 0.370483 0.928839i \(-0.379192\pi\)
0.370483 + 0.928839i \(0.379192\pi\)
\(80\) 4.62889 0.517526
\(81\) 7.00964 5.64490i 0.778849 0.627211i
\(82\) 9.48709i 1.04767i
\(83\) 7.55664 0.829449 0.414725 0.909947i \(-0.363878\pi\)
0.414725 + 0.909947i \(0.363878\pi\)
\(84\) −9.10360 + 17.9789i −0.993284 + 1.96166i
\(85\) −3.26768 −0.354429
\(86\) 22.9709i 2.47702i
\(87\) 4.26688 0.730207i 0.457457 0.0782864i
\(88\) 33.4822 3.56921
\(89\) −12.1777 −1.29083 −0.645417 0.763830i \(-0.723316\pi\)
−0.645417 + 0.763830i \(0.723316\pi\)
\(90\) 1.78491 + 5.06222i 0.188146 + 0.533605i
\(91\) 2.44473 3.29585i 0.256277 0.345499i
\(92\) 4.39759i 0.458481i
\(93\) −9.75722 + 1.66979i −1.01178 + 0.173149i
\(94\) 24.9265i 2.57097i
\(95\) 5.61098i 0.575674i
\(96\) 7.55015 1.29209i 0.770584 0.131873i
\(97\) 0.965637i 0.0980455i 0.998798 + 0.0490228i \(0.0156107\pi\)
−0.998798 + 0.0490228i \(0.984389\pi\)
\(98\) 16.9438 5.13723i 1.71158 0.518939i
\(99\) 5.50783 + 15.6209i 0.553558 + 1.56996i
\(100\) 19.7874 1.97874
\(101\) −1.40753 −0.140054 −0.0700271 0.997545i \(-0.522309\pi\)
−0.0700271 + 0.997545i \(0.522309\pi\)
\(102\) −19.9472 + 3.41365i −1.97507 + 0.338001i
\(103\) 16.3750i 1.61348i 0.590909 + 0.806738i \(0.298769\pi\)
−0.590909 + 0.806738i \(0.701231\pi\)
\(104\) −9.40583 −0.922318
\(105\) 1.46438 2.89204i 0.142909 0.282234i
\(106\) −14.4488 −1.40339
\(107\) 0.250085i 0.0241766i −0.999927 0.0120883i \(-0.996152\pi\)
0.999927 0.0120883i \(-0.00384792\pi\)
\(108\) 11.1247 + 19.9597i 1.07048 + 1.92062i
\(109\) −5.31325 −0.508917 −0.254458 0.967084i \(-0.581897\pi\)
−0.254458 + 0.967084i \(0.581897\pi\)
\(110\) −9.87860 −0.941887
\(111\) −0.263778 1.54136i −0.0250367 0.146299i
\(112\) −13.9051 10.3142i −1.31391 0.974603i
\(113\) 17.3070i 1.62811i −0.580788 0.814055i \(-0.697255\pi\)
0.580788 0.814055i \(-0.302745\pi\)
\(114\) −5.86162 34.2517i −0.548991 3.20797i
\(115\) 0.707387i 0.0659642i
\(116\) 10.9909i 1.02048i
\(117\) −1.54726 4.38823i −0.143044 0.405692i
\(118\) 30.4814i 2.80604i
\(119\) 9.81603 + 7.28114i 0.899834 + 0.667461i
\(120\) −7.32375 + 1.25334i −0.668564 + 0.114414i
\(121\) −19.4831 −1.77119
\(122\) −23.9677 −2.16994
\(123\) 1.09585 + 6.40350i 0.0988099 + 0.577384i
\(124\) 25.1333i 2.25703i
\(125\) −6.71990 −0.601046
\(126\) 5.91797 19.1840i 0.527215 1.70905i
\(127\) 0.813212 0.0721609 0.0360805 0.999349i \(-0.488513\pi\)
0.0360805 + 0.999349i \(0.488513\pi\)
\(128\) 13.6541i 1.20687i
\(129\) −2.65338 15.5047i −0.233617 1.36511i
\(130\) 2.77510 0.243392
\(131\) −0.402916 −0.0352029 −0.0176015 0.999845i \(-0.505603\pi\)
−0.0176015 + 0.999845i \(0.505603\pi\)
\(132\) −41.4512 + 7.09371i −3.60787 + 0.617428i
\(133\) −12.5026 + 16.8553i −1.08411 + 1.46154i
\(134\) 1.91606i 0.165522i
\(135\) −1.78950 3.21067i −0.154015 0.276331i
\(136\) 28.0134i 2.40213i
\(137\) 0.400246i 0.0341953i 0.999854 + 0.0170977i \(0.00544262\pi\)
−0.999854 + 0.0170977i \(0.994557\pi\)
\(138\) 0.738987 + 4.31818i 0.0629067 + 0.367588i
\(139\) 9.97089i 0.845720i −0.906195 0.422860i \(-0.861026\pi\)
0.906195 0.422860i \(-0.138974\pi\)
\(140\) 6.61038 + 4.90331i 0.558679 + 0.414406i
\(141\) 2.87926 + 16.8246i 0.242477 + 1.41689i
\(142\) −6.73839 −0.565473
\(143\) 8.56334 0.716102
\(144\) −18.5138 + 6.52785i −1.54282 + 0.543988i
\(145\) 1.76797i 0.146822i
\(146\) 4.48682 0.371332
\(147\) −10.8431 + 5.42465i −0.894325 + 0.447418i
\(148\) 3.97032 0.326358
\(149\) 6.66349i 0.545894i −0.962029 0.272947i \(-0.912002\pi\)
0.962029 0.272947i \(-0.0879984\pi\)
\(150\) −19.4301 + 3.32515i −1.58646 + 0.271497i
\(151\) 3.28477 0.267311 0.133655 0.991028i \(-0.457329\pi\)
0.133655 + 0.991028i \(0.457329\pi\)
\(152\) 48.1022 3.90161
\(153\) 13.0695 4.60821i 1.05660 0.372552i
\(154\) 29.6751 + 22.0118i 2.39129 + 1.77376i
\(155\) 4.04288i 0.324732i
\(156\) 11.6445 1.99277i 0.932306 0.159549i
\(157\) 13.0633i 1.04257i 0.853384 + 0.521283i \(0.174547\pi\)
−0.853384 + 0.521283i \(0.825453\pi\)
\(158\) 16.6579i 1.32523i
\(159\) 9.75249 1.66898i 0.773423 0.132359i
\(160\) 3.12839i 0.247321i
\(161\) 1.57622 2.12498i 0.124224 0.167472i
\(162\) −14.2779 17.7298i −1.12178 1.39299i
\(163\) 0.510051 0.0399503 0.0199751 0.999800i \(-0.493641\pi\)
0.0199751 + 0.999800i \(0.493641\pi\)
\(164\) −16.4945 −1.28801
\(165\) 6.66775 1.14108i 0.519084 0.0888328i
\(166\) 19.1134i 1.48349i
\(167\) 0.102981 0.00796894 0.00398447 0.999992i \(-0.498732\pi\)
0.00398447 + 0.999992i \(0.498732\pi\)
\(168\) 24.7931 + 12.5540i 1.91283 + 0.968562i
\(169\) 10.5944 0.814953
\(170\) 8.26509i 0.633903i
\(171\) 7.91283 + 22.4418i 0.605109 + 1.71617i
\(172\) 39.9379 3.04524
\(173\) −4.16159 −0.316400 −0.158200 0.987407i \(-0.550569\pi\)
−0.158200 + 0.987407i \(0.550569\pi\)
\(174\) −1.84695 10.7924i −0.140017 0.818170i
\(175\) 9.56155 + 7.09237i 0.722785 + 0.536133i
\(176\) 36.1285i 2.72329i
\(177\) 3.52091 + 20.5740i 0.264648 + 1.54644i
\(178\) 30.8016i 2.30868i
\(179\) 9.47344i 0.708078i 0.935231 + 0.354039i \(0.115192\pi\)
−0.935231 + 0.354039i \(0.884808\pi\)
\(180\) 8.80133 3.10329i 0.656012 0.231306i
\(181\) 9.81326i 0.729414i −0.931122 0.364707i \(-0.881169\pi\)
0.931122 0.364707i \(-0.118831\pi\)
\(182\) −8.33635 6.18356i −0.617931 0.458356i
\(183\) 16.1775 2.76852i 1.19587 0.204655i
\(184\) −6.06435 −0.447069
\(185\) −0.638657 −0.0469550
\(186\) 4.22348 + 24.6794i 0.309680 + 1.80958i
\(187\) 25.5042i 1.86505i
\(188\) −43.3379 −3.16074
\(189\) −1.77850 + 13.6322i −0.129367 + 0.991597i
\(190\) −14.1921 −1.02960
