Properties

Label 483.2.h.c.160.9
Level 483483
Weight 22
Character 483.160
Analytic conductor 3.8573.857
Analytic rank 00
Dimension 1212
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [483,2,Mod(160,483)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(483, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("483.160"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 483=3723 483 = 3 \cdot 7 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 483.h (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.856774417633.85677441763
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12+17x10+92x8+180x6+92x4+17x2+1 x^{12} + 17x^{10} + 92x^{8} + 180x^{6} + 92x^{4} + 17x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 26 2^{6}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 160.9
Root 0.562016i-0.562016i of defining polynomial
Character χ\chi == 483.160
Dual form 483.2.h.c.160.11

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+2.51820q21.00000iq3+4.34132q41.21729q52.51820iq6+(2.34908+1.21729i)q7+5.89592q81.00000q93.06538q101.13179iq114.34132iq12+0.518199iq13+(5.91546+3.06538i)q14+1.21729iq15+6.16445q163.06538q172.51820q18+1.13179q195.28466q20+(1.217292.34908i)q212.85008iq22+(0.3413254.78367i)q235.89592iq243.51820q25+1.30493iq26+1.00000iq27+(10.1981+5.28466i)q282.17687q29+3.06538iq30+6.85952iq31+3.73147q321.13179q337.71925q34+(2.859521.48180i)q354.34132q36+10.1981iq37+2.85008q38+0.518199q397.17706q405.00000iq41+(3.065385.91546i)q426.71726iq434.91348iq44+1.21729q45+(0.85952312.0462i)q46+4.21327iq476.16445iq48+(4.03640+5.71905i)q498.85952q50+3.06538iq51+2.24967iq52+5.41447iq53+2.51820iq54+1.37772iq55+(13.8500+7.17706i)q561.13179iq575.48180q580.200848iq59+5.28466iq606.21627q61+17.2736iq62+(2.349081.21729i)q632.93232q640.630799iq652.85008q663.65188iq6713.3078q68+(4.78367+0.341325i)q69+(7.200853.73147i)q70+2.16445q715.89592q7210.2248iq73+25.6809iq74+3.51820iq75+4.91348q76+(1.377722.65868i)q77+1.30493q78+8.59454iq797.50394q80+1.00000q8112.5910iq82+11.6307q83+(5.2846610.1981i)q84+3.73147q8516.9154iq86+2.17687iq876.67296iq885.11366q89+3.06538q90+(0.630799+1.21729i)q91+(1.4818020.7675i)q92+6.85952q93+10.6099iq941.37772q953.73147iq96+18.1619q97+(10.1645+14.4017i)q98+1.13179iq99+O(q100)q+2.51820 q^{2} -1.00000i q^{3} +4.34132 q^{4} -1.21729 q^{5} -2.51820i q^{6} +(2.34908 + 1.21729i) q^{7} +5.89592 q^{8} -1.00000 q^{9} -3.06538 q^{10} -1.13179i q^{11} -4.34132i q^{12} +0.518199i q^{13} +(5.91546 + 3.06538i) q^{14} +1.21729i q^{15} +6.16445 q^{16} -3.06538 q^{17} -2.51820 q^{18} +1.13179 q^{19} -5.28466 q^{20} +(1.21729 - 2.34908i) q^{21} -2.85008i q^{22} +(-0.341325 - 4.78367i) q^{23} -5.89592i q^{24} -3.51820 q^{25} +1.30493i q^{26} +1.00000i q^{27} +(10.1981 + 5.28466i) q^{28} -2.17687 q^{29} +3.06538i q^{30} +6.85952i q^{31} +3.73147 q^{32} -1.13179 q^{33} -7.71925 q^{34} +(-2.85952 - 1.48180i) q^{35} -4.34132 q^{36} +10.1981i q^{37} +2.85008 q^{38} +0.518199 q^{39} -7.17706 q^{40} -5.00000i q^{41} +(3.06538 - 5.91546i) q^{42} -6.71726i q^{43} -4.91348i q^{44} +1.21729 q^{45} +(-0.859523 - 12.0462i) q^{46} +4.21327i q^{47} -6.16445i q^{48} +(4.03640 + 5.71905i) q^{49} -8.85952 q^{50} +3.06538i q^{51} +2.24967i q^{52} +5.41447i q^{53} +2.51820i q^{54} +1.37772i q^{55} +(13.8500 + 7.17706i) q^{56} -1.13179i q^{57} -5.48180 q^{58} -0.200848i q^{59} +5.28466i q^{60} -6.21627 q^{61} +17.2736i q^{62} +(-2.34908 - 1.21729i) q^{63} -2.93232 q^{64} -0.630799i q^{65} -2.85008 q^{66} -3.65188i q^{67} -13.3078 q^{68} +(-4.78367 + 0.341325i) q^{69} +(-7.20085 - 3.73147i) q^{70} +2.16445 q^{71} -5.89592 q^{72} -10.2248i q^{73} +25.6809i q^{74} +3.51820i q^{75} +4.91348 q^{76} +(1.37772 - 2.65868i) q^{77} +1.30493 q^{78} +8.59454i q^{79} -7.50394 q^{80} +1.00000 q^{81} -12.5910i q^{82} +11.6307 q^{83} +(5.28466 - 10.1981i) q^{84} +3.73147 q^{85} -16.9154i q^{86} +2.17687i q^{87} -6.67296i q^{88} -5.11366 q^{89} +3.06538 q^{90} +(-0.630799 + 1.21729i) q^{91} +(-1.48180 - 20.7675i) q^{92} +6.85952 q^{93} +10.6099i q^{94} -1.37772 q^{95} -3.73147i q^{96} +18.1619 q^{97} +(10.1645 + 14.4017i) q^{98} +1.13179i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+4q2+36q424q812q9+68q164q18+12q2316q2516q2944q32+8q3536q3620q39+32q464q4964q5092q58+112q64++116q98+O(q100) 12 q + 4 q^{2} + 36 q^{4} - 24 q^{8} - 12 q^{9} + 68 q^{16} - 4 q^{18} + 12 q^{23} - 16 q^{25} - 16 q^{29} - 44 q^{32} + 8 q^{35} - 36 q^{36} - 20 q^{39} + 32 q^{46} - 4 q^{49} - 64 q^{50} - 92 q^{58} + 112 q^{64}+ \cdots + 116 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/483Z)×\left(\mathbb{Z}/483\mathbb{Z}\right)^\times.

