Properties

Label 483.2.h.c.160.9
Level $483$
Weight $2$
Character 483.160
Analytic conductor $3.857$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(160,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.160");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 17x^{10} + 92x^{8} + 180x^{6} + 92x^{4} + 17x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 160.9
Root \(-0.562016i\) of defining polynomial
Character \(\chi\) \(=\) 483.160
Dual form 483.2.h.c.160.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.51820 q^{2} -1.00000i q^{3} +4.34132 q^{4} -1.21729 q^{5} -2.51820i q^{6} +(2.34908 + 1.21729i) q^{7} +5.89592 q^{8} -1.00000 q^{9} -3.06538 q^{10} -1.13179i q^{11} -4.34132i q^{12} +0.518199i q^{13} +(5.91546 + 3.06538i) q^{14} +1.21729i q^{15} +6.16445 q^{16} -3.06538 q^{17} -2.51820 q^{18} +1.13179 q^{19} -5.28466 q^{20} +(1.21729 - 2.34908i) q^{21} -2.85008i q^{22} +(-0.341325 - 4.78367i) q^{23} -5.89592i q^{24} -3.51820 q^{25} +1.30493i q^{26} +1.00000i q^{27} +(10.1981 + 5.28466i) q^{28} -2.17687 q^{29} +3.06538i q^{30} +6.85952i q^{31} +3.73147 q^{32} -1.13179 q^{33} -7.71925 q^{34} +(-2.85952 - 1.48180i) q^{35} -4.34132 q^{36} +10.1981i q^{37} +2.85008 q^{38} +0.518199 q^{39} -7.17706 q^{40} -5.00000i q^{41} +(3.06538 - 5.91546i) q^{42} -6.71726i q^{43} -4.91348i q^{44} +1.21729 q^{45} +(-0.859523 - 12.0462i) q^{46} +4.21327i q^{47} -6.16445i q^{48} +(4.03640 + 5.71905i) q^{49} -8.85952 q^{50} +3.06538i q^{51} +2.24967i q^{52} +5.41447i q^{53} +2.51820i q^{54} +1.37772i q^{55} +(13.8500 + 7.17706i) q^{56} -1.13179i q^{57} -5.48180 q^{58} -0.200848i q^{59} +5.28466i q^{60} -6.21627 q^{61} +17.2736i q^{62} +(-2.34908 - 1.21729i) q^{63} -2.93232 q^{64} -0.630799i q^{65} -2.85008 q^{66} -3.65188i q^{67} -13.3078 q^{68} +(-4.78367 + 0.341325i) q^{69} +(-7.20085 - 3.73147i) q^{70} +2.16445 q^{71} -5.89592 q^{72} -10.2248i q^{73} +25.6809i q^{74} +3.51820i q^{75} +4.91348 q^{76} +(1.37772 - 2.65868i) q^{77} +1.30493 q^{78} +8.59454i q^{79} -7.50394 q^{80} +1.00000 q^{81} -12.5910i q^{82} +11.6307 q^{83} +(5.28466 - 10.1981i) q^{84} +3.73147 q^{85} -16.9154i q^{86} +2.17687i q^{87} -6.67296i q^{88} -5.11366 q^{89} +3.06538 q^{90} +(-0.630799 + 1.21729i) q^{91} +(-1.48180 - 20.7675i) q^{92} +6.85952 q^{93} +10.6099i q^{94} -1.37772 q^{95} -3.73147i q^{96} +18.1619 q^{97} +(10.1645 + 14.4017i) q^{98} +1.13179i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 36 q^{4} - 24 q^{8} - 12 q^{9} + 68 q^{16} - 4 q^{18} + 12 q^{23} - 16 q^{25} - 16 q^{29} - 44 q^{32} + 8 q^{35} - 36 q^{36} - 20 q^{39} + 32 q^{46} - 4 q^{49} - 64 q^{50} - 92 q^{58} + 112 q^{64}+ \cdots + 116 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.51820 1.78064 0.890318 0.455340i \(-0.150482\pi\)