\(191\) 18.3642i 1.32879i −0.747384 0.664393i \(-0.768690\pi\)
0.747384 0.664393i \(-0.231310\pi\)
\(192\) 0.555516 + 3.24609i 0.0400909 + 0.234266i
\(193\) 2.26270 0.162872 0.0814362 0.996679i \(-0.474049\pi\)
0.0814362 + 0.996679i \(0.474049\pi\)
\(194\) 2.44243 0.175356
\(195\) −1.87311 + 0.320552i −0.134136 + 0.0229552i
\(196\) −8.93174 29.4589i −0.637981 2.10421i
\(197\) 24.9037i 1.77431i −0.461468 0.887157i \(-0.652677\pi\)
0.461468 0.887157i \(-0.347323\pi\)
\(198\) 39.5106 13.9312i 2.80790 0.990048i
\(199\) 15.5526i 1.10250i 0.834341 + 0.551249i \(0.185849\pi\)
−0.834341 + 0.551249i \(0.814151\pi\)
\(200\) 27.2871i 1.92949i
\(201\) −0.221324 1.29328i −0.0156110 0.0912211i
\(202\) 3.56012i 0.250489i
\(203\) −3.93944 + 5.31094i −0.276495 + 0.372755i
\(204\) 5.93506 + 34.6808i 0.415537 + 2.42814i
\(205\) 2.65327 0.185313
\(206\) 41.4180 2.88573
\(207\) −0.997587 2.82928i −0.0693371 0.196648i
\(208\) 10.1492i 0.703722i
\(209\) −43.7936 −3.02927
\(210\) −7.31498 3.70394i −0.504781 0.255596i
\(211\) −16.0941 −1.10796 −0.553980 0.832530i \(-0.686892\pi\)
−0.553980 + 0.832530i \(0.686892\pi\)
\(212\) 25.1211i 1.72532i
\(213\) 4.54820 0.778352i 0.311638 0.0533318i
\(214\) −0.632551 −0.0432403
\(215\) −6.42433 −0.438136
\(216\) 27.5247 15.3411i 1.87282 1.04383i
\(217\) 9.00847 12.1447i 0.611535 0.824438i
\(218\) 13.4390i 0.910207i
\(219\) −3.02847 + 0.518273i −0.204645 + 0.0350217i
\(220\) 17.1752i 1.15795i
\(221\) 7.16465i 0.481947i
\(222\) −3.89862 + 0.667186i −0.261658 + 0.0447786i
\(223\) 4.41080i 0.295369i −0.989035 0.147684i \(-0.952818\pi\)
0.989035 0.147684i \(-0.0471820\pi\)
\(224\) −6.97076 + 9.39760i −0.465754 + 0.627904i
\(225\) 12.7306 4.48874i 0.848709 0.299250i
\(226\) −43.7755 −2.91190
\(227\) 13.4489 0.892637 0.446319 0.894874i \(-0.352735\pi\)
0.446319 + 0.894874i \(0.352735\pi\)
\(228\) −59.5510 + 10.1912i −3.94386 + 0.674928i
\(229\) 15.6363i 1.03328i −0.856204 0.516638i \(-0.827183\pi\)
0.856204 0.516638i \(-0.172817\pi\)
\(230\) 1.78923 0.117978
\(231\) −22.5724 11.4295i −1.48515 0.752007i
\(232\) 15.1566 0.995079
\(233\) 26.1148i 1.71084i 0.517938 + 0.855418i \(0.326700\pi\)
−0.517938 + 0.855418i \(0.673300\pi\)
\(234\) −11.0993 + 3.91356i −0.725587 + 0.255838i
\(235\) 6.97123 0.454753
\(236\) −52.9958 −3.44973
\(237\) 1.92415 + 11.2436i 0.124987 + 0.730348i
\(238\) 18.4165 24.8281i 1.19377 1.60937i
\(239\) 8.62392i 0.557835i −0.960315 0.278918i \(-0.910024\pi\)
0.960315 0.278918i \(-0.0899756\pi\)
\(240\) 1.35240 + 7.90259i 0.0872970 + 0.510110i
\(241\) 1.62968i 0.104977i 0.998622 + 0.0524883i \(0.0167152\pi\)
−0.998622 + 0.0524883i \(0.983285\pi\)
\(242\) 49.2796i 3.16781i
\(243\) 11.6851 + 10.3178i 0.749601 + 0.661890i
\(244\) 41.6710i 2.66771i
\(245\) 1.43674 + 4.73869i 0.0917899 + 0.302744i
\(246\) 16.1967 2.77180i 1.03266 0.176723i
\(247\) 12.3025 0.782791
\(248\) −34.6591 −2.20086
\(249\) 2.20779 + 12.9009i 0.139913 + 0.817564i
\(250\) 16.9969i 1.07498i
\(251\) 21.6454 1.36625 0.683124 0.730302i \(-0.260621\pi\)
0.683124 + 0.730302i \(0.260621\pi\)
\(252\) −33.3539 10.2891i −2.10110 0.648155i
\(253\) 5.52115 0.347112
\(254\) 2.05690i 0.129061i
\(255\) −0.954701 5.57868i −0.0597857 0.349351i
\(256\) −30.7333 −1.92083
\(257\) 8.71434 0.543585 0.271793 0.962356i \(-0.412383\pi\)
0.271793 + 0.962356i \(0.412383\pi\)
\(258\) −39.2167 + 6.71131i −2.44153 + 0.417828i
\(259\) 1.91851 + 1.42307i 0.119211 + 0.0884255i
\(260\) 4.82487i 0.299226i
\(261\) 2.49326 + 7.07121i 0.154329 + 0.437697i
\(262\) 1.01911i 0.0629611i
\(263\) 23.7871i 1.46678i −0.679810 0.733388i \(-0.737938\pi\)
0.679810 0.733388i \(-0.262062\pi\)
\(264\) 9.78232 + 57.1618i 0.602060 + 3.51807i
\(265\) 4.04092i 0.248232i
\(266\) 42.6328 + 31.6233i 2.61398 + 1.93895i
\(267\) −3.55790 20.7902i −0.217740 1.27234i
\(268\) 3.33132 0.203492
\(269\) −7.11368 −0.433729 −0.216865 0.976202i \(-0.569583\pi\)
−0.216865 + 0.976202i \(0.569583\pi\)
\(270\) −8.12090 + 4.52626i −0.494222 + 0.275459i
\(271\) 15.4136i 0.936311i 0.883646 + 0.468156i \(0.155081\pi\)
−0.883646 + 0.468156i \(0.844919\pi\)
\(272\) −30.2274 −1.83281
\(273\) 6.34104 + 3.21078i 0.383777 + 0.194326i
\(274\) 1.01236 0.0611589
\(275\) 24.8430i 1.49809i
\(276\) 7.50771 1.28482i 0.451911 0.0773373i
\(277\) 24.0893 1.44739 0.723693 0.690122i \(-0.242443\pi\)
0.723693 + 0.690122i \(0.242443\pi\)
\(278\) −25.2198 −1.51258
\(279\) −5.70144 16.1700i −0.341336 0.968071i
\(280\) 6.76174 9.11581i 0.404091 0.544774i
\(281\) 20.7041i 1.23510i 0.786531 + 0.617551i \(0.211875\pi\)
−0.786531 + 0.617551i \(0.788125\pi\)
\(282\) 42.5552 7.28264i 2.53413 0.433675i
\(283\) 0.699318i 0.0415701i 0.999784 + 0.0207851i \(0.00661657\pi\)
−0.999784 + 0.0207851i \(0.993383\pi\)
\(284\) 11.7156i 0.695190i
\(285\) 9.57924 1.63933i 0.567425 0.0971056i
\(286\) 21.6596i 1.28076i
\(287\) −7.97038 5.91210i −0.470476 0.348980i
\(288\) 4.41178 + 12.5123i 0.259967 + 0.737297i
\(289\) 4.33849 0.255205
\(290\) −4.47181 −0.262594
\(291\) −1.64857 + 0.282125i −0.0966406 + 0.0165385i
\(292\) 7.80092i 0.456514i
\(293\) −14.4273 −0.842850 −0.421425 0.906863i \(-0.638470\pi\)
−0.421425 + 0.906863i \(0.638470\pi\)
\(294\) 13.7208 + 27.4260i 0.800214 + 1.59952i
\(295\) 8.52479 0.496332
\(296\) 5.47513i 0.318235i
\(297\) −25.0593 + 13.9670i −1.45409 + 0.810448i
\(298\) −16.8543 −0.976342
\(299\) −1.55101 −0.0896969
\(300\) 5.78119 + 33.7817i 0.333777 + 1.95039i
\(301\) 19.2986 + 14.3149i 1.11235 + 0.825096i
\(302\) 8.30831i 0.478090i
\(303\) −0.411230 2.40297i −0.0236246 0.138047i