nn 323323 346346 442442
χ(n)\chi(n) 11 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.51820 1.78064 0.890318 0.455340i 0.150482π-0.150482\pi
0.890318 + 0.455340i 0.150482π0.150482\pi
33 1.00000i 0.577350i
44 4.34132 2.17066
55 −1.21729 −0.544390 −0.272195 0.962242i 0.587750π-0.587750\pi
−0.272195 + 0.962242i 0.587750π0.587750\pi
66 2.51820i 1.02805i
77 2.34908 + 1.21729i 0.887871 + 0.460093i
88 5.89592 2.08452
99 −1.00000 −0.333333
1010 −3.06538 −0.969360
1111 1.13179i 0.341248i −0.985336 0.170624i 0.945422π-0.945422\pi
0.985336 0.170624i 0.0545784π-0.0545784\pi
1212 4.34132i 1.25323i
1313 0.518199i 0.143722i 0.997415 + 0.0718612i 0.0228939π0.0228939\pi
−0.997415 + 0.0718612i 0.977106π0.977106\pi
1414 5.91546 + 3.06538i 1.58097 + 0.819259i
1515 1.21729i 0.314304i
1616 6.16445 1.54111
1717 −3.06538 −0.743465 −0.371732 0.928340i 0.621236π-0.621236\pi
−0.371732 + 0.928340i 0.621236π0.621236\pi
1818 −2.51820 −0.593545
1919 1.13179 0.259651 0.129825 0.991537i 0.458558π-0.458558\pi
0.129825 + 0.991537i 0.458558π0.458558\pi
2020 −5.28466 −1.18169
2121 1.21729 2.34908i 0.265635 0.512612i
2222 2.85008i 0.607639i
2323 −0.341325 4.78367i −0.0711711 0.997464i
2424 5.89592i 1.20350i
2525 −3.51820 −0.703640
2626 1.30493i 0.255917i
2727 1.00000i 0.192450i
2828 10.1981 + 5.28466i 1.92727 + 0.998707i
2929 −2.17687 −0.404235 −0.202118 0.979361i 0.564782π-0.564782\pi
−0.202118 + 0.979361i 0.564782π0.564782\pi
3030 3.06538i 0.559660i
3131 6.85952i 1.23201i 0.787744 + 0.616003i 0.211249π0.211249\pi
−0.787744 + 0.616003i 0.788751π0.788751\pi
3232 3.73147 0.659637
3333 −1.13179 −0.197020
3434 −7.71925 −1.32384
3535 −2.85952 1.48180i −0.483348 0.250470i
3636 −4.34132 −0.723554
3737 10.1981i 1.67656i 0.545237 + 0.838282i 0.316440π0.316440\pi
−0.545237 + 0.838282i 0.683560π0.683560\pi
3838 2.85008 0.462344
3939 0.518199 0.0829782
4040 −7.17706 −1.13479
4141 5.00000i 0.780869i −0.920631 0.390434i 0.872325π-0.872325\pi
0.920631 0.390434i 0.127675π-0.127675\pi
4242 3.06538 5.91546i 0.472999 0.912776i
4343 6.71726i 1.02437i −0.858874 0.512186i 0.828836π-0.828836\pi
0.858874 0.512186i 0.171164π-0.171164\pi
4444 4.91348i 0.740734i
4545 1.21729 0.181463
4646 −0.859523 12.0462i −0.126730 1.77612i
4747 4.21327i 0.614569i 0.951618 + 0.307284i 0.0994203π0.0994203\pi
−0.951618 + 0.307284i 0.900580π0.900580\pi
4848 6.16445i 0.889762i
4949 4.03640 + 5.71905i 0.576628 + 0.817007i
5050 −8.85952 −1.25293
5151 3.06538i 0.429240i
5252 2.24967i 0.311973i
5353 5.41447i 0.743735i 0.928286 + 0.371867i 0.121282π0.121282\pi
−0.928286 + 0.371867i 0.878718π0.878718\pi
5454 2.51820i 0.342683i
5555 1.37772i 0.185772i
5656 13.8500 + 7.17706i 1.85079 + 0.959075i
5757 1.13179i 0.149910i
5858 −5.48180 −0.719796
5959 0.200848i 0.0261482i −0.999915 0.0130741i 0.995838π-0.995838\pi
0.999915 0.0130741i 0.00416173π-0.00416173\pi
6060 5.28466i 0.682247i
6161 −6.21627 −0.795912 −0.397956 0.917405i 0.630280π-0.630280\pi
−0.397956 + 0.917405i 0.630280π0.630280\pi
6262 17.2736i 2.19375i
6363 −2.34908 1.21729i −0.295957 0.153364i
6464 −2.93232 −0.366540
6565 0.630799i 0.0782410i
6666 −2.85008 −0.350820
6767 3.65188i 0.446148i −0.974802 0.223074i 0.928391π-0.928391\pi
0.974802 0.223074i 0.0716091π-0.0716091\pi
6868 −13.3078 −1.61381
6969 −4.78367 + 0.341325i −0.575886 + 0.0410907i
7070 −7.20085 3.73147i −0.860666 0.445996i
7171 2.16445 0.256873 0.128437 0.991718i 0.459004π-0.459004\pi
0.128437 + 0.991718i 0.459004π0.459004\pi
7272 −5.89592 −0.694841
7373 10.2248i 1.19672i −0.801226 0.598362i 0.795818π-0.795818\pi
0.801226 0.598362i 0.204182π-0.204182\pi
7474 25.6809i 2.98535i
7575 3.51820i 0.406247i
7676 4.91348 0.563614
7777 1.37772 2.65868i 0.157006 0.302984i
7878 1.30493 0.147754
7979 8.59454i 0.966961i 0.875355 + 0.483481i 0.160628π0.160628\pi
−0.875355 + 0.483481i 0.839372π0.839372\pi
8080 −7.50394 −0.838966
8181 1.00000 0.111111
8282 12.5910i 1.39044i
8383 11.6307 1.27664 0.638320 0.769771i 0.279630π-0.279630\pi
0.638320 + 0.769771i 0.279630π0.279630\pi
8484 5.28466 10.1981i 0.576604 1.11271i
8585 3.73147 0.404735
8686 16.9154i 1.82403i
8787 2.17687i 0.233385i
8888 6.67296i 0.711340i
8989 −5.11366 −0.542047 −0.271024 0.962573i 0.587362π-0.587362\pi
−0.271024 + 0.962573i 0.587362π0.587362\pi
9090 3.06538 0.323120
9191 −0.630799 + 1.21729i −0.0661257 + 0.127607i
9292 −1.48180 20.7675i −0.154488 2.16516i
9393 6.85952 0.711299
9494 10.6099i 1.09432i
9595 −1.37772 −0.141351
9696 3.73147i 0.380842i
9797 18.1619 1.84406 0.922030 0.387119i 0.126530π-0.126530\pi
0.922030 + 0.387119i 0.126530π0.126530\pi
9898 10.1645 + 14.4017i 1.02676 + 1.45479i
9999 1.13179i 0.113749i
100100 −15.2736 −1.52736
101101 8.88350i 0.883941i −0.897030 0.441971i 0.854280π-0.854280\pi
0.897030 0.441971i 0.145720π-0.145720\pi
102102 7.71925i 0.764319i
103103 −11.5009 −1.13322 −0.566610 0.823986i 0.691745π-0.691745\pi
−0.566610 + 0.823986i 0.691745π0.691745\pi
104104 3.05526i 0.299593i
105105 −1.48180 + 2.85952i −0.144609 + 0.279061i
106106 13.6347i 1.32432i
107107 2.67908i 0.258996i −0.991580 0.129498i 0.958663π-0.958663\pi
0.991580 0.129498i 0.0413366π-0.0413366\pi
108108 4.34132i 0.417744i
109109 17.7464i 1.69980i −0.526948 0.849898i 0.676664π-0.676664\pi
0.526948 0.849898i 0.323336π-0.323336\pi
110110 3.46938i 0.330792i
111111 10.1981 0.967965
112112 14.4808 + 7.50394i 1.36831 + 0.709056i
113113 2.21928i 0.208772i 0.994537 + 0.104386i 0.0332878π0.0332878\pi
−0.994537 + 0.104386i 0.966712π0.966712\pi
114114 2.85008i 0.266934i
115115 0.415492 + 5.82313i 0.0387448 + 0.543009i
116116 −9.45052 −0.877458
117117 0.518199i 0.0479075i
118118 0.505775i 0.0465604i
119119 −7.20085 3.73147i −0.660101 0.342063i
120120 7.17706i 0.655173i
121121 9.71905 0.883550
122122 −15.6538 −1.41723
123123 −5.00000 −0.450835
124124 29.7794i 2.67427i
125125 10.3691 0.927444
126126 −5.91546 3.06538i −0.526991 0.273086i
127127 −2.73147 −0.242379 −0.121189 0.992629i 0.538671π-0.538671\pi
−0.121189 + 0.992629i 0.538671π0.538671\pi
128128 −14.8471 −1.31231
129129 −6.71726 −0.591422
130130 1.58848i 0.139319i
131131 18.7190i 1.63549i −0.575580 0.817745i 0.695224π-0.695224\pi
0.575580 0.817745i 0.304776π-0.304776\pi
132132 −4.91348 −0.427663
133133 2.65868 + 1.37772i 0.230536 + 0.119464i
134134 9.19615i 0.794427i