0.890318 + 0.455340i \(0.150482\pi\)
\(3\) 1.00000i 0.577350i
\(4\) 4.34132 2.17066
\(5\) −1.21729 −0.544390 −0.272195 0.962242i \(-0.587750\pi\)
−0.272195 + 0.962242i \(0.587750\pi\)
\(6\) 2.51820i 1.02805i
\(7\) 2.34908 + 1.21729i 0.887871 + 0.460093i
\(8\) 5.89592 2.08452
\(9\) −1.00000 −0.333333
\(10\) −3.06538 −0.969360
\(11\) 1.13179i 0.341248i −0.985336 0.170624i \(-0.945422\pi\)
0.985336 0.170624i \(-0.0545784\pi\)
\(12\) 4.34132i 1.25323i
\(13\) 0.518199i 0.143722i 0.997415 + 0.0718612i \(0.0228939\pi\)
−0.997415 + 0.0718612i \(0.977106\pi\)
\(14\) 5.91546 + 3.06538i 1.58097 + 0.819259i
\(15\) 1.21729i 0.314304i
\(16\) 6.16445 1.54111
\(17\) −3.06538 −0.743465 −0.371732 0.928340i \(-0.621236\pi\)
−0.371732 + 0.928340i \(0.621236\pi\)
\(18\) −2.51820 −0.593545
\(19\) 1.13179 0.259651 0.129825 0.991537i \(-0.458558\pi\)
0.129825 + 0.991537i \(0.458558\pi\)
\(20\) −5.28466 −1.18169
\(21\) 1.21729 2.34908i 0.265635 0.512612i
\(22\) 2.85008i 0.607639i
\(23\) −0.341325 4.78367i −0.0711711 0.997464i
\(24\) 5.89592i 1.20350i
\(25\) −3.51820 −0.703640
\(26\) 1.30493i 0.255917i
\(27\) 1.00000i 0.192450i
\(28\) 10.1981 + 5.28466i 1.92727 + 0.998707i
\(29\) −2.17687 −0.404235 −0.202118 0.979361i \(-0.564782\pi\)
−0.202118 + 0.979361i \(0.564782\pi\)
\(30\) 3.06538i 0.559660i
\(31\) 6.85952i 1.23201i 0.787744 + 0.616003i \(0.211249\pi\)
−0.787744 + 0.616003i \(0.788751\pi\)
\(32\) 3.73147 0.659637
\(33\) −1.13179 −0.197020
\(34\) −7.71925 −1.32384
\(35\) −2.85952 1.48180i −0.483348 0.250470i
\(36\) −4.34132 −0.723554
\(37\) 10.1981i 1.67656i 0.545237 + 0.838282i \(0.316440\pi\)
−0.545237 + 0.838282i \(0.683560\pi\)
\(38\) 2.85008 0.462344
\(39\) 0.518199 0.0829782
\(40\) −7.17706 −1.13479
\(41\) 5.00000i 0.780869i −0.920631 0.390434i \(-0.872325\pi\)
0.920631 0.390434i \(-0.127675\pi\)
\(42\) 3.06538 5.91546i 0.472999 0.912776i
\(43\) 6.71726i 1.02437i −0.858874 0.512186i \(-0.828836\pi\)
0.858874 0.512186i \(-0.171164\pi\)
\(44\) 4.91348i 0.740734i
\(45\) 1.21729 0.181463
\(46\) −0.859523 12.0462i −0.126730 1.77612i
\(47\) 4.21327i 0.614569i 0.951618 + 0.307284i \(0.0994203\pi\)
−0.951618 + 0.307284i \(0.900580\pi\)
\(48\) 6.16445i 0.889762i
\(49\) 4.03640 + 5.71905i 0.576628 + 0.817007i
\(50\) −8.85952 −1.25293
\(51\) 3.06538i 0.429240i
\(52\) 2.24967i 0.311973i
\(53\) 5.41447i 0.743735i 0.928286 + 0.371867i \(0.121282\pi\)
−0.928286 + 0.371867i \(0.878718\pi\)
\(54\) 2.51820i 0.342683i
\(55\) 1.37772i 0.185772i
\(56\) 13.8500 + 7.17706i 1.85079 + 0.959075i
\(57\) 1.13179i 0.149910i
\(58\) −5.48180 −0.719796
\(59\) 0.200848i 0.0261482i −0.999915 0.0130741i \(-0.995838\pi\)