\(304\) 51.9040i 2.97690i
\(305\) 6.70310i 0.383819i
\(306\) −11.6558 33.0572i −0.666316 1.88975i
\(307\) 17.9470i 1.02429i −0.858900 0.512144i \(-0.828852\pi\)
0.858900 0.512144i \(-0.171148\pi\)
\(308\) 38.2703 51.5940i 2.18065 2.93984i
\(309\) −27.9559 + 4.78420i −1.59036 + 0.272164i
\(310\) 10.2258 0.580789
\(311\) −25.6401 −1.45392 −0.726959 0.686681i \(-0.759067\pi\)
−0.726959 + 0.686681i \(0.759067\pi\)
\(312\) −2.74805 16.0579i −0.155578 0.909101i
\(313\) 11.7075i 0.661746i 0.943675 + 0.330873i \(0.107343\pi\)
−0.943675 + 0.330873i \(0.892657\pi\)
\(314\) 33.0417 1.86465
\(315\) 5.36523 + 1.65509i 0.302296 + 0.0932537i
\(316\) −28.9619 −1.62923
\(317\) 16.9113i 0.949832i −0.880031 0.474916i \(-0.842478\pi\)
0.880031 0.474916i \(-0.157522\pi\)
\(318\) −4.22143 24.6674i −0.236726 1.38328i
\(319\) −13.7990 −0.772595
\(320\) 1.34501 0.0751883
\(321\) 0.426953 0.0730661i 0.0238302 0.00407815i
\(322\) −5.37480 3.98681i −0.299526 0.222176i
\(323\) 36.6407i 2.03874i
\(324\) −30.8256 + 24.8240i −1.71253 + 1.37911i
\(325\) 6.97891i 0.387120i
\(326\) 1.29010i 0.0714518i
\(327\) −1.55235 9.07095i −0.0858449 0.501624i
\(328\) 22.7462i 1.25595i
\(329\) −20.9414 15.5335i −1.15454 0.856390i
\(330\) −2.88618 16.8651i −0.158879 0.928391i
\(331\) −8.75479 −0.481207 −0.240603 0.970624i \(-0.577345\pi\)
−0.240603 + 0.970624i \(0.577345\pi\)
\(332\) −33.2310 −1.82379
\(333\) 2.55438 0.900660i 0.139979 0.0493559i
\(334\) 0.260476i 0.0142526i
\(335\) −0.535868 −0.0292776
\(336\) 13.5462 26.7527i 0.739006 1.45948i
\(337\) −17.2965 −0.942200 −0.471100 0.882080i \(-0.656143\pi\)
−0.471100 + 0.882080i \(0.656143\pi\)
\(338\) 26.7969i 1.45756i
\(339\) 29.5471 5.05651i 1.60478 0.274632i
\(340\) 14.3699 0.779318
\(341\) 31.5547 1.70878
\(342\) 56.7630 20.0143i 3.06939 1.08225i
\(343\) 6.24297 17.4363i 0.337088 0.941473i
\(344\) 55.0750i 2.96945i
\(345\) −1.20767 + 0.206674i −0.0650190 + 0.0111269i
\(346\) 10.5261i 0.565887i
\(347\) 10.2305i 0.549203i 0.961558 + 0.274602i \(0.0885460\pi\)
−0.961558 + 0.274602i \(0.911454\pi\)
\(348\) −18.7640 + 3.21115i −1.00586 + 0.172136i
\(349\) 34.2212i 1.83182i −0.401382 0.915911i \(-0.631470\pi\)
0.401382 0.915911i \(-0.368530\pi\)
\(350\) 17.9391 24.1845i 0.958883 1.29271i
\(351\) 7.03966 3.92362i 0.375749 0.209427i
\(352\) −24.4170 −1.30143
\(353\) −23.8812 −1.27107 −0.635535 0.772072i \(-0.719220\pi\)
−0.635535 + 0.772072i \(0.719220\pi\)
\(354\) 52.0388 8.90560i 2.76583 0.473327i
\(355\) 1.88454i 0.100021i
\(356\) 53.5526 2.83828
\(357\) −9.56268 + 18.8855i −0.506111 + 0.999528i
\(358\) 23.9616 1.26641
\(359\) 6.24006i 0.329338i −0.986349 0.164669i \(-0.947344\pi\)
0.986349 0.164669i \(-0.0526555\pi\)
\(360\) −4.27949 12.1372i −0.225549 0.639684i
\(361\) −43.9162 −2.31138
\(362\) −24.8211 −1.30457
\(363\) −5.69229 33.2622i −0.298768 1.74581i
\(364\) −10.7509 + 14.4938i −0.563501 + 0.759682i
\(365\) 1.25484i 0.0656812i
\(366\) −7.00253 40.9185i −0.366028 2.13884i
\(367\) 9.80997i 0.512076i 0.966667 + 0.256038i \(0.0824172\pi\)
−0.966667 + 0.256038i \(0.917583\pi\)
\(368\) 6.54364i 0.341111i
\(369\) −10.6121 + 3.74176i −0.552443 + 0.194788i
\(370\) 1.61538i 0.0839798i
\(371\) −9.00410 + 12.1388i −0.467470 + 0.630217i
\(372\) 42.9083 7.34306i 2.22469 0.380720i
\(373\) 8.10091 0.419449 0.209725 0.977760i \(-0.432743\pi\)
0.209725 + 0.977760i \(0.432743\pi\)
\(374\) 64.5089 3.33568
\(375\) −1.96332 11.4724i −0.101385 0.592433i
\(376\) 59.7635i 3.08207i
\(377\) 3.87642 0.199646
\(378\) 34.4806 + 4.49845i 1.77349 + 0.231375i
\(379\) −10.5506 −0.541947 −0.270974 0.962587i \(-0.587346\pi\)
−0.270974 + 0.962587i \(0.587346\pi\)
\(380\) 24.6748i 1.26579i
\(381\) 0.237592 + 1.38834i 0.0121722 + 0.0711269i
\(382\) −46.4494 −2.37656
\(383\) 21.0606 1.07615 0.538073 0.842899i \(-0.319153\pi\)
0.538073 + 0.842899i \(0.319153\pi\)
\(384\) 23.3108 3.98926i 1.18957 0.203576i
\(385\) −6.15608 + 8.29929i −0.313743 + 0.422971i
\(386\) 5.72314i 0.291300i
\(387\) 25.6949 9.05986i 1.30614 0.460538i
\(388\) 4.24648i 0.215582i
\(389\) 1.62714i 0.0824995i −0.999149 0.0412497i \(-0.986866\pi\)
0.999149 0.0412497i \(-0.0131339\pi\)
\(390\) 0.810787 + 4.73774i 0.0410558 + 0.239905i
\(391\) 4.61936i 0.233611i
\(392\) −40.6243 + 12.3170i −2.05183 + 0.622102i
\(393\) −0.117718 0.687871i −0.00593809 0.0346985i
\(394\) −62.9901 −3.17339
\(395\) 4.65874 0.234407
\(396\) −24.2212 68.6943i −1.21716 3.45202i
\(397\) 16.8597i 0.846166i 0.906091 + 0.423083i \(0.139052\pi\)
−0.906091 + 0.423083i \(0.860948\pi\)
\(398\) 39.3380 1.97184
\(399\) −32.4286 16.4202i −1.62346 0.822040i
\(400\) −29.4438 −1.47219
\(401\) 0.736308i 0.0367694i −0.999831 0.0183847i \(-0.994148\pi\)
0.999831 0.0183847i \(-0.00585237\pi\)
\(402\) −3.27116 + 0.559806i −0.163150 + 0.0279206i
\(403\) −8.86435 −0.441565
\(404\) 6.18973 0.307951
\(405\) 4.95853 3.99313i 0.246391 0.198420i
\(406\) 13.4332 + 9.96422i 0.666679 + 0.494516i
\(407\) 4.98471i 0.247083i
\(408\) 47.8254 8.18454i 2.36771 0.405195i
\(409\) 26.6312i 1.31683i −0.752655 0.658415i \(-0.771227\pi\)
0.752655 0.658415i \(-0.228773\pi\)
\(410\) 6.71105i 0.331435i
\(411\) −0.683313 + 0.116938i −0.0337053 + 0.00576812i
\(412\) 72.0106i 3.54771i
\(413\) −25.6083 18.9952i −1.26010 0.934692i
\(414\) −7.15623 + 2.52324i −0.351709 + 0.124011i
\(415\) 5.34547 0.262399
\(416\) 6.85924 0.336302
\(417\) 17.0226 2.91314i 0.833601 0.142657i
\(418\) 110.769i 5.41790i
\(419\) −12.9173 −0.631050 −0.315525 0.948917i \(-0.602181\pi\)
−0.315525 + 0.948917i \(0.602181\pi\)