135135 1.21729i 0.104768i
136136 −18.0733 −1.54977
137137 12.3027i 1.05109i 0.850765 + 0.525547i 0.176139π0.176139\pi
−0.850765 + 0.525547i 0.823861π0.823861\pi
138138 −12.0462 + 0.859523i −1.02544 + 0.0731675i
139139 13.7794i 1.16876i 0.811482 + 0.584378i 0.198661π0.198661\pi
−0.811482 + 0.584378i 0.801339π0.801339\pi
140140 −12.4141 6.43298i −1.04918 0.543686i
141141 4.21327 0.354821
142142 5.45052 0.457397
143143 0.586493 0.0490450
144144 −6.16445 −0.513704
145145 2.64989 0.220062
146146 25.7481i 2.13093i
147147 5.71905 4.03640i 0.471699 0.332916i
148148 44.2734i 3.63925i
149149 8.46473i 0.693458i −0.937965 0.346729i 0.887292π-0.887292\pi
0.937965 0.346729i 0.112708π-0.112708\pi
150150 8.85952i 0.723377i
151151 17.5786 1.43052 0.715262 0.698857i 0.246307π-0.246307\pi
0.715262 + 0.698857i 0.246307π0.246307\pi
152152 6.67296 0.541248
153153 3.06538 0.247822
154154 3.46938 6.69507i 0.279570 0.539504i
155155 8.35005i 0.670692i
156156 2.24967 0.180118
157157 −18.6337 −1.48713 −0.743565 0.668664i 0.766867π-0.766867\pi
−0.743565 + 0.668664i 0.766867π0.766867\pi
158158 21.6428i 1.72181i
159159 5.41447 0.429395
160160 −4.54229 −0.359100
161161 5.02133 11.6527i 0.395736 0.918364i
162162 2.51820 0.197848
163163 7.23725 0.566865 0.283432 0.958992i 0.408527π-0.408527\pi
0.283432 + 0.958992i 0.408527π0.408527\pi
164164 21.7066i 1.69500i
165165 1.37772 0.107256
166166 29.2885 2.27323
167167 17.8282i 1.37959i −0.724004 0.689795i 0.757701π-0.757701\pi
0.724004 0.689795i 0.242299π-0.242299\pi
168168 7.17706 13.8500i 0.553722 1.06855i
169169 12.7315 0.979344
170170 9.39658 0.720685
171171 −1.13179 −0.0865503
172172 29.1618i 2.22357i
173173 20.2248i 1.53766i −0.639450 0.768832i 0.720838π-0.720838\pi
0.639450 0.768832i 0.279162π-0.279162\pi
174174 5.48180i 0.415574i
175175 −8.26455 4.28268i −0.624741 0.323740i
176176 6.97688i 0.525902i
177177 −0.200848 −0.0150967
178178 −12.8772 −0.965188
179179 −10.4141 −0.778388 −0.389194 0.921156i 0.627246π-0.627246\pi
−0.389194 + 0.921156i 0.627246π0.627246\pi
180180 5.28466 0.393895
181181 14.0653 1.04547 0.522734 0.852496i 0.324912π-0.324912\pi
0.522734 + 0.852496i 0.324912π0.324912\pi
182182 −1.58848 + 3.06538i −0.117746 + 0.227221i
183183 6.21627i 0.459520i
184184 −2.01242 28.2041i −0.148358 2.07924i
185185 12.4141i 0.912704i
186186 17.2736 1.26656
187187 3.46938i 0.253706i
188188 18.2912i 1.33402i
189189 −1.21729 + 2.34908i −0.0885450 + 0.170871i
190190 −3.46938 −0.251695
191191 12.3319i 0.892306i 0.894957 + 0.446153i 0.147206π0.147206\pi
−0.894957 + 0.446153i 0.852794π0.852794\pi
192192 2.93232i 0.211622i
193193 −3.17687 −0.228676 −0.114338 0.993442i 0.536475π-0.536475\pi
−0.114338 + 0.993442i 0.536475π0.536475\pi
194194 45.7352 3.28360
195195 −0.630799 −0.0451725
196196 17.5233 + 24.8282i 1.25167 + 1.77345i
197197 16.5661 1.18029 0.590145 0.807298i 0.299071π-0.299071\pi
0.590145 + 0.807298i 0.299071π0.299071\pi
198198 2.85008i 0.202546i
199199 −9.28165 −0.657959 −0.328980 0.944337i 0.606705π-0.606705\pi
−0.328980 + 0.944337i 0.606705π0.606705\pi
200200 −20.7430 −1.46675
201201 −3.65188 −0.257584
202202 22.3704i 1.57398i
203203 −5.11366 2.64989i −0.358909 0.185986i
204204 13.3078i 0.931734i
205205 6.08646i 0.425097i
206206 −28.9616 −2.01785
207207 0.341325 + 4.78367i 0.0237237 + 0.332488i
208208 3.19441i 0.221493i
209209 1.28095i 0.0886054i
210210 −3.73147 + 7.20085i −0.257496 + 0.496906i
211211 7.96360 0.548237 0.274119 0.961696i 0.411614π-0.411614\pi
0.274119 + 0.961696i 0.411614π0.411614\pi
212212 23.5060i 1.61440i
213213 2.16445i 0.148306i
214214 6.74645i 0.461178i
215215 8.17687i 0.557658i
216216 5.89592i 0.401167i
217217 −8.35005 + 16.1136i −0.566838 + 1.09386i
218218 44.6889i 3.02672i
219219 −10.2248 −0.690929
220220 5.98114i 0.403248i
221221 1.58848i 0.106853i
222222 25.6809 1.72359
223223 21.0968i 1.41274i 0.707841 + 0.706372i 0.249669π0.249669\pi
−0.707841 + 0.706372i 0.750331π0.750331\pi
224224 8.76554 + 4.54229i 0.585672 + 0.303495i
225225 3.51820 0.234547
226226 5.58858i 0.371747i
227227 −24.8791 −1.65129 −0.825643 0.564193i 0.809188π-0.809188\pi
−0.825643 + 0.564193i 0.809188π0.809188\pi
228228 4.91348i 0.325403i
229229 19.5090 1.28919 0.644595 0.764524i 0.277026π-0.277026\pi
0.644595 + 0.764524i 0.277026π0.277026\pi
230230 1.04629 + 14.6638i 0.0689904 + 0.966902i
231231 −2.65868 1.37772i −0.174928 0.0906475i
232232 −12.8347 −0.842638
233233 −8.34132 −0.546458 −0.273229 0.961949i 0.588092π-0.588092\pi
−0.273229 + 0.961949i 0.588092π0.588092\pi
234234 1.30493i 0.0853058i
235235 5.12878i 0.334565i
236236 0.871947i 0.0567589i
237237 8.59454 0.558275
238238 −18.1332 9.39658i −1.17540 0.609090i
239239 −21.3777 −1.38281 −0.691405 0.722467i 0.743008π-0.743008\pi
−0.691405 + 0.722467i 0.743008π0.743008\pi
240240 7.50394i 0.484377i
241241 −8.86616 −0.571120 −0.285560 0.958361i 0.592180π-0.592180\pi
−0.285560 + 0.958361i 0.592180π0.592180\pi
242242 24.4745 1.57328
243243 1.00000i 0.0641500i
244244 −26.9868 −1.72766
245245 −4.91348 6.96175i −0.313911 0.444770i
246246 −12.5910 −0.802772
247247 0.586493i 0.0373177i
248248 40.4432i 2.56815i
249249 11.6307i 0.737068i
250250 26.1116 1.65144
251251 13.0925 0.826393 0.413196 0.910642i 0.364412π-0.364412\pi
0.413196 + 0.910642i 0.364412π0.364412\pi
252252 −10.1981 5.28466i −0.642422 0.332902i
253253 −5.41412 + 0.386309i −0.340383 + 0.0242870i
254254 −6.87838 −0.431588
255255 3.73147i 0.233674i
256256 −31.5233 −1.97021
257257 13.9075i 0.867524i 0.901027 + 0.433762i 0.142814π0.142814\pi
−0.901027 + 0.433762i 0.857186π0.857186\pi
258258 −16.9154 −1.05311
259259 −12.4141 + 23.9563i −0.771376 + 1.48857i
260260 2.73851i 0.169835i
261261 2.17687 0.134745
262262 47.1383i 2.91221i
263263 23.7917i 1.46706i 0.679659 + 0.733528i 0.262128π0.262128\pi
−0.679659 + 0.733528i 0.737872π0.737872\pi
264264 −6.67296 −0.410692
265265 6.59099i 0.404882i
266266 6.69507 + 3.46938i 0.410501 + 0.212721i
267267 5.11366i 0.312951i
268268 15.8540i 0.968436i
269269 5.76275i 0.351361i 0.984447 + 0.175681i 0.0562126π0.0562126\pi
−0.984447 + 0.175681i 0.943787π0.943787\pi
270270 3.06538i 0.186553i
271271 11.5422i 0.701137i 0.936537 + 0.350569i 0.114012π0.114012\pi
−0.936537 + 0.350569i 0.885988π0.885988\pi
272272 −18.8964 −1.14576
273273 1.21729 + 0.630799i 0.0736739 + 0.0381777i