0.999915 0.0130741i \(-0.00416173\pi\)
\(60\) 5.28466i 0.682247i
\(61\) −6.21627 −0.795912 −0.397956 0.917405i \(-0.630280\pi\)
−0.397956 + 0.917405i \(0.630280\pi\)
\(62\) 17.2736i 2.19375i
\(63\) −2.34908 1.21729i −0.295957 0.153364i
\(64\) −2.93232 −0.366540
\(65\) 0.630799i 0.0782410i
\(66\) −2.85008 −0.350820
\(67\) 3.65188i 0.446148i −0.974802 0.223074i \(-0.928391\pi\)
0.974802 0.223074i \(-0.0716091\pi\)
\(68\) −13.3078 −1.61381
\(69\) −4.78367 + 0.341325i −0.575886 + 0.0410907i
\(70\) −7.20085 3.73147i −0.860666 0.445996i
\(71\) 2.16445 0.256873 0.128437 0.991718i \(-0.459004\pi\)
0.128437 + 0.991718i \(0.459004\pi\)
\(72\) −5.89592 −0.694841
\(73\) 10.2248i 1.19672i −0.801226 0.598362i \(-0.795818\pi\)
0.801226 0.598362i \(-0.204182\pi\)
\(74\) 25.6809i 2.98535i
\(75\) 3.51820i 0.406247i
\(76\) 4.91348 0.563614
\(77\) 1.37772 2.65868i 0.157006 0.302984i
\(78\) 1.30493 0.147754
\(79\) 8.59454i 0.966961i 0.875355 + 0.483481i \(0.160628\pi\)
−0.875355 + 0.483481i \(0.839372\pi\)
\(80\) −7.50394 −0.838966
\(81\) 1.00000 0.111111
\(82\) 12.5910i 1.39044i
\(83\) 11.6307 1.27664 0.638320 0.769771i \(-0.279630\pi\)
0.638320 + 0.769771i \(0.279630\pi\)
\(84\) 5.28466 10.1981i 0.576604 1.11271i
\(85\) 3.73147 0.404735
\(86\) 16.9154i 1.82403i
\(87\) 2.17687i 0.233385i
\(88\) 6.67296i 0.711340i
\(89\) −5.11366 −0.542047 −0.271024 0.962573i \(-0.587362\pi\)
−0.271024 + 0.962573i \(0.587362\pi\)
\(90\) 3.06538 0.323120
\(91\) −0.630799 + 1.21729i −0.0661257 + 0.127607i
\(92\) −1.48180 20.7675i −0.154488 2.16516i
\(93\) 6.85952 0.711299
\(94\) 10.6099i 1.09432i
\(95\) −1.37772 −0.141351
\(96\) 3.73147i 0.380842i
\(97\) 18.1619 1.84406 0.922030 0.387119i \(-0.126530\pi\)
0.922030 + 0.387119i \(0.126530\pi\)
\(98\) 10.1645 + 14.4017i 1.02676 + 1.45479i
\(99\) 1.13179i 0.113749i
\(100\) −15.2736 −1.52736
\(101\) 8.88350i 0.883941i −0.897030 0.441971i \(-0.854280\pi\)
0.897030 0.441971i \(-0.145720\pi\)
\(102\) 7.71925i 0.764319i
\(103\) −11.5009 −1.13322 −0.566610 0.823986i \(-0.691745\pi\)
−0.566610 + 0.823986i \(0.691745\pi\)
\(104\) 3.05526i 0.299593i
\(105\) −1.48180 + 2.85952i −0.144609 + 0.279061i
\(106\) 13.6347i 1.32432i
\(107\) 2.67908i 0.258996i −0.991580 0.129498i \(-0.958663\pi\)
0.991580 0.129498i \(-0.0413366\pi\)
\(108\) 4.34132i 0.417744i
\(109\) 17.7464i 1.69980i −0.526948 0.849898i \(-0.676664\pi\)
0.526948 0.849898i \(-0.323336\pi\)
\(110\) 3.46938i 0.330792i
\(111\) 10.1981 0.967965
\(112\) 14.4808 + 7.50394i 1.36831 + 0.709056i
\(113\) 2.21928i 0.208772i 0.994537 + 0.104386i \(0.0332878\pi\)
−0.994537 + 0.104386i \(0.966712\pi\)
\(114\) 2.85008i 0.266934i
\(115\) 0.415492 + 5.82313i 0.0387448 + 0.543009i
\(116\) −9.45052 −0.877458