\(420\) −6.43977 + 12.7180i −0.314229 + 0.620576i
\(421\) −12.7138 −0.619632 −0.309816 0.950797i \(-0.600267\pi\)
−0.309816 + 0.950797i \(0.600267\pi\)
\(422\) 40.7074i 1.98161i
\(423\) −27.8823 + 9.83112i −1.35568 + 0.478005i
\(424\) 34.6423 1.68238
\(425\) 20.7853 1.00823
\(426\) −1.96872 11.5040i −0.0953848 0.557370i
\(427\) −14.9361 + 20.1360i −0.722806 + 0.974448i
\(428\) 1.09977i 0.0531595i
\(429\) 2.50191 + 14.6196i 0.120793 + 0.705841i
\(430\) 16.2494i 0.783613i
\(431\) 30.9946i 1.49296i −0.665411 0.746478i \(-0.731744\pi\)
0.665411 0.746478i \(-0.268256\pi\)
\(432\) −16.5536 29.7001i −0.796437 1.42895i
\(433\) 27.7026i 1.33130i 0.746263 + 0.665652i \(0.231846\pi\)
−0.746263 + 0.665652i \(0.768154\pi\)
\(434\) −30.7182 22.7855i −1.47452 1.09374i
\(435\) 3.01833 0.516539i 0.144718 0.0247661i
\(436\) 23.3655 1.11901
\(437\) 7.93197 0.379438
\(438\) 1.31089 + 7.66005i 0.0626369 + 0.366011i
\(439\) 34.6102i 1.65186i −0.563775 0.825928i \(-0.690652\pi\)
0.563775 0.825928i \(-0.309348\pi\)
\(440\) 23.6849 1.12913
\(441\) −12.4291 16.9268i −0.591862 0.806039i
\(442\) −18.1219 −0.861970
\(443\) 13.8423i 0.657669i −0.944388 0.328835i \(-0.893344\pi\)
0.944388 0.328835i \(-0.106656\pi\)
\(444\) 1.15999 + 6.77825i 0.0550506 + 0.321682i
\(445\) −8.61435 −0.408359
\(446\) −11.1564 −0.528273
\(447\) 11.3761 1.94684i 0.538072 0.0920823i
\(448\) −4.04038 2.99699i −0.190890 0.141594i
\(449\) 18.3320i 0.865141i 0.901600 + 0.432571i \(0.142393\pi\)
−0.901600 + 0.432571i \(0.857607\pi\)
\(450\) −11.3536 32.2002i −0.535213 1.51793i
\(451\) 20.7088i 0.975138i
\(452\) 76.1094i 3.57988i
\(453\) 0.959694 + 5.60786i 0.0450904 + 0.263480i
\(454\) 34.0170i 1.59650i
\(455\) 1.72937 2.33144i 0.0810741 0.109300i
\(456\) 14.0538 + 82.1217i 0.658129 + 3.84570i
\(457\) 25.0486 1.17172 0.585861 0.810411i \(-0.300756\pi\)
0.585861 + 0.810411i \(0.300756\pi\)
\(458\) −39.5497 −1.84803
\(459\) 11.6857 + 20.9662i 0.545443 + 0.978620i
\(460\) 3.11080i 0.145042i
\(461\) 31.9680 1.48890 0.744449 0.667679i \(-0.232712\pi\)
0.744449 + 0.667679i \(0.232712\pi\)
\(462\) −28.9092 + 57.0934i −1.34498 + 2.65622i
\(463\) −25.1651 −1.16952 −0.584761 0.811206i \(-0.698812\pi\)
−0.584761 + 0.811206i \(0.698812\pi\)
\(464\) 16.3545i 0.759239i
\(465\) −6.90213 + 1.18119i −0.320079 + 0.0547763i
\(466\) 66.0534 3.05986
\(467\) −19.0033 −0.879367 −0.439683 0.898153i \(-0.644909\pi\)
−0.439683 + 0.898153i \(0.644909\pi\)
\(468\) 6.80423 + 19.2976i 0.314526 + 0.892034i
\(469\) 1.60974 + 1.19404i 0.0743307 + 0.0551355i
\(470\) 17.6327i 0.813334i
\(471\) −22.3021 + 3.81665i −1.02763 + 0.175862i
\(472\) 73.0820i 3.36387i
\(473\) 50.1419i 2.30552i
\(474\) 28.4389 4.86685i 1.30624 0.223542i
\(475\) 35.6907i 1.63760i
\(476\) −43.1669 32.0195i −1.97855 1.46761i
\(477\) 5.69868 + 16.1621i 0.260924 + 0.740014i
\(478\) −21.8129 −0.997698
\(479\) 8.26084 0.377448 0.188724 0.982030i \(-0.439565\pi\)
0.188724 + 0.982030i \(0.439565\pi\)
\(480\) 5.34088 0.914005i 0.243777 0.0417184i
\(481\) 1.40031i 0.0638485i
\(482\) 4.12202 0.187753
\(483\) 4.08834 + 2.07013i 0.186026 + 0.0941942i
\(484\) 85.6789 3.89450
\(485\) 0.683079i 0.0310170i
\(486\) 26.0974 29.5557i 1.18380 1.34068i
\(487\) 1.63769 0.0742108 0.0371054 0.999311i \(-0.488186\pi\)
0.0371054 + 0.999311i \(0.488186\pi\)
\(488\) 57.4649 2.60131
\(489\) 0.149019 + 0.870775i 0.00673887 + 0.0393778i
\(490\) 11.9858 3.63401i 0.541463 0.164168i
\(491\) 35.8851i 1.61947i −0.586795 0.809735i \(-0.699611\pi\)
0.586795 0.809735i \(-0.300389\pi\)
\(492\) −4.81912 28.1600i −0.217263 1.26955i
\(493\) 11.5451i 0.519967i
\(494\) 31.1174i 1.40004i
\(495\) 3.89617 + 11.0500i 0.175120 + 0.496661i
\(496\) 37.3984i 1.67924i
\(497\) −4.19918 + 5.66111i −0.188359 + 0.253936i
\(498\) 32.6309 5.58426i 1.46223 0.250237i
\(499\) 31.9673 1.43105 0.715526 0.698586i \(-0.246187\pi\)
0.715526 + 0.698586i \(0.246187\pi\)
\(500\) 29.5514 1.32158
\(501\) 0.0300876 + 0.175813i 0.00134421 + 0.00785475i
\(502\) 54.7488i 2.44356i
\(503\) −10.9788 −0.489520 −0.244760 0.969584i \(-0.578709\pi\)
−0.244760 + 0.969584i \(0.578709\pi\)
\(504\) −14.1889 + 45.9955i −0.632023 + 2.04880i
\(505\) −0.995667 −0.0443066
\(506\) 13.9649i 0.620816i
\(507\) 3.09531 + 18.0871i 0.137467 + 0.803275i
\(508\) −3.57618 −0.158667
\(509\) −12.1025 −0.536435 −0.268218 0.963358i \(-0.586435\pi\)
−0.268218 + 0.963358i \(0.586435\pi\)
\(510\) −14.1104 + 2.41477i −0.624820 + 0.106928i
\(511\) 2.79607 3.76951i 0.123691 0.166753i
\(512\) 50.4269i 2.22857i
\(513\) −36.0014 + 20.0657i −1.58950 + 0.885924i
\(514\) 22.0416i 0.972212i
\(515\) 11.5835i 0.510428i
\(516\) 11.6685 + 68.1833i 0.513676 + 3.00160i
\(517\) 54.4104i 2.39297i
\(518\) 3.59945 4.85258i 0.158151 0.213210i
\(519\) −1.21587 7.10480i −0.0533708 0.311866i
\(520\) −6.65356 −0.291778
\(521\) −31.9112 −1.39805 −0.699027 0.715096i \(-0.746383\pi\)
−0.699027 + 0.715096i \(0.746383\pi\)
\(522\) 17.8855 6.30633i 0.782828 0.276021i
\(523\) 12.6035i 0.551113i −0.961285 0.275557i \(-0.911138\pi\)
0.961285 0.275557i \(-0.0888622\pi\)
\(524\) 1.77186 0.0774041
\(525\) −9.31477 + 18.3959i −0.406530 + 0.802864i
\(526\) −60.1659 −2.62336
\(527\) 26.4007i 1.15003i
\(528\) 61.6796 10.5555i 2.68426 0.459368i
\(529\) −1.00000 −0.0434783
\(530\) −10.2209 −0.443967
\(531\) −34.0959 + 12.0220i −1.47964 + 0.521711i
\(532\) 54.9811 74.1226i 2.38373 3.21362i
\(533\) 5.81752i 0.251985i
\(534\) −52.5855 + 8.99916i −2.27560 + 0.389432i
\(535\) 0.176907i 0.00764835i
\(536\) 4.59393i 0.198428i