274274 30.9807i 1.87161i
275275 3.98187i 0.240116i
276276 −20.7675 + 1.48180i −1.25005 + 0.0891940i
277277 24.5713 1.47634 0.738172 0.674613i 0.235689π-0.235689\pi
0.738172 + 0.674613i 0.235689π0.235689\pi
278278 34.6993i 2.08113i
279279 6.85952i 0.410669i
280280 −16.8595 8.73658i −1.00755 0.522111i
281281 16.7001i 0.996244i −0.867107 0.498122i 0.834023π-0.834023\pi
0.867107 0.498122i 0.165977π-0.165977\pi
282282 10.6099 0.631808
283283 12.2172 0.726239 0.363120 0.931743i 0.381712π-0.381712\pi
0.363120 + 0.931743i 0.381712π0.381712\pi
284284 9.39658 0.557585
285285 1.37772i 0.0816092i
286286 1.47691 0.0873313
287287 6.08646 11.7454i 0.359273 0.693310i
288288 −3.73147 −0.219879
289289 −7.60342 −0.447260
290290 6.67296 0.391849
291291 18.1619i 1.06467i
292292 44.3893i 2.59769i
293293 22.0582 1.28866 0.644328 0.764749i 0.277137π-0.277137\pi
0.644328 + 0.764749i 0.277137π0.277137\pi
294294 14.4017 10.1645i 0.839924 0.592803i
295295 0.244491i 0.0142348i
296296 60.1274i 3.49484i
297297 1.13179 0.0656732
298298 21.3159i 1.23480i
299299 2.47889 0.176874i 0.143358 0.0102289i
300300 15.2736i 0.881824i
301301 8.17687 15.7794i 0.471307 0.909511i
302302 44.2663 2.54724
303303 −8.88350 −0.510344
304304 6.97688 0.400151
305305 7.56702 0.433286
306306 7.71925 0.441280
307307 20.0167i 1.14241i −0.820807 0.571206i 0.806476π-0.806476\pi
0.820807 0.571206i 0.193524π-0.193524\pi
308308 5.98114 11.5422i 0.340807 0.657676i
309309 11.5009i 0.654265i
310310 21.0271i 1.19426i
311311 15.7430i 0.892705i 0.894857 + 0.446352i 0.147277π0.147277\pi
−0.894857 + 0.446352i 0.852723π0.852723\pi
312312 3.05526 0.172970
313313 −8.46473 −0.478455 −0.239227 0.970964i 0.576894π-0.576894\pi
−0.239227 + 0.970964i 0.576894π0.576894\pi
314314 −46.9233 −2.64804
315315 2.85952 + 1.48180i 0.161116 + 0.0834900i
316316 37.3117i 2.09895i
317317 28.1083 1.57872 0.789360 0.613930i 0.210412π-0.210412\pi
0.789360 + 0.613930i 0.210412π0.210412\pi
318318 13.6347 0.764597
319319 2.46377i 0.137945i
320320 3.56949 0.199541
321321 −2.67908 −0.149531
322322 12.6447 29.3439i 0.704661 1.63527i
323323 −3.46938 −0.193041
324324 4.34132 0.241185
325325 1.82313i 0.101129i
326326 18.2248 1.00938
327327 −17.7464 −0.981377
328328 29.4796i 1.62774i
329329 −5.12878 + 9.89733i −0.282759 + 0.545658i
330330 3.46938 0.190983
331331 −9.22482 −0.507042 −0.253521 0.967330i 0.581589π-0.581589\pi
−0.253521 + 0.967330i 0.581589π0.581589\pi
332332 50.4928 2.77115
333333 10.1981i 0.558855i
334334 44.8950i 2.45655i
335335 4.44540i 0.242878i
336336 7.50394 14.4808i 0.409374 0.789993i
337337 14.0794i 0.766953i −0.923551 0.383476i 0.874727π-0.874727\pi
0.923551 0.383476i 0.125273π-0.125273\pi
338338 32.0604 1.74385
339339 2.21928 0.120535
340340 16.1995 0.878543
341341 7.76355 0.420420
342342 −2.85008 −0.154115
343343 2.52009 + 18.3480i 0.136072 + 0.990699i
344344 39.6044i 2.13533i
345345 5.82313 0.415492i 0.313507 0.0223693i
346346 50.9301i 2.73802i
347347 −4.50578 −0.241883 −0.120941 0.992660i 0.538591π-0.538591\pi
−0.120941 + 0.992660i 0.538591π0.538591\pi
348348 9.45052i 0.506601i
349349 11.8522i 0.634434i 0.948353 + 0.317217i 0.102748π0.102748\pi
−0.948353 + 0.317217i 0.897252π0.897252\pi
350350 −20.8118 10.7846i −1.11244 0.576463i
351351 −0.518199 −0.0276594
352352 4.22325i 0.225100i
353353 24.0167i 1.27828i 0.769091 + 0.639139i 0.220709π0.220709\pi
−0.769091 + 0.639139i 0.779291π0.779291\pi
354354 −0.505775 −0.0268817
355355 −2.63477 −0.139839
356356 −22.2001 −1.17660
357357 −3.73147 + 7.20085i −0.197490 + 0.381109i
358358 −26.2248 −1.38602
359359 1.21729i 0.0642462i 0.999484 + 0.0321231i 0.0102269π0.0102269\pi
−0.999484 + 0.0321231i 0.989773π0.989773\pi
360360 7.17706 0.378264
361361 −17.7190 −0.932581
362362 35.4193 1.86160
363363 9.71905i 0.510118i
364364 −2.73851 + 5.28466i −0.143537 + 0.276992i
365365 12.4466i 0.651485i
366366 15.6538i 0.818237i
367367 10.7434 0.560803 0.280401 0.959883i 0.409532π-0.409532\pi
0.280401 + 0.959883i 0.409532π0.409532\pi
368368 −2.10408 29.4887i −0.109683 1.53720i
369369 5.00000i 0.260290i
370370 31.2612i 1.62519i
371371 −6.59099 + 12.7190i −0.342187 + 0.660340i
372372 29.7794 1.54399
373373 28.3308i 1.46691i −0.679735 0.733457i 0.737905π-0.737905\pi
0.679735 0.733457i 0.262095π-0.262095\pi
374374 8.73658i 0.451758i
375375 10.3691i 0.535460i
376376 24.8411i 1.28108i
377377 1.12805i 0.0580977i
378378 −3.06538 + 5.91546i −0.157666 + 0.304259i
379379 4.86917i 0.250112i −0.992150 0.125056i 0.960089π-0.960089\pi
0.992150 0.125056i 0.0399111π-0.0399111\pi
380380 −5.98114 −0.306826
381381 2.73147i 0.139937i
382382 31.0542i 1.58887i
383383 −34.6326 −1.76964 −0.884822 0.465930i 0.845720π-0.845720\pi
−0.884822 + 0.465930i 0.845720π0.845720\pi
384384 14.8471i 0.757663i
385385 −1.67709 + 3.23639i −0.0854725 + 0.164941i
386386 −8.00000 −0.407189
387387 6.71726i 0.341458i
388388 78.8466 4.00283
389389 11.6307i 0.589702i 0.955543 + 0.294851i 0.0952700π0.0952700\pi
−0.955543 + 0.294851i 0.904730π0.904730\pi
390390 −1.58848 −0.0804357
391391 1.04629 + 14.6638i 0.0529132 + 0.741580i
392392 23.7983 + 33.7190i 1.20199 + 1.70307i
393393 −18.7190 −0.944251
394394 41.7168 2.10166
395395 10.4621i 0.526404i
396396 4.91348i 0.246911i
397397 27.5109i 1.38073i −0.723460 0.690366i 0.757450π-0.757450\pi
0.723460 0.690366i 0.242550π-0.242550\pi
398398 −23.3731 −1.17159
399399 1.37772 2.65868i 0.0689724 0.133100i
400400 −21.6878 −1.08439
401401 15.1679i 0.757450i −0.925509 0.378725i 0.876363π-0.876363\pi
0.925509 0.378725i 0.123637π-0.123637\pi
402402 −9.19615 −0.458662
403403 −3.55460 −0.177067
404404 38.5661i 1.91874i
405405 −1.21729 −0.0604878
406406 −12.8772 6.67296i −0.639085 0.331173i
407407 11.5422 0.572124
408408 18.0733i 0.894760i
409409 23.2861i 1.15142i 0.817653 + 0.575711i 0.195275π0.195275\pi
−0.817653 + 0.575711i 0.804725π0.804725\pi
410410 15.3269i 0.756943i
411411 12.3027 0.606849
412412 −49.9293 −2.45984
413413 0.244491 0.471809i 0.0120306 0.0232162i
414414 0.859523 + 12.0462i 0.0422433 + 0.592040i
415415 −14.1580 −0.694990
416416 1.93364i 0.0948046i
417417 13.7794 0.674781
418418 3.22569i 0.157774i
419419 −5.31385 −0.259598 −0.129799 0.991540i 0.541433π-0.541433\pi
−0.129799 + 0.991540i 0.541433π0.541433\pi
420420 −6.43298 + 12.4141i −0.313897 + 0.605747i