\(117\) 0.518199i 0.0479075i
\(118\) 0.505775i 0.0465604i
\(119\) −7.20085 3.73147i −0.660101 0.342063i
\(120\) 7.17706i 0.655173i
\(121\) 9.71905 0.883550
\(122\) −15.6538 −1.41723
\(123\) −5.00000 −0.450835
\(124\) 29.7794i 2.67427i
\(125\) 10.3691 0.927444
\(126\) −5.91546 3.06538i −0.526991 0.273086i
\(127\) −2.73147 −0.242379 −0.121189 0.992629i \(-0.538671\pi\)
−0.121189 + 0.992629i \(0.538671\pi\)
\(128\) −14.8471 −1.31231
\(129\) −6.71726 −0.591422
\(130\) 1.58848i 0.139319i
\(131\) 18.7190i 1.63549i −0.575580 0.817745i \(-0.695224\pi\)
0.575580 0.817745i \(-0.304776\pi\)
\(132\) −4.91348 −0.427663
\(133\) 2.65868 + 1.37772i 0.230536 + 0.119464i
\(134\) 9.19615i 0.794427i
\(135\) 1.21729i 0.104768i
\(136\) −18.0733 −1.54977
\(137\) 12.3027i 1.05109i 0.850765 + 0.525547i \(0.176139\pi\)
−0.850765 + 0.525547i \(0.823861\pi\)
\(138\) −12.0462 + 0.859523i −1.02544 + 0.0731675i
\(139\) 13.7794i 1.16876i 0.811482 + 0.584378i \(0.198661\pi\)
−0.811482 + 0.584378i \(0.801339\pi\)
\(140\) −12.4141 6.43298i −1.04918 0.543686i
\(141\) 4.21327 0.354821
\(142\) 5.45052 0.457397
\(143\) 0.586493 0.0490450
\(144\) −6.16445 −0.513704
\(145\) 2.64989 0.220062
\(146\) 25.7481i 2.13093i
\(147\) 5.71905 4.03640i 0.471699 0.332916i
\(148\) 44.2734i 3.63925i
\(149\) 8.46473i 0.693458i −0.937965 0.346729i \(-0.887292\pi\)
0.937965 0.346729i \(-0.112708\pi\)
\(150\) 8.85952i 0.723377i
\(151\) 17.5786 1.43052 0.715262 0.698857i \(-0.246307\pi\)
0.715262 + 0.698857i \(0.246307\pi\)
\(152\) 6.67296 0.541248
\(153\) 3.06538 0.247822
\(154\) 3.46938 6.69507i 0.279570 0.539504i
\(155\) 8.35005i 0.670692i
\(156\) 2.24967 0.180118
\(157\) −18.6337 −1.48713 −0.743565 0.668664i \(-0.766867\pi\)
−0.743565 + 0.668664i \(0.766867\pi\)
\(158\) 21.6428i 1.72181i
\(159\) 5.41447 0.429395
\(160\) −4.54229 −0.359100
\(161\) 5.02133 11.6527i 0.395736 0.918364i
\(162\) 2.51820 0.197848
\(163\) 7.23725 0.566865 0.283432 0.958992i \(-0.408527\pi\)
0.283432 + 0.958992i \(0.408527\pi\)
\(164\) 21.7066i 1.69500i
\(165\) 1.37772 0.107256
\(166\) 29.2885 2.27323
\(167\) 17.8282i 1.37959i −0.724004 0.689795i \(-0.757701\pi\)
0.724004 0.689795i \(-0.242299\pi\)
\(168\) 7.17706 13.8500i 0.553722 1.06855i
\(169\) 12.7315 0.979344
\(170\) 9.39658 0.720685
\(171\) −1.13179 −0.0865503
\(172\) 29.1618i 2.22357i
\(173\) 20.2248i 1.53766i −0.639450 0.768832i \(-0.720838\pi\)
0.639450 0.768832i \(-0.279162\pi\)
\(174\) 5.48180i 0.415574i
\(175\) −8.26455 4.28268i −0.624741 0.323740i
\(176\) 6.97688i 0.525902i
\(177\) −0.200848 −0.0150967
\(178\) −12.8772 −0.965188
\(179\) −10.4141 −0.778388 −0.389194 0.921156i \(-0.627246\pi\)
−0.389194 + 0.921156i \(0.627246\pi\)
\(180\) 5.28466 0.393895