\(537\) −16.1734 + 2.76781i −0.697932 + 0.119440i
\(538\) 17.9930i 0.775732i
\(539\) 36.9855 11.2137i 1.59308 0.483010i
\(540\) 7.86948 + 14.1192i 0.338649 + 0.607595i
\(541\) 12.4235 0.534127 0.267063 0.963679i \(-0.413947\pi\)
0.267063 + 0.963679i \(0.413947\pi\)
\(542\) 38.9864 1.67461
\(543\) 16.7535 2.86709i 0.718962 0.123039i
\(544\) 20.4289i 0.875882i
\(545\) −3.75852 −0.160997
\(546\) 8.12119 16.0387i 0.347555 0.686393i
\(547\) −35.9969 −1.53912 −0.769559 0.638576i \(-0.779524\pi\)
−0.769559 + 0.638576i \(0.779524\pi\)
\(548\) 1.76012i 0.0751886i
\(549\) 9.45299 + 26.8099i 0.403444 + 1.14422i
\(550\) 62.8366 2.67936
\(551\) −19.8244 −0.844546
\(552\) −1.77179 10.3532i −0.0754124 0.440663i
\(553\) −13.9948 10.3808i −0.595118 0.441435i
\(554\) 60.9302i 2.58868i
\(555\) −0.186593 1.09033i −0.00792044 0.0462821i
\(556\) 43.8479i 1.85957i
\(557\) 20.9709i 0.888566i 0.895887 + 0.444283i \(0.146541\pi\)
−0.895887 + 0.444283i \(0.853459\pi\)
\(558\) −40.8995 + 14.4209i −1.73141 + 0.610486i
\(559\) 14.0859i 0.595769i
\(560\) −9.83628 7.29616i −0.415659 0.308319i
\(561\) −43.5416 + 7.45143i −1.83833 + 0.314600i
\(562\) 52.3678 2.20900
\(563\) −22.5239 −0.949269 −0.474634 0.880183i \(-0.657420\pi\)
−0.474634 + 0.880183i \(0.657420\pi\)
\(564\) −12.6618 73.9878i −0.533158 3.11545i
\(565\) 12.2428i 0.515058i
\(566\) 1.76882 0.0743490
\(567\) −23.7929 + 0.946538i −0.999210 + 0.0397509i
\(568\) 16.1559 0.677887
\(569\) 4.71133i 0.197509i 0.995112 + 0.0987547i \(0.0314859\pi\)
−0.995112 + 0.0987547i \(0.968514\pi\)
\(570\) −4.14644 24.2292i −0.173675 1.01485i
\(571\) 30.6560 1.28291 0.641457 0.767159i \(-0.278330\pi\)
0.641457 + 0.767159i \(0.278330\pi\)
\(572\) −37.6581 −1.57456
\(573\) 31.3519 5.36537i 1.30974 0.224142i
\(574\) −14.9538 + 20.1598i −0.624158 + 0.841456i
\(575\) 4.49960i 0.187646i
\(576\) −5.37952 + 1.89679i −0.224147 + 0.0790328i
\(577\) 39.0475i 1.62557i 0.582564 + 0.812785i \(0.302049\pi\)
−0.582564 + 0.812785i \(0.697951\pi\)
\(578\) 10.9735i 0.456439i
\(579\) 0.661081 + 3.86295i 0.0274736 + 0.160539i
\(580\) 7.77481i 0.322832i
\(581\) −16.0577 11.9109i −0.666185 0.494149i
\(582\) 0.713593 + 4.16979i 0.0295794 + 0.172843i
\(583\) −31.5394 −1.30623
\(584\) −10.7576 −0.445152
\(585\) −1.09451 3.10418i −0.0452526 0.128342i
\(586\) 36.4916i 1.50745i
\(587\) 26.9464 1.11220 0.556098 0.831116i \(-0.312298\pi\)
0.556098 + 0.831116i \(0.312298\pi\)
\(588\) 47.6836 23.8554i 1.96644 0.983780i
\(589\) 45.3331 1.86792
\(590\) 21.5621i 0.887699i
\(591\) 42.5164 7.27599i 1.74889 0.299294i
\(592\) −5.90786 −0.242811
\(593\) 36.0389 1.47994 0.739970 0.672640i \(-0.234840\pi\)
0.739970 + 0.672640i \(0.234840\pi\)
\(594\) 35.3274 + 63.3836i 1.44950 + 2.60066i
\(595\) 6.94374 + 5.15058i 0.284665 + 0.211153i
\(596\) 29.3033i 1.20031i
\(597\) −26.5520 + 4.54394i −1.08670 + 0.185971i
\(598\) 3.92303i 0.160425i
\(599\) 2.58866i 0.105770i −0.998601 0.0528850i \(-0.983158\pi\)
0.998601 0.0528850i \(-0.0168417\pi\)
\(600\) 46.5855 7.97235i 1.90184 0.325470i
\(601\) 1.95680i 0.0798195i −0.999203 0.0399097i \(-0.987293\pi\)
0.999203 0.0399097i \(-0.0127070\pi\)
\(602\) 36.2073 48.8127i 1.47570 1.98946i
\(603\) 2.14327 0.755703i 0.0872806 0.0307746i
\(604\) −14.4451 −0.587762
\(605\) −13.7821 −0.560323
\(606\) −6.07796 + 1.04014i −0.246900 + 0.0422530i
\(607\) 5.96093i 0.241947i −0.992656 0.120973i \(-0.961398\pi\)
0.992656 0.120973i \(-0.0386016\pi\)
\(608\) −35.0788 −1.42263
\(609\) −10.2180 5.17387i −0.414053 0.209656i
\(610\) −16.9545 −0.686466
\(611\) 15.2850i 0.618365i
\(612\) −57.4742 + 20.2650i −2.32326 + 0.819166i
\(613\) −0.985569 −0.0398068 −0.0199034 0.999802i \(-0.506336\pi\)
−0.0199034 + 0.999802i \(0.506336\pi\)
\(614\) −45.3941 −1.83196
\(615\) 0.775194 + 4.52975i 0.0312588 + 0.182657i
\(616\) −71.1488 52.7753i −2.86667 2.12638i
\(617\) 43.9650i 1.76997i −0.465624 0.884983i \(-0.654170\pi\)
0.465624 0.884983i \(-0.345830\pi\)
\(618\) 12.1009 + 70.7102i 0.486770 + 2.84438i
\(619\) 11.5732i 0.465165i 0.972577 + 0.232582i \(0.0747175\pi\)
−0.972577 + 0.232582i \(0.925282\pi\)
\(620\) 17.7789i 0.714020i
\(621\) 4.53877 2.52973i 0.182135 0.101514i
\(622\) 64.8528i 2.60036i
\(623\) 25.8773 + 19.1948i 1.03675 + 0.769022i
\(624\) −17.3271 + 2.96525i −0.693638 + 0.118705i
\(625\) 17.7444 0.709778
\(626\) 29.6123 1.18355
\(627\) −12.7950 74.7659i −0.510982 2.98586i
\(628\) 57.4472i 2.29239i
\(629\) 4.17054 0.166290
\(630\) 4.18630 13.5705i 0.166786 0.540662i
\(631\) 40.8618 1.62668 0.813342 0.581786i \(-0.197646\pi\)
0.813342 + 0.581786i \(0.197646\pi\)
\(632\) 39.9388i 1.58868i
\(633\) −4.70212 27.4763i −0.186893 1.09208i
\(634\) −42.7745 −1.69879
\(635\) 0.575256 0.0228283
\(636\) −42.8875 + 7.33950i −1.70060 + 0.291030i
\(637\) −10.3900 + 3.15017i −0.411666 + 0.124814i
\(638\) 34.9024i 1.38180i
\(639\) 2.65765 + 7.53743i 0.105135 + 0.298176i
\(640\) 9.65876i 0.381796i
\(641\) 38.2129i 1.50932i 0.656117 + 0.754660i \(0.272198\pi\)
−0.656117 + 0.754660i \(0.727802\pi\)
\(642\) −0.184809 1.07991i −0.00729384 0.0426207i
\(643\) 0.405655i 0.0159975i −0.999968 0.00799874i \(-0.997454\pi\)
0.999968 0.00799874i \(-0.00254610\pi\)
\(644\) −6.93158 + 9.34478i −0.273143 + 0.368236i
\(645\) −1.87696 10.9678i −0.0739054 0.431857i
\(646\) 92.6769 3.64632
\(647\) 21.5798 0.848388 0.424194 0.905571i \(-0.360557\pi\)
0.424194 + 0.905571i \(0.360557\pi\)
\(648\) 34.2326 + 42.5089i 1.34479 + 1.66991i
\(649\) 66.5359i 2.61176i
\(650\) −17.6521 −0.692371
\(651\) 23.3658 + 11.8313i 0.915779 + 0.463704i