421421 16.1136i 0.785329i 0.919682 + 0.392664i 0.128447π0.128447\pi
−0.919682 + 0.392664i 0.871553π0.871553\pi
422422 20.0539 0.976210
423423 4.21327i 0.204856i
424424 31.9233i 1.55033i
425425 10.7846 0.523132
426426 5.45052i 0.264078i
427427 −14.6025 7.56702i −0.706667 0.366194i
428428 11.6307i 0.562193i
429429 0.586493i 0.0283162i
430430 20.5910i 0.992986i
431431 11.4274i 0.550441i −0.961381 0.275220i 0.911249π-0.911249\pi
0.961381 0.275220i 0.0887508π-0.0887508\pi
432432 6.16445i 0.296587i
433433 13.5351 0.650458 0.325229 0.945635i 0.394559π-0.394559\pi
0.325229 + 0.945635i 0.394559π0.394559\pi
434434 −21.0271 + 40.5772i −1.00933 + 1.94777i
435435 2.64989i 0.127053i
436436 77.0428i 3.68968i
437437 −0.386309 5.41412i −0.0184796 0.258992i
438438 −25.7481 −1.23029
439439 36.0415i 1.72017i 0.510153 + 0.860084i 0.329589π0.329589\pi
−0.510153 + 0.860084i 0.670411π0.670411\pi
440440 8.12294i 0.387246i
441441 −4.03640 5.71905i −0.192209 0.272336i
442442 4.00010i 0.190266i
443443 −32.8034 −1.55854 −0.779268 0.626691i 0.784409π-0.784409\pi
−0.779268 + 0.626691i 0.784409π0.784409\pi
444444 44.2734 2.10112
445445 6.22482 0.295085
446446 53.1259i 2.51558i
447447 −8.46473 −0.400368
448448 −6.88826 3.56949i −0.325440 0.168643i
449449 −20.7430 −0.978924 −0.489462 0.872025i 0.662807π-0.662807\pi
−0.489462 + 0.872025i 0.662807π0.662807\pi
450450 8.85952 0.417642
451451 −5.65896 −0.266470
452452 9.63461i 0.453174i
453453 17.5786i 0.825913i
454454 −62.6506 −2.94034
455455 0.767868 1.48180i 0.0359982 0.0694679i
456456 6.67296i 0.312490i
457457 3.13887i 0.146830i 0.997301 + 0.0734152i 0.0233898π0.0233898\pi
−0.997301 + 0.0734152i 0.976610π0.976610\pi
458458 49.1275 2.29558
459459 3.06538i 0.143080i
460460 1.80379 + 25.2801i 0.0841019 + 1.17869i
461461 39.0094i 1.81685i 0.418051 + 0.908423i 0.362713π0.362713\pi
−0.418051 + 0.908423i 0.637287π0.637287\pi
462462 −6.69507 3.46938i −0.311483 0.161410i
463463 −20.2299 −0.940165 −0.470082 0.882623i 0.655776π-0.655776\pi
−0.470082 + 0.882623i 0.655776π0.655776\pi
464464 −13.4192 −0.622972
465465 −8.35005 −0.387224
466466 −21.0051 −0.973043
467467 12.4617 0.576660 0.288330 0.957531i 0.406900π-0.406900\pi
0.288330 + 0.957531i 0.406900π0.406900\pi
468468 2.24967i 0.103991i
469469 4.44540 8.57857i 0.205270 0.396122i
470470 12.9153i 0.595738i
471471 18.6337i 0.858595i
472472 1.18418i 0.0545065i
473473 −7.60254 −0.349565
474474 21.6428 0.994085
475475 −3.98187 −0.182701
476476 −31.2612 16.1995i −1.43286 0.742504i
477477 5.41447i 0.247912i
478478 −53.8334 −2.46228
479479 25.2363 1.15307 0.576537 0.817071i 0.304404π-0.304404\pi
0.576537 + 0.817071i 0.304404π0.304404\pi
480480 4.54229i 0.207326i
481481 −5.28466 −0.240960
482482 −22.3268 −1.01696
483483 −11.6527 5.02133i −0.530218 0.228478i
484484 42.1935 1.91789
485485 −22.1083 −1.00389
486486 2.51820i 0.114228i
487487 −19.0531 −0.863377 −0.431688 0.902023i 0.642082π-0.642082\pi
−0.431688 + 0.902023i 0.642082π0.642082\pi
488488 −36.6506 −1.65910
489489 7.23725i 0.327280i
490490 −12.3731 17.5311i −0.558960 0.791973i
491491 −12.8471 −0.579782 −0.289891 0.957060i 0.593619π-0.593619\pi
−0.289891 + 0.957060i 0.593619π0.593619\pi
492492 −21.7066 −0.978610
493493 6.67296 0.300535
494494 1.47691i 0.0664492i
495495 1.37772i 0.0619240i
496496 42.2852i 1.89866i
497497 5.08448 + 2.63477i 0.228070 + 0.118186i
498498 29.2885i 1.31245i
499499 −8.62228 −0.385986 −0.192993 0.981200i 0.561819π-0.561819\pi
−0.192993 + 0.981200i 0.561819π0.561819\pi
500500 45.0158 2.01317
501501 −17.8282 −0.796507
502502 32.9696 1.47150
503503 −3.30988 −0.147580 −0.0737900 0.997274i 0.523509π-0.523509\pi
−0.0737900 + 0.997274i 0.523509π0.523509\pi
504504 −13.8500 7.17706i −0.616929 0.319692i
505505 10.8138i 0.481208i
506506 −13.6338 + 0.972802i −0.606098 + 0.0432463i
507507 12.7315i 0.565424i
508508 −11.8582 −0.526122
509509 8.92077i 0.395406i 0.980262 + 0.197703i 0.0633482π0.0633482\pi
−0.980262 + 0.197703i 0.936652π0.936652\pi
510510 9.39658i 0.416088i
511511 12.4466 24.0190i 0.550605 1.06254i
512512 −49.6878 −2.19591
513513 1.13179i 0.0499698i
514514 35.0218i 1.54474i
515515 14.0000 0.616914
516516 −29.1618 −1.28378
517517 4.76855 0.209720
518518 −31.2612 + 60.3267i −1.37354 + 2.65060i
519519 −20.2248 −0.887771
520520 3.71914i 0.163095i
521521 −42.6255 −1.86746 −0.933729 0.357980i 0.883465π-0.883465\pi
−0.933729 + 0.357980i 0.883465π0.883465\pi
522522 5.48180 0.239932
523523 −20.5553 −0.898819 −0.449410 0.893326i 0.648366π-0.648366\pi
−0.449410 + 0.893326i 0.648366π0.648366\pi
524524 81.2655i 3.55010i
525525 −4.28268 + 8.26455i −0.186911 + 0.360694i
526526 59.9121i 2.61229i
527527 21.0271i 0.915954i
528528 −6.97688 −0.303630
529529 −22.7670 + 3.26557i −0.989869 + 0.141981i
530530 16.5974i 0.720946i
531531 0.200848i 0.00871606i
532532 11.5422 + 5.98114i 0.500417 + 0.259315i
533533 2.59099 0.112228
534534 12.8772i 0.557252i
535535 3.26122i 0.140995i
536536 21.5312i 0.930005i
537537 10.4141i 0.449402i
538538 14.5118i 0.625646i
539539 6.47277 4.56836i 0.278802 0.196773i
540540 5.28466i 0.227416i
541541 5.98027 0.257112 0.128556 0.991702i 0.458966π-0.458966\pi
0.128556 + 0.991702i 0.458966π0.458966\pi
542542 29.0655i 1.24847i
543543 14.0653i 0.603601i
544544 −11.4384 −0.490417
545545 21.6025i 0.925351i
546546 3.06538 + 1.58848i 0.131186 + 0.0679806i
547547 4.06037 0.173609 0.0868045 0.996225i 0.472334π-0.472334\pi
0.0868045 + 0.996225i 0.472334π0.472334\pi
548548 53.4102i 2.28157i
549549 6.21627 0.265304
550550 10.0271i 0.427559i
551551 −2.46377 −0.104960
552552 −28.2041 + 2.01242i −1.20045 + 0.0856544i
553553 −10.4621 + 20.1893i −0.444892 + 0.858536i
554554 61.8753 2.62883
555555 −12.4141 −0.526950
556556 59.8209i 2.53697i
557557 2.49295i 0.105630i −0.998604 0.0528149i 0.983181π-0.983181\pi
0.998604 0.0528149i 0.0168193π-0.0168193\pi
558558 17.2736i 0.731252i
559559 3.48088 0.147225
560560 −17.6274 9.13449i −0.744893 0.386003i
561561 3.46938 0.146477
562562 42.0542i 1.77395i
563563 −0.846107 −0.0356592 −0.0178296 0.999841i 0.505676π-0.505676\pi
−0.0178296 + 0.999841i 0.505676π0.505676\pi
564564 18.2912 0.770198
565565 2.70151i 0.113653i
566566 30.7654 1.29317
567567 2.34908 + 1.21729i 0.0986523 + 0.0511215i
568568 12.7614 0.535458
569569 40.2916i 1.68911i −0.535469 0.844555i 0.679865π-0.679865\pi
0.535469 0.844555i 0.320135π-0.320135\pi
570570 3.46938i 0.145316i
571571 38.1275i 1.59559i 0.602930 + 0.797794i 0.294000π0.294000\pi
−0.602930 + 0.797794i 0.706000π0.706000\pi
572572 2.54616 0.106460
573573 12.3319 0.515173
574574 15.3269 29.5773i 0.639733 1.23453i
575575 1.20085 + 16.8299i 0.0500788 + 0.701855i
576576 2.93232 0.122180
577577 23.7918i 0.990467i −0.868760 0.495234i 0.835082π-0.835082\pi
0.868760 0.495234i 0.164918π-0.164918\pi
578578 −19.1469 −0.796407
579579 3.17687i 0.132026i
580580 11.5040 0.477679
581581 27.3216 + 14.1580i 1.13349 + 0.587373i
582582 45.7352i 1.89579i
583583 6.12805 0.253798
584584 60.2847i 2.49460i
585585 0.630799i 0.0260803i
586586 55.5470 2.29463
587587 16.3049i 0.672976i 0.941688 + 0.336488i 0.109239π0.109239\pi
−0.941688 + 0.336488i 0.890761π0.890761\pi
588588 24.8282 17.5233i 1.02390 0.722649i
589589 7.76355i 0.319892i
590590 0.615677i 0.0253470i
591591 16.5661i 0.681440i
592592 62.8659i 2.58377i
593593 3.57346i 0.146744i 0.997305 + 0.0733721i 0.0233761π0.0233761\pi
−0.997305 + 0.0733721i 0.976624π0.976624\pi
594594 2.85008 0.116940
595595 8.76554 + 4.54229i 0.359352 + 0.186216i
596596 36.7481i 1.50526i
597597 9.28165i 0.379873i
598598 6.24234 0.445404i 0.255268 0.0182139i
599599 −16.3100 −0.666410 −0.333205 0.942854i 0.608130π-0.608130\pi
−0.333205 + 0.942854i 0.608130π0.608130\pi
600600 20.7430i 0.846830i
601601 21.8771i 0.892384i −0.894937 0.446192i 0.852780π-0.852780\pi
0.894937 0.446192i 0.147220π-0.147220\pi
602602 20.5910 39.7357i 0.839226 1.61951i
603603 3.65188i 0.148716i
604604 76.3143 3.10518
605605 −11.8309 −0.480995
606606 −22.3704 −0.908736
607607 17.8355i 0.723923i 0.932193 + 0.361961i 0.117893π0.117893\pi
−0.932193 + 0.361961i 0.882107π0.882107\pi
608608 4.22325 0.171275
609609 −2.64989 + 5.11366i −0.107379 + 0.207216i
610610 19.0553 0.771525
611611 −2.18331 −0.0883273
612612 13.3078 0.537937
613613 28.6488i 1.15711i −0.815642 0.578557i 0.803616π-0.803616\pi
0.815642 0.578557i 0.196384π-0.196384\pi
614614 50.4059i 2.03422i
615615 6.08646 0.245430
616616 8.12294 15.6753i 0.327283 0.631577i
617617 30.6387i 1.23347i 0.787171 + 0.616734i 0.211545π0.211545\pi
−0.787171 + 0.616734i 0.788455π0.788455\pi
618618 28.9616i 1.16501i
619619 −27.1135 −1.08979 −0.544893 0.838506i 0.683430π-0.683430\pi
−0.544893 + 0.838506i 0.683430π0.683430\pi
620620 36.2503i 1.45585i
621621 4.78367 0.341325i 0.191962 0.0136969i
622622 39.6441i 1.58958i
623623 −12.0124 6.22482i −0.481268 0.249392i
624624 3.19441 0.127879
625625 4.96872 0.198749
626626 −21.3159 −0.851954
627627 −1.28095 −0.0511563
628628 −80.8949 −3.22806
629629 31.2612i 1.24647i
630630 7.20085 + 3.73147i 0.286889 + 0.148665i
631631 39.5904i 1.57607i −0.615631 0.788034i 0.711099π-0.711099\pi
0.615631 0.788034i 0.288901π-0.288901\pi
632632 50.6727i 2.01565i
633633 7.96360i 0.316525i
634634 70.7823 2.81113
635635 3.32500 0.131949
636636 23.5060 0.932072
637637 −2.96360 + 2.09166i −0.117422 + 0.0828744i
638638 6.20426i 0.245629i
639639 −2.16445 −0.0856243
640640 18.0733 0.714409
641641 27.2725i 1.07720i 0.842562 + 0.538600i 0.181047π0.181047\pi
−0.842562 + 0.538600i 0.818953π0.818953\pi
642642 −6.74645 −0.266261
643643 32.3127 1.27429 0.637144 0.770745i 0.280116π-0.280116\pi
0.637144 + 0.770745i 0.280116π0.280116\pi
644644 21.7992 50.5883i 0.859009 1.99346i
645645 8.17687 0.321964
646646 −8.73658 −0.343736
647647 1.89168i 0.0743696i −0.999308 0.0371848i 0.988161π-0.988161\pi
0.999308 0.0371848i 0.0118390π-0.0118390\pi
648648 5.89592 0.231614
649649 −0.227318 −0.00892302
650650 4.59099i 0.180074i
651651 16.1136 + 8.35005i 0.631542 + 0.327264i
652652 31.4192 1.23047
653653 39.2903 1.53755 0.768774 0.639520i 0.220867π-0.220867\pi
0.768774 + 0.639520i 0.220867π0.220867\pi
654654 −44.6889 −1.74748
655655 22.7866i 0.890344i
656656 30.8223i 1.20341i
657657 10.2248i 0.398908i
658658 −12.9153 + 24.9234i −0.503491 + 0.971617i
659659 22.8600i 0.890501i −0.895406 0.445251i 0.853115π-0.853115\pi
0.895406 0.445251i 0.146885π-0.146885\pi
660660 5.98114 0.232816
661661 −46.0209 −1.79001 −0.895003 0.446060i 0.852827π-0.852827\pi
−0.895003 + 0.446060i 0.852827π0.852827\pi
662662 −23.2299 −0.902857
663663 −1.58848 −0.0616914
664664 68.5739 2.66118
665665 −3.23639 1.67709i −0.125502 0.0650348i
666666 25.6809i 0.995116i
667667 0.743021 + 10.4134i 0.0287699 + 0.403210i
668668 77.3982i 2.99463i
669669 21.0968 0.815648
670670 11.1944i 0.432478i
671671 7.03552i 0.271603i
672672 4.54229 8.76554i 0.175223 0.338138i
673673 −11.6347 −0.448485 −0.224242 0.974533i 0.571991π-0.571991\pi
−0.224242 + 0.974533i 0.571991π0.571991\pi
674674 35.4547i 1.36566i
675675 3.51820i 0.135416i
676676 55.2714 2.12582
677677 −36.8519 −1.41633 −0.708166 0.706046i 0.750477π-0.750477\pi
−0.708166 + 0.706046i 0.750477π0.750477\pi
678678 5.58858 0.214628
679679 42.6638 + 22.1083i 1.63729 + 0.848439i
680680 22.0005 0.843679
681681 24.8791i 0.953371i
682682 19.5502 0.748615
683683 −20.6034 −0.788368 −0.394184 0.919032i 0.628973π-0.628973\pi
−0.394184 + 0.919032i 0.628973π0.628973\pi
684684 −4.91348 −0.187871
685685 14.9760i 0.572205i
686686 6.34608 + 46.2039i 0.242294 + 1.76407i
687687 19.5090i 0.744314i
688688 41.4082i 1.57867i
689689 −2.80577 −0.106891
690690 14.6638 1.04629i 0.558241 0.0398316i
691691 27.9314i 1.06256i −0.847196 0.531281i 0.821711π-0.821711\pi
0.847196 0.531281i 0.178289π-0.178289\pi
692692 87.8025i 3.33775i
693693 −1.37772 + 2.65868i −0.0523353 + 0.100995i
694694 −11.3464 −0.430705
695695 16.7736i 0.636258i
696696 12.8347i 0.486497i
697697 15.3269i 0.580549i
698698 29.8462i 1.12970i
699699 8.34132i 0.315498i
700700 −35.8791 18.5925i −1.35610 0.702730i
701701 45.7180i 1.72675i 0.504566 + 0.863373i 0.331653π0.331653\pi
−0.504566 + 0.863373i 0.668347π0.668347\pi
702702 −1.30493 −0.0492513
703703 11.5422i 0.435321i
704704 3.31877i 0.125081i
705705 −5.12878 −0.193161
706706 60.4787i 2.27615i
707707 10.8138 20.8681i 0.406695 0.784825i
708708 −0.871947 −0.0327698
709709 15.4536i 0.580373i 0.956970 + 0.290186i 0.0937173π0.0937173\pi
−0.956970 + 0.290186i 0.906283π0.906283\pi
710710 −6.63487 −0.249002
711711 8.59454i 0.322320i
712712 −30.1497 −1.12991
713713 32.8137 2.34132i 1.22888 0.0876833i