\(652\) −2.24300 −0.0878425
\(653\) 20.3500i 0.796358i 0.917308 + 0.398179i \(0.130358\pi\)
−0.917308 + 0.398179i \(0.869642\pi\)
\(654\) −22.9436 + 3.92642i −0.897164 + 0.153535i
\(655\) −0.285018 −0.0111366
\(656\) 24.5439 0.958280
\(657\) −1.76963 5.01888i −0.0690396 0.195805i
\(658\) −39.2896 + 52.9682i −1.53167 + 2.06491i
\(659\) 4.79473i 0.186776i −0.995630 0.0933880i \(-0.970230\pi\)
0.995630 0.0933880i \(-0.0297697\pi\)
\(660\) −29.3221 + 5.01800i −1.14136 + 0.195325i
\(661\) 33.3449i 1.29697i −0.761229 0.648483i \(-0.775404\pi\)
0.761229 0.648483i \(-0.224596\pi\)
\(662\) 22.1439i 0.860647i
\(663\) 12.2317 2.09326i 0.475041 0.0812955i
\(664\) 45.8261i 1.77840i
\(665\) −8.84414 + 11.9232i −0.342961 + 0.462362i
\(666\) −2.27808 6.46092i −0.0882739 0.250356i
\(667\) 2.49930 0.0967731
\(668\) −0.452871 −0.0175221
\(669\) 7.53025 1.28868i 0.291136 0.0498233i
\(670\) 1.35540i 0.0523635i
\(671\) −52.3177 −2.01970
\(672\) −18.0805 9.15505i −0.697470 0.353164i
\(673\) 6.03676 0.232700 0.116350 0.993208i \(-0.462881\pi\)
0.116350 + 0.993208i \(0.462881\pi\)
\(674\) 43.7488i 1.68514i
\(675\) 11.3828 + 20.4227i 0.438123 + 0.786070i
\(676\) −46.5898 −1.79192
\(677\) −3.11583 −0.119751 −0.0598756 0.998206i \(-0.519070\pi\)
−0.0598756 + 0.998206i \(0.519070\pi\)
\(678\) −12.7897 74.7349i −0.491185 2.87018i
\(679\) 1.52206 2.05196i 0.0584112 0.0787468i
\(680\) 19.8163i 0.759921i
\(681\) 3.92931 + 22.9605i 0.150571 + 0.879846i
\(682\) 79.8127i 3.05618i
\(683\) 4.64852i 0.177871i −0.996037 0.0889354i \(-0.971654\pi\)
0.996037 0.0889354i \(-0.0283465\pi\)
\(684\) −34.7974 98.6898i −1.33051 3.77350i
\(685\) 0.283129i 0.0108178i
\(686\) −44.1025 15.7906i −1.68384 0.602889i
\(687\) 26.6948 4.56838i 1.01847 0.174295i
\(688\) −59.4279 −2.26567
\(689\) 8.86006 0.337541
\(690\) 0.522750 + 3.05463i 0.0199007 + 0.116288i
\(691\) 37.5491i 1.42843i −0.699924 0.714217i \(-0.746783\pi\)
0.699924 0.714217i \(-0.253217\pi\)
\(692\) 18.3010 0.695699
\(693\) 12.9180 41.8756i 0.490713 1.59072i
\(694\) 25.8765 0.982260
\(695\) 7.05328i 0.267546i
\(696\) 4.42823 + 25.8758i 0.167851 + 0.980820i
\(697\) −17.3263 −0.656281
\(698\) −86.5574 −3.27625
\(699\) −44.5840 + 7.62983i −1.68632 + 0.288587i
\(700\) −42.0478 31.1894i −1.58926 1.17885i
\(701\) 4.28835i 0.161969i 0.996715 + 0.0809844i \(0.0258064\pi\)
−0.996715 + 0.0809844i \(0.974194\pi\)
\(702\) −9.92420 17.8057i −0.374565 0.672035i
\(703\) 7.16130i 0.270093i
\(704\) 10.4978i 0.395650i
\(705\) 2.03675 + 11.9015i 0.0767085 + 0.448237i
\(706\) 60.4039i 2.27333i
\(707\) 2.99096 + 2.21857i 0.112487 + 0.0834381i
\(708\) −15.4835 90.4761i −0.581906 3.40030i
\(709\) −19.1320 −0.718518 −0.359259 0.933238i \(-0.616971\pi\)
−0.359259 + 0.933238i \(0.616971\pi\)
\(710\) −4.76665 −0.178889
\(711\) −18.6332 + 6.56995i −0.698800 + 0.246392i
\(712\) 73.8498i 2.76764i
\(713\) −5.71523 −0.214037
\(714\) 47.7681 + 24.1873i 1.78767 + 0.905188i
\(715\) 6.05759 0.226541
\(716\) 41.6603i 1.55692i
\(717\) 14.7230 2.51961i 0.549842 0.0940965i
\(718\) −15.7833 −0.589026
\(719\) 47.5269 1.77246 0.886228 0.463250i \(-0.153317\pi\)
0.886228 + 0.463250i \(0.153317\pi\)
\(720\) −13.0964 + 4.61772i −0.488075 + 0.172092i
\(721\) 25.8106 34.7965i 0.961238 1.29589i
\(722\) 111.079i 4.13395i
\(723\) −2.78223 + 0.476134i −0.103472 + 0.0177076i
\(724\) 43.1548i 1.60383i
\(725\) 11.2458i 0.417660i
\(726\) −84.1317 + 14.3978i −3.12242 + 0.534352i
\(727\) 25.5163i 0.946348i −0.880969 0.473174i \(-0.843108\pi\)
0.880969 0.473174i \(-0.156892\pi\)
\(728\) 19.9872 + 14.8257i 0.740774 + 0.549476i
\(729\) −14.2010 + 22.9637i −0.525961 + 0.850509i
\(730\) 3.17392 0.117472
\(731\) 41.9520 1.55165
\(732\) −71.1420 + 12.1748i −2.62948 + 0.449994i
\(733\) 37.8948i 1.39967i 0.714302 + 0.699837i \(0.246744\pi\)
−0.714302 + 0.699837i \(0.753256\pi\)
\(734\) 24.8128 0.915857
\(735\) −7.67028 + 3.83733i −0.282923 + 0.141542i
\(736\) 4.42245 0.163014
\(737\) 4.18245i 0.154062i
\(738\) 9.46420 + 26.8416i 0.348382 + 0.988054i
\(739\) 8.18752 0.301183 0.150591 0.988596i \(-0.451882\pi\)
0.150591 + 0.988596i \(0.451882\pi\)
\(740\) 2.80855 0.103244
\(741\) 3.59437 + 21.0033i 0.132042 + 0.771575i
\(742\) 30.7033 + 22.7745i 1.12716 + 0.836078i
\(743\) 0.427222i 0.0156733i 0.999969 + 0.00783663i \(0.00249450\pi\)
−0.999969 + 0.00783663i \(0.997505\pi\)
\(744\) −10.1262 59.1711i −0.371244 2.16932i
\(745\) 4.71367i 0.172695i
\(746\) 20.4900i 0.750192i
\(747\) −21.3799 + 7.53841i −0.782248 + 0.275816i
\(748\) 112.157i 4.10087i
\(749\) −0.394189 + 0.531424i −0.0144034 + 0.0194178i
\(750\) −29.0177 + 4.96591i −1.05958 + 0.181330i
\(751\) 43.1819 1.57573 0.787865 0.615848i \(-0.211186\pi\)
0.787865 + 0.615848i \(0.211186\pi\)
\(752\) 64.4870 2.35160
\(753\) 6.32404 + 36.9538i 0.230461 + 1.34667i
\(754\) 9.80481i 0.357070i
\(755\) 2.32360 0.0845645
\(756\) 7.82113 59.9489i 0.284452 2.18032i
\(757\) −13.2294 −0.480829 −0.240415 0.970670i \(-0.577283\pi\)
−0.240415 + 0.970670i \(0.577283\pi\)
\(758\) 26.6861i 0.969283i
\(759\) 1.61309 + 9.42589i 0.0585514 + 0.342138i
\(760\) 34.0269 1.23429
\(761\) −22.7780 −0.825702 −0.412851 0.910799i \(-0.635467\pi\)
−0.412851 + 0.910799i \(0.635467\pi\)
\(762\) 3.51160 0.600953i 0.127212 0.0217702i
\(763\) 11.2905 + 8.37486i 0.408745 + 0.303190i
\(764\) 80.7582i 2.92173i
\(765\) 9.24517 3.25979i 0.334260 0.117858i
\(766\) 53.2695i 1.92471i
\(767\) 18.6913i 0.674904i
\(768\) −8.97920 52.4689i −0.324009 1.89331i
\(769\) 7.62443i 0.274944i 0.990506 + 0.137472i \(0.0438977\pi\)