714714 −9.39658 + 18.1332i −0.351658 + 0.678617i
715715 −0.713934 −0.0266996
716716 −45.2111 −1.68962
717717 21.3777i 0.798366i
718718 3.06538i 0.114399i
719719 23.3820i 0.872000i −0.899947 0.436000i 0.856395π-0.856395\pi
0.899947 0.436000i 0.143605π-0.143605\pi
720720 7.50394 0.279655
721721 −27.0167 14.0000i −1.00615 0.521387i
722722 −44.6201 −1.66059
723723 8.86616i 0.329736i
724724 61.0621 2.26936
725725 7.65868 0.284436
726726 24.4745i 0.908334i
727727 0.447787 0.0166075 0.00830376 0.999966i 0.497357π-0.497357\pi
0.00830376 + 0.999966i 0.497357π0.497357\pi
728728 −3.71914 + 7.17706i −0.137841 + 0.266000i
729729 −1.00000 −0.0370370
730730 31.3430i 1.16006i
731731 20.5910i 0.761585i
732732 26.9868i 0.997463i
733733 −19.9959 −0.738566 −0.369283 0.929317i 0.620397π-0.620397\pi
−0.369283 + 0.929317i 0.620397π0.620397\pi
734734 27.0541 0.998585
735735 −6.96175 + 4.91348i −0.256788 + 0.181236i
736736 −1.27364 17.8501i −0.0469471 0.657964i
737737 −4.13317 −0.152247
738738 12.5910i 0.463481i
739739 −18.8449 −0.693221 −0.346610 0.938009i 0.612667π-0.612667\pi
−0.346610 + 0.938009i 0.612667π0.612667\pi
740740 53.8937i 1.98117i
741741 0.586493 0.0215454
742742 −16.5974 + 32.0291i −0.609311 + 1.17582i
743743 4.81285i 0.176566i −0.996095 0.0882832i 0.971862π-0.971862\pi
0.996095 0.0882832i 0.0281381π-0.0281381\pi
744744 40.4432 1.48272
745745 10.3041i 0.377511i
746746 71.3427i 2.61204i
747747 −11.6307 −0.425546
748748 15.0617i 0.550710i
749749 3.26122 6.29338i 0.119162 0.229955i
750750 26.1116i 0.953459i
751751 40.5772i 1.48068i −0.672230 0.740342i 0.734663π-0.734663\pi
0.672230 0.740342i 0.265337π-0.265337\pi
752752 25.9725i 0.947120i
753753 13.0925i 0.477118i
754754 2.84066i 0.103451i
755755 −21.3983 −0.778763
756756 −5.28466 + 10.1981i −0.192201 + 0.370903i
757757 39.0471i 1.41919i −0.704609 0.709596i 0.748877π-0.748877\pi
0.704609 0.709596i 0.251123π-0.251123\pi
758758 12.2615i 0.445359i
759759 0.386309 + 5.41412i 0.0140221 + 0.196520i
760760 −8.12294 −0.294650
761761 40.8959i 1.48248i 0.671242 + 0.741238i 0.265761π0.265761\pi
−0.671242 + 0.741238i 0.734239π0.734239\pi
762762 6.87838i 0.249178i
763763 21.6025 41.6878i 0.782065 1.50920i
764764 53.5369i 1.93690i
765765 −3.73147 −0.134912
766766 −87.2118 −3.15109
767767 0.104079 0.00375808
768768 31.5233i 1.13750i
769769 28.8730 1.04119 0.520594 0.853804i 0.325711π-0.325711\pi
0.520594 + 0.853804i 0.325711π0.325711\pi
770770 −4.22325 + 8.14986i −0.152195 + 0.293701i
771771 13.9075 0.500865
772772 −13.7918 −0.496379
773773 23.7213 0.853195 0.426598 0.904442i 0.359712π-0.359712\pi
0.426598 + 0.904442i 0.359712π0.359712\pi
774774 16.9154i 0.608012i
775775 24.1332i 0.866889i
776776 107.081 3.84398
777777 23.9563 + 12.4141i 0.859427 + 0.445354i
778778 29.2885i 1.05004i
779779 5.65896i 0.202753i
780780 −2.73851 −0.0980542
781781 2.44971i 0.0876574i
782782 2.63477 + 36.9263i 0.0942192 + 1.32048i
783783 2.17687i 0.0777951i
784784 24.8822 + 35.2548i 0.888649 + 1.25910i
785785 22.6826 0.809578
786786 −47.1383 −1.68137
787787 33.2615 1.18564 0.592822 0.805334i 0.298014π-0.298014\pi
0.592822 + 0.805334i 0.298014π0.298014\pi
788788 71.9190 2.56201
789789 23.7917 0.847005
790790 26.3456i 0.937333i
791791 −2.70151 + 5.21327i −0.0960547 + 0.185363i
792792 6.67296i 0.237113i
793793 3.22126i 0.114390i
794794 69.2779i 2.45858i
795795 −6.59099 −0.233758
796796 −40.2947 −1.42821
797797 9.62571 0.340960 0.170480 0.985361i 0.445468π-0.445468\pi
0.170480 + 0.985361i 0.445468π0.445468\pi
798798 3.46938 6.69507i 0.122815 0.237003i
799799 12.9153i 0.456910i
800800 −13.1281 −0.464147
801801 5.11366 0.180682
802802 38.1959i 1.34874i
803803 −11.5724 −0.408380
804804 −15.8540 −0.559127
805805 −6.11242 + 14.1848i −0.215435 + 0.499948i
806806 −8.95118 −0.315292
807807 5.76275 0.202859
808808 52.3764i 1.84260i
809809 20.6869 0.727312 0.363656 0.931533i 0.381528π-0.381528\pi
0.363656 + 0.931533i 0.381528π0.381528\pi
810810 −3.06538 −0.107707
811811 2.81158i 0.0987278i −0.998781 0.0493639i 0.984281π-0.984281\pi
0.998781 0.0493639i 0.0157194π-0.0157194\pi
812812 −22.2001 11.5040i −0.779070 0.403713i
813813 11.5422 0.404802
814814 29.0655 1.01874
815815 −8.80985 −0.308595
816816 18.8964i 0.661507i
817817 7.60254i 0.265979i
818818 58.6389i 2.05026i
819819 0.630799 1.21729i 0.0220419 0.0425356i
820820 26.4233i 0.922742i
821821 39.1092 1.36492 0.682460 0.730923i 0.260910π-0.260910\pi
0.682460 + 0.730923i 0.260910π0.260910\pi
822822 30.9807 1.08058
823823 34.8689 1.21545 0.607726 0.794147i 0.292082π-0.292082\pi
0.607726 + 0.794147i 0.292082π0.292082\pi
824824 −67.8086 −2.36222
825825 3.98187 0.138631
826826 0.615677 1.18811i 0.0214221 0.0413396i
827827 56.4343i 1.96241i 0.192957 + 0.981207i 0.438192π0.438192\pi
−0.192957 + 0.981207i 0.561808π0.561808\pi
828828 1.48180 + 20.7675i 0.0514962 + 0.721719i
829829 49.9687i 1.73549i −0.497014 0.867743i 0.665570π-0.665570\pi
0.497014 0.867743i 0.334430π-0.334430\pi
830830 −35.6527 −1.23752
831831 24.5713i 0.852368i
832832 1.51952i 0.0526800i
833833 −12.3731 17.5311i −0.428703 0.607416i
834834 34.6993 1.20154
835835 21.7022i 0.751035i
836836 5.56103i 0.192332i
837837 −6.85952 −0.237100
838838 −13.3813 −0.462250
839839 10.4958 0.362356 0.181178 0.983450i 0.442009π-0.442009\pi
0.181178 + 0.983450i 0.442009π0.442009\pi
840840 −8.73658 + 16.8595i −0.301441 + 0.581709i
841841 −24.2612 −0.836594
842842 40.5772i 1.39838i
843843 −16.7001 −0.575182
844844 34.5726 1.19004
845845 −15.4979 −0.533145
846846 10.6099i 0.364774i
847847 22.8309 + 11.8309i 0.784478 + 0.406515i
848848 33.3772i 1.14618i
849849 12.2172i 0.419294i
850850 27.1578 0.931506
851851 48.7845 3.48088i 1.67231 0.119323i
852852 9.39658i 0.321922i
853853 40.7803i 1.39629i −0.715956 0.698145i 0.754009π-0.754009\pi
0.715956 0.698145i 0.245991π-0.245991\pi
854854 −36.7721 19.0553i −1.25832 0.652058i
855855 1.37772 0.0471171
856856 15.7956i 0.539883i
857857 22.6150i 0.772513i 0.922392 + 0.386256i 0.126232π0.126232\pi
−0.922392 + 0.386256i 0.873768π0.873768\pi
858858 1.47691i 0.0504208i
859859 35.5983i 1.21460i 0.794473 + 0.607299i 0.207747π0.207747\pi
−0.794473 + 0.607299i 0.792253π0.792253\pi
860860 35.4985i 1.21049i
861861 −11.7454 6.08646i −0.400283 0.207426i
862862 28.7766i 0.980134i