−0.990506 + 0.137472i \(0.956102\pi\)
\(770\) 20.9918 + 15.5709i 0.756492 + 0.561135i
\(771\) 2.54602 + 14.8774i 0.0916928 + 0.535796i
\(772\) −9.95042 −0.358123
\(773\) −33.5539 −1.20685 −0.603424 0.797420i \(-0.706198\pi\)
−0.603424 + 0.797420i \(0.706198\pi\)
\(774\) −22.9155 64.9912i −0.823681 2.33606i
\(775\) 25.7163i 0.923755i
\(776\) −5.85595 −0.210216
\(777\) −1.86900 + 3.69112i −0.0670498 + 0.132418i
\(778\) −4.11561 −0.147552
\(779\) 29.7513i 1.06595i
\(780\) 8.23717 1.40966i 0.294938 0.0504739i
\(781\) −14.7088 −0.526322
\(782\) −11.6840 −0.417818
\(783\) −11.3437 + 6.32254i −0.405392 + 0.225949i
\(784\) 13.2905 + 43.8350i 0.474660 + 1.56554i
\(785\) 9.24083i 0.329819i
\(786\) −1.73986 + 0.297750i −0.0620589 + 0.0106204i
\(787\) 4.37933i 0.156106i 0.996949 + 0.0780532i \(0.0248704\pi\)
−0.996949 + 0.0780532i \(0.975130\pi\)
\(788\) 109.516i 3.90136i
\(789\) 40.6101 6.94976i 1.44576 0.247418i
\(790\) 11.7836i 0.419241i
\(791\) −27.2797 + 36.7771i −0.969956 + 1.30764i
\(792\) −94.7304 + 33.4014i −3.36610 + 1.18687i
\(793\) 14.6971 0.521910
\(794\) 42.6441 1.51338
\(795\) 6.89879 1.18062i 0.244675 0.0418721i
\(796\) 68.3942i 2.42417i
\(797\) −17.8688 −0.632947 −0.316473 0.948601i \(-0.602499\pi\)
−0.316473 + 0.948601i \(0.602499\pi\)
\(798\) −41.5325 + 82.0233i −1.47023 + 2.90359i
\(799\) −45.5233 −1.61050
\(800\) 19.8993i 0.703546i
\(801\) 34.4541 12.1483i 1.21738 0.429240i
\(802\) −1.86238 −0.0657628
\(803\) 9.79401 0.345623
\(804\) 0.973294 + 5.68733i 0.0343254 + 0.200577i
\(805\) 1.11500 1.50318i 0.0392986 0.0529802i
\(806\) 22.4210i 0.789746i
\(807\) −2.07837 12.1447i −0.0731621 0.427514i
\(808\) 8.53573i 0.300286i
\(809\) 31.5292i 1.10851i 0.832348 + 0.554254i \(0.186996\pi\)
−0.832348 + 0.554254i \(0.813004\pi\)
\(810\) −10.1000 12.5418i −0.354878 0.440675i
\(811\) 3.97582i 0.139610i 0.997561 + 0.0698050i \(0.0222377\pi\)
−0.997561 + 0.0698050i \(0.977762\pi\)
\(812\) 17.3241 23.3554i 0.607956 0.819613i
\(813\) −26.3146 + 4.50332i −0.922894 + 0.157938i
\(814\) 12.6081 0.441912
\(815\) 0.360803 0.0126384
\(816\) −8.83140 51.6053i −0.309161 1.80655i
\(817\) 72.0364i 2.52023i
\(818\) −67.3596 −2.35517
\(819\) −3.62892 + 11.7637i −0.126805 + 0.411057i
\(820\) −11.6680 −0.407465
\(821\) 19.2303i 0.671142i −0.942015 0.335571i \(-0.891071\pi\)
0.942015 0.335571i \(-0.108929\pi\)
\(822\) 0.295776 + 1.72833i 0.0103164 + 0.0602826i
\(823\) −14.2818 −0.497833 −0.248916 0.968525i \(-0.580074\pi\)
−0.248916 + 0.968525i \(0.580074\pi\)
\(824\) −99.3036 −3.45941
\(825\) −42.4128 + 7.25826i −1.47662 + 0.252700i
\(826\) −48.0454 + 64.7722i −1.67171 + 2.25371i
\(827\) 2.12977i 0.0740593i 0.999314 + 0.0370296i \(0.0117896\pi\)
−0.999314 + 0.0370296i \(0.988210\pi\)
\(828\) 4.38698 + 12.4420i 0.152458 + 0.432390i
\(829\) 27.7261i 0.962966i 0.876455 + 0.481483i \(0.159902\pi\)
−0.876455 + 0.481483i \(0.840098\pi\)
\(830\) 13.5206i 0.469305i
\(831\) 7.03805 + 41.1260i 0.244147 + 1.42665i
\(832\) 2.94904i 0.102240i
\(833\) −9.38216 30.9445i −0.325072 1.07216i
\(834\) −7.36835 43.0561i −0.255145 1.49091i
\(835\) 0.0728478 0.00252100
\(836\) 192.587 6.66075
\(837\) 25.9401 14.4580i 0.896622 0.499741i
\(838\) 32.6722i 1.12864i
\(839\) −27.3015 −0.942552 −0.471276 0.881986i \(-0.656206\pi\)
−0.471276 + 0.881986i \(0.656206\pi\)
\(840\) 17.5383 + 8.88053i 0.605130 + 0.306408i
\(841\) 22.7535 0.784604
\(842\) 32.1576i 1.10822i
\(843\) −35.3467 + 6.04901i −1.21740 + 0.208339i
\(844\) 70.7751 2.43618
\(845\) 7.49433 0.257813
\(846\) 24.8663 + 70.5239i 0.854921 + 2.42466i
\(847\) 41.4012 + 30.7097i 1.42256 + 1.05520i
\(848\) 37.3803i 1.28365i
\(849\) −1.19390 + 0.204316i −0.0409745 + 0.00701212i
\(850\) 52.5732i 1.80325i
\(851\) 0.902839i 0.0309489i
\(852\) −20.0012 + 3.42287i −0.685228 + 0.117266i
\(853\) 4.15254i 0.142180i 0.997470 + 0.0710902i \(0.0226478\pi\)
−0.997470 + 0.0710902i \(0.977352\pi\)
\(854\) 50.9309 + 37.7785i 1.74282 + 1.29275i
\(855\) 5.59744 + 15.8750i 0.191428 + 0.542914i
\(856\) 1.51660 0.0518364
\(857\) 54.4094 1.85859 0.929295 0.369337i \(-0.120415\pi\)
0.929295 + 0.369337i \(0.120415\pi\)
\(858\) 36.9780 6.32819i 1.26241 0.216041i
\(859\) 18.6678i 0.636936i 0.947934 + 0.318468i \(0.103168\pi\)
−0.947934 + 0.318468i \(0.896832\pi\)
\(860\) 28.2516 0.963371
\(861\) 7.76466 15.3346i 0.264619 0.522601i
\(862\) −78.3960 −2.67018
\(863\) 35.6312i 1.21290i −0.795122 0.606450i \(-0.792593\pi\)
0.795122 0.606450i \(-0.207407\pi\)
\(864\) −20.0725 + 11.1876i −0.682881 + 0.380610i
\(865\) −2.94385 −0.100094
\(866\) 70.0695 2.38106
\(867\) 1.26756 + 7.40681i 0.0430484 + 0.251548i
\(868\) −39.6156 + 53.4076i −1.34464 + 1.81277i
\(869\) 36.3615i 1.23348i
\(870\) −1.30651 7.63441i −0.0442947 0.258831i
\(871\) 1.17494i 0.0398112i
\(872\) 32.2214i 1.09115i
\(873\) −0.963306 2.73206i −0.0326030 0.0924661i
\(874\) 20.0627i 0.678631i
\(875\) 14.2796 + 10.5920i 0.482739 + 0.358077i
\(876\) 13.3180 2.27916i 0.449973 0.0770055i
\(877\) 23.1339 0.781176 0.390588 0.920566i \(-0.372272\pi\)
0.390588 + 0.920566i \(0.372272\pi\)
\(878\) −87.5413 −2.95438
\(879\) −4.21515 24.6307i −0.142173 0.830773i
\(880\) 25.5568i 0.861520i
\(881\) −9.43397 −0.317838 −0.158919 0.987292i \(-0.550801\pi\)
−0.158919 + 0.987292i \(0.550801\pi\)
\(882\) −42.8138 + 31.4375i −1.44162 + 1.05856i
\(883\) 38.4009 1.29229 0.646147 0.763213i \(-0.276379\pi\)
0.646147 + 0.763213i \(0.276379\pi\)
\(884\) 31.5072i 1.05970i
\(885\) 2.49065 + 14.5538i 0.0837221 + 0.489220i
\(886\) −35.0121 −1.17625
\(887\) 9.00623 0.302400 0.151200 0.988503i \(-0.451686\pi\)
0.151200 + 0.988503i \(0.451686\pi\)
\(888\) 9.34731 1.59964i 0.313675 0.0536804i
\(889\) −1.72806 1.28180i −0.0579572 0.0429903i
\(890\) 21.7887i 0.730358i
\(891\) −31.1664 38.7013i −1.04411 1.29654i
\(892\) 19.3969i 0.649456i
\(893\) 78.1688i 2.61582i
\(894\) −4.92423 28.7742i −0.164691 0.962352i
\(895\) 6.70139i 0.224003i
\(896\) −21.5220 + 29.0147i −0.718998 + 0.969314i
\(897\) −0.453149 2.64792i −0.0151302 0.0884116i
\(898\) 46.3680 1.54732
\(899\) 14.2840 0.476400
\(900\) −55.9842 + 19.7397i −1.86614 + 0.657989i
\(901\) 26.3879i 0.879109i
\(902\) −52.3797 −1.74405
\(903\) −18.8005 + 37.1294i −0.625640 + 1.23559i
\(904\) 104.956 3.49078
\(905\) 6.94178i 0.230752i
\(906\) 14.1842 2.42740i 0.471239 0.0806449i
\(907\) −17.9779 −0.596945 −0.298472 0.954418i \(-0.596477\pi\)
−0.298472 + 0.954418i \(0.596477\pi\)
\(908\) −59.1430 −1.96273
\(909\) 3.98229 1.40413i 0.132084 0.0465721i
\(910\) −5.89702 4.37417i −0.195484 0.145002i
\(911\) 5.25487i 0.174102i −0.996204 0.0870509i \(-0.972256\pi\)
0.996204 0.0870509i \(-0.0277443\pi\)
\(912\) 88.6122 15.1645i 2.93424 0.502148i
\(913\) 41.7214i 1.38078i
\(914\) 63.3565i 2.09565i
\(915\) 11.4437 1.95841i 0.378319 0.0647431i
\(916\) 68.7622i 2.27197i
\(917\) 0.856187 + 0.635085i 0.0282738 + 0.0209724i
\(918\) 53.0309 29.5572i 1.75028 0.975535i
\(919\) 46.4120 1.53099 0.765495 0.643441i \(-0.222494\pi\)
0.765495 + 0.643441i \(0.222494\pi\)
\(920\) −4.28984 −0.141432
\(921\) 30.6396 5.24348i 1.00961 0.172778i
\(922\) 80.8581i 2.66292i
\(923\) 4.13200 0.136007
\(924\) 99.2641 + 50.2624i 3.26555 + 1.65351i
\(925\) 4.06242 0.133571
\(926\) 63.6512i 2.09171i
\(927\) −16.3355 46.3294i −0.536528 1.52166i
\(928\) −11.0530 −0.362833
\(929\) 10.7320 0.352105 0.176052 0.984381i \(-0.443667\pi\)
0.176052 + 0.984381i \(0.443667\pi\)
\(930\) 2.98763 + 17.4579i 0.0979684 + 0.572467i
\(931\) 53.1353 16.1102i 1.74144 0.527992i
\(932\) 114.842i 3.76178i
\(933\) −7.49115 43.7736i −0.245249 1.43308i
\(934\) 48.0659i 1.57276i
\(935\) 18.0413i 0.590015i
\(936\) 26.6117 9.38313i 0.869831 0.306697i
\(937\) 51.5894i 1.68535i 0.538420 + 0.842676i \(0.319021\pi\)
−0.538420 + 0.842676i \(0.680979\pi\)
\(938\) 3.02013 4.07158i 0.0986109 0.132942i
\(939\) −19.9874 + 3.42052i −0.652264 + 0.111624i
\(940\) −30.6566 −0.999910
\(941\) 35.5788 1.15984 0.579918 0.814675i \(-0.303085\pi\)
0.579918 + 0.814675i \(0.303085\pi\)
\(942\) 9.65362 + 56.4098i 0.314532 + 1.83793i
\(943\) 3.75081i 0.122143i
\(944\) 78.8581 2.56661
\(945\) −1.25809 + 9.64325i −0.0409257 + 0.313695i
\(946\) 126.826 4.12347
\(947\) 22.5855i 0.733931i 0.930235 + 0.366966i \(0.119603\pi\)
−0.930235 + 0.366966i \(0.880397\pi\)
\(948\) −8.46165 49.4446i −0.274822 1.60589i
\(949\) −2.75134 −0.0893122
\(950\) 90.2743 2.92888
\(951\) 28.8715 4.94088i 0.936222 0.160219i
\(952\) −44.1553 + 59.5278i −1.43108 + 1.92931i
\(953\) 41.9118i 1.35766i −0.734297 0.678829i \(-0.762488\pi\)
0.734297 0.678829i \(-0.237512\pi\)
\(954\) 40.8797 14.4139i 1.32353 0.466668i
\(955\) 12.9906i 0.420365i
\(956\) 37.9245i 1.22657i
\(957\) −4.03158 23.5581i −0.130323 0.761525i
\(958\) 20.8945i 0.675072i
\(959\) 0.630876 0.850513i 0.0203721 0.0274645i
\(960\) 0.392965 + 2.29624i 0.0126829 + 0.0741109i
\(961\) −1.66384 −0.0536724
\(962\) −3.54186 −0.114194
\(963\) 0.249481 + 0.707560i 0.00803942 + 0.0228008i
\(964\) 7.16665i 0.230822i
\(965\) 1.60060 0.0515252
\(966\) 5.23608 10.3408i 0.168468 0.332711i
\(967\) −15.6160 −0.502176 −0.251088 0.967964i \(-0.580788\pi\)
−0.251088 + 0.967964i \(0.580788\pi\)
\(968\) 118.152i 3.79756i
\(969\) −62.5541 + 10.7051i −2.00953 + 0.343898i
\(970\) 1.72774 0.0554745
\(971\) 18.8094 0.603624 0.301812 0.953368i \(-0.402409\pi\)
0.301812 + 0.953368i \(0.402409\pi\)
\(972\) −51.3864 45.3737i −1.64822 1.45536i
\(973\) −15.7163 + 21.1879i −0.503842 + 0.679253i
\(974\) 4.14228i 0.132727i
\(975\) 11.9146 2.03899i 0.381573 0.0653000i
\(976\) 62.0067i 1.98478i
\(977\) 43.8295i 1.40223i 0.713049 + 0.701114i \(0.247314\pi\)
−0.713049 + 0.701114i \(0.752686\pi\)
\(978\) 2.20249 0.376921i 0.0704279 0.0120526i
\(979\) 67.2350i 2.14884i
\(980\) −6.31820 20.8388i −0.201827 0.665673i
\(981\) 15.0327 5.30043i 0.479956 0.169230i
\(982\) −90.7658 −2.89645
\(983\) 27.1176 0.864916 0.432458 0.901654i \(-0.357646\pi\)
0.432458 + 0.901654i \(0.357646\pi\)
\(984\) −38.8330 + 6.64564i −1.23795 + 0.211855i
\(985\) 17.6165i 0.561310i
\(986\) 29.2017 0.929971
\(987\) 20.4009 40.2902i 0.649369 1.28245i
\(988\) −54.1015 −1.72120
\(989\) 9.08177i 0.288784i
\(990\) 27.9493 9.85476i 0.888287 0.313205i
\(991\) −46.3103 −1.47110 −0.735548 0.677473i \(-0.763075\pi\)
−0.735548 + 0.677473i \(0.763075\pi\)
\(992\) 25.2753 0.802492
\(993\) −2.55784 14.9464i −0.0811707 0.474311i
\(994\) 14.3189 + 10.6212i 0.454168 + 0.336884i
\(995\) 11.0017i 0.348779i
\(996\) −9.70895 56.7331i −0.307640 1.79766i
\(997\) 50.9196i 1.61264i 0.591479 + 0.806320i \(0.298544\pi\)
−0.591479 + 0.806320i \(0.701456\pi\)
\(998\) 80.8563i 2.55946i
\(999\) 2.28394 + 4.09778i 0.0722606 + 0.129648i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.d.d.461.6 yes 44
3.2 odd 2 inner 483.2.d.d.461.39 yes 44
7.6 odd 2 inner 483.2.d.d.461.5 44
21.20 even 2 inner 483.2.d.d.461.40 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.d.d.461.5 44 7.6 odd 2 inner
483.2.d.d.461.6 yes 44 1.1 even 1 trivial
483.2.d.d.461.39 yes 44 3.2 odd 2 inner
483.2.d.d.461.40 yes 44 21.20 even 2 inner