863863 34.8282 1.18557 0.592784 0.805362i 0.298029π-0.298029\pi
0.592784 + 0.805362i 0.298029π0.298029\pi
864864 3.73147i 0.126947i
865865 24.6195i 0.837089i
866866 34.0842 1.15823
867867 7.60342i 0.258226i
868868 −36.2503 + 69.9544i −1.23041 + 2.37441i
869869 9.72723 0.329974
870870 6.67296i 0.226234i
871871 1.89240 0.0641215
872872 104.631i 3.54326i
873873 −18.1619 −0.614686
874874 −0.972802 13.6338i −0.0329055 0.461171i
875875 24.3580 + 12.6223i 0.823450 + 0.426711i
876876 −44.3893 −1.49977
877877 45.2350 1.52748 0.763740 0.645525i 0.223361π-0.223361\pi
0.763740 + 0.645525i 0.223361π0.223361\pi
878878 90.7597i 3.06299i
879879 22.0582i 0.744006i
880880 8.49290i 0.286296i
881881 47.2653 1.59241 0.796205 0.605027i 0.206838π-0.206838\pi
0.796205 + 0.605027i 0.206838π0.206838\pi
882882 −10.1645 14.4017i −0.342255 0.484930i
883883 3.85865 0.129854 0.0649270 0.997890i 0.479319π-0.479319\pi
0.0649270 + 0.997890i 0.479319π0.479319\pi
884884 6.89610i 0.231941i
885885 0.244491 0.00821847
886886 −82.6055 −2.77518
887887 41.3944i 1.38989i −0.719064 0.694944i 0.755429π-0.755429\pi
0.719064 0.694944i 0.244571π-0.244571\pi
888888 60.1274 2.01774
889889 −6.41645 3.32500i −0.215201 0.111517i
890890 15.6753 0.525439
891891 1.13179i 0.0379165i
892892 91.5879i 3.06659i
893893 4.76855i 0.159573i
894894 −21.3159 −0.712910
895895 12.6770 0.423746
896896 −34.8771 18.0733i −1.16516 0.603785i
897897 −0.176874 2.47889i −0.00590565 0.0827678i
898898 −52.2350 −1.74311
899899 14.9323i 0.498021i
900900 15.2736 0.509121
901901 16.5974i 0.552941i
902902 −14.2504 −0.474486
903903 −15.7794 8.17687i −0.525106 0.272109i
904904 13.0847i 0.435190i
905905 −17.1216 −0.569142
906906 44.2663i 1.47065i
907907 22.9335i 0.761496i −0.924679 0.380748i 0.875667π-0.875667\pi
0.924679 0.380748i 0.124333π-0.124333\pi
908908 −108.008 −3.58439
909909 8.88350i 0.294647i
910910 1.93364 3.73147i 0.0640996 0.123697i
911911 7.56337i 0.250586i 0.992120 + 0.125293i 0.0399870π0.0399870\pi
−0.992120 + 0.125293i 0.960013π0.960013\pi
912912 6.97688i 0.231027i
913913 13.1636i 0.435651i
914914 7.90431i 0.261451i
915915 7.56702i 0.250158i
916916 84.6948 2.79840
917917 22.7866 43.9726i 0.752478 1.45210i
918918 7.71925i 0.254773i
919919 27.9586i 0.922269i 0.887330 + 0.461134i 0.152557π0.152557\pi
−0.887330 + 0.461134i 0.847443π0.847443\pi
920920 2.44971 + 34.3327i 0.0807645 + 1.13192i
921921 −20.0167 −0.659571
922922 98.2333i 3.23514i
923923 1.12162i 0.0369184i
924924 −11.5422 5.98114i −0.379710 0.196765i
925925 35.8791i 1.17970i
926926 −50.9430 −1.67409
927927 11.5009 0.377740
928928 −8.12294 −0.266649
929929 11.3298i 0.371718i 0.982576 + 0.185859i 0.0595067π0.0595067\pi
−0.982576 + 0.185859i 0.940493π0.940493\pi
930930 −21.0271 −0.689505
931931 4.56836 + 6.47277i 0.149722 + 0.212137i
932932 −36.2124 −1.18618
933933 15.7430 0.515403
934934 31.3811 1.02682
935935 4.22325i 0.138115i
936936 3.05526i 0.0998642i
937937 −7.75154 −0.253232 −0.126616 0.991952i 0.540412π-0.540412\pi
−0.126616 + 0.991952i 0.540412π0.540412\pi
938938 11.1944 21.6025i 0.365510 0.705348i
939939 8.46473i 0.276236i
940940 22.2657i 0.726228i
941941 −4.38019 −0.142790 −0.0713950 0.997448i 0.522745π-0.522745\pi
−0.0713950 + 0.997448i 0.522745π0.522745\pi
942942 46.9233i 1.52884i
943943 −23.9183 + 1.70662i −0.778889 + 0.0555753i
944944 1.23812i 0.0402973i
945945 1.48180 2.85952i 0.0482030 0.0930203i
946946 −19.1447 −0.622448
947947 4.60985 0.149800 0.0749001 0.997191i 0.476136π-0.476136\pi
0.0749001 + 0.997191i 0.476136π0.476136\pi
948948 37.3117 1.21183
949949 5.29849 0.171996
950950 −10.0271 −0.325323
951951 28.1083i 0.911475i
952952 −42.4556 22.0005i −1.37599 0.713039i
953953 2.26047i 0.0732239i 0.999330 + 0.0366119i 0.0116565π0.0116565\pi
−0.999330 + 0.0366119i 0.988343π0.988343\pi
954954 13.6347i 0.441440i
955955 15.0116i 0.485762i
956956 −92.8076 −3.00161
957957 2.46377 0.0796423
958958 63.5499 2.05321
959959 −14.9760 + 28.9002i −0.483601 + 0.933235i
960960 3.56949i 0.115205i
961961 −16.0531 −0.517841
962962 −13.3078 −0.429062
963963 2.67908i 0.0863320i
964964 −38.4909 −1.23971
965965 3.86719 0.124489
966966 −29.3439 12.6447i −0.944125 0.406836i
967967 33.1820 1.06706 0.533530 0.845781i 0.320865π-0.320865\pi
0.533530 + 0.845781i 0.320865π0.320865\pi
968968 57.3027 1.84178
969969 3.46938i 0.111452i
970970 −55.6731 −1.78756
971971 −13.1660 −0.422517 −0.211259 0.977430i 0.567756π-0.567756\pi
−0.211259 + 0.977430i 0.567756π0.567756\pi
972972 4.34132i 0.139248i
973973 −16.7736 + 32.3690i −0.537736 + 1.03770i
974974 −47.9794 −1.53736
975975 −1.82313 −0.0583868
976976 −38.3199 −1.22659
977977 24.5200i 0.784463i −0.919866 0.392232i 0.871703π-0.871703\pi
0.919866 0.392232i 0.128297π-0.128297\pi
978978 18.2248i 0.582766i
979979 5.78760i 0.184973i
980980 −21.3310 30.2232i −0.681394 0.965446i
981981 17.7464i 0.566598i
982982 −32.3516 −1.03238
983983 47.6949 1.52123 0.760615 0.649203i 0.224897π-0.224897\pi
0.760615 + 0.649203i 0.224897π0.224897\pi
984984 −29.4796 −0.939775
985985 −20.1658 −0.642537
986986 16.8038 0.535143
987987 9.89733 + 5.12878i 0.315036 + 0.163251i
988988 2.54616i 0.0810041i
989989 −32.1332 + 2.29277i −1.02178 + 0.0729058i
990990 3.46938i 0.110264i
991991 15.9512 0.506706 0.253353 0.967374i 0.418467π-0.418467\pi
0.253353 + 0.967374i 0.418467π0.418467\pi
992992 25.5961i 0.812677i
993993 9.22482i 0.292741i
994994 12.8037 + 6.63487i 0.406110 + 0.210445i
995995 11.2985 0.358186
996996 50.4928i 1.59993i
997997 27.8959i 0.883473i −0.897145 0.441736i 0.854363π-0.854363\pi
0.897145 0.441736i 0.145637π-0.145637\pi
998998 −21.7126 −0.687301
999999 −10.1981 −0.322655
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.h.c.160.9 12
3.2 odd 2 1449.2.h.e.1126.4 12
7.6 odd 2 inner 483.2.h.c.160.12 yes 12
21.20 even 2 1449.2.h.e.1126.2 12
23.22 odd 2 inner 483.2.h.c.160.10 yes 12
69.68 even 2 1449.2.h.e.1126.1 12
161.160 even 2 inner 483.2.h.c.160.11 yes 12
483.482 odd 2 1449.2.h.e.1126.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.h.c.160.9 12 1.1 even 1 trivial
483.2.h.c.160.10 yes 12 23.22 odd 2 inner
483.2.h.c.160.11 yes 12 161.160 even 2 inner
483.2.h.c.160.12 yes 12 7.6 odd 2 inner
1449.2.h.e.1126.1 12 69.68 even 2
1449.2.h.e.1126.2 12 21.20 even 2
1449.2.h.e.1126.3 12 483.482 odd 2
1449.2.h.e.1126.4 12 3.2 odd 2