\(181\) 14.0653 1.04547 0.522734 0.852496i \(-0.324912\pi\)
0.522734 + 0.852496i \(0.324912\pi\)
\(182\) −1.58848 + 3.06538i −0.117746 + 0.227221i
\(183\) 6.21627i 0.459520i
\(184\) −2.01242 28.2041i −0.148358 2.07924i
\(185\) 12.4141i 0.912704i
\(186\) 17.2736 1.26656
\(187\) 3.46938i 0.253706i
\(188\) 18.2912i 1.33402i
\(189\) −1.21729 + 2.34908i −0.0885450 + 0.170871i
\(190\) −3.46938 −0.251695
\(191\) 12.3319i 0.892306i 0.894957 + 0.446153i \(0.147206\pi\)
−0.894957 + 0.446153i \(0.852794\pi\)
\(192\) 2.93232i 0.211622i
\(193\) −3.17687 −0.228676 −0.114338 0.993442i \(-0.536475\pi\)
−0.114338 + 0.993442i \(0.536475\pi\)
\(194\) 45.7352 3.28360
\(195\) −0.630799 −0.0451725
\(196\) 17.5233 + 24.8282i 1.25167 + 1.77345i
\(197\) 16.5661 1.18029 0.590145 0.807298i \(-0.299071\pi\)
0.590145 + 0.807298i \(0.299071\pi\)
\(198\) 2.85008i 0.202546i
\(199\) −9.28165 −0.657959 −0.328980 0.944337i \(-0.606705\pi\)
−0.328980 + 0.944337i \(0.606705\pi\)
\(200\) −20.7430 −1.46675
\(201\) −3.65188 −0.257584
\(202\) 22.3704i 1.57398i
\(203\) −5.11366 2.64989i −0.358909 0.185986i
\(204\) 13.3078i 0.931734i
\(205\) 6.08646i 0.425097i
\(206\) −28.9616 −2.01785
\(207\) 0.341325 + 4.78367i 0.0237237 + 0.332488i
\(208\) 3.19441i 0.221493i
\(209\) 1.28095i 0.0886054i
\(210\) −3.73147 + 7.20085i −0.257496 + 0.496906i
\(211\) 7.96360 0.548237 0.274119 0.961696i \(-0.411614\pi\)
0.274119 + 0.961696i \(0.411614\pi\)
\(212\) 23.5060i 1.61440i
\(213\) 2.16445i 0.148306i
\(214\) 6.74645i 0.461178i
\(215\) 8.17687i 0.557658i
\(216\) 5.89592i 0.401167i
\(217\) −8.35005 + 16.1136i −0.566838 + 1.09386i
\(218\) 44.6889i 3.02672i
\(219\) −10.2248 −0.690929
\(220\) 5.98114i 0.403248i
\(221\) 1.58848i 0.106853i
\(222\) 25.6809 1.72359
\(223\) 21.0968i 1.41274i 0.707841 + 0.706372i \(0.249669\pi\)
−0.707841 + 0.706372i \(0.750331\pi\)
\(224\) 8.76554 + 4.54229i 0.585672 + 0.303495i
\(225\) 3.51820 0.234547
\(226\) 5.58858i 0.371747i
\(227\) −24.8791 −1.65129 −0.825643 0.564193i \(-0.809188\pi\)
−0.825643 + 0.564193i \(0.809188\pi\)
\(228\) 4.91348i 0.325403i
\(229\) 19.5090 1.28919 0.644595 0.764524i \(-0.277026\pi\)
0.644595 + 0.764524i \(0.277026\pi\)
\(230\) 1.04629 + 14.6638i 0.0689904 + 0.966902i
\(231\) −2.65868 1.37772i −0.174928 0.0906475i
\(232\) −12.8347 −0.842638
\(233\) −8.34132 −0.546458 −0.273229 0.961949i \(-0.588092\pi\)
−0.273229 + 0.961949i \(0.588092\pi\)
\(234\) 1.30493i 0.0853058i
\(235\) 5.12878i 0.334565i
\(236\) 0.871947i 0.0567589i
\(237\) 8.59454 0.558275
\(238\) −18.1332 9.39658i −1.17540 0.609090i
\(239\) −21.3777 −1.38281 −0.691405 0.722467i \(-0.743008\pi\)
−0.691405 + 0.722467i \(0.743008\pi\)
\(240\) 7.50394i 0.484377i
\(241\) −8.86616 −0.571120 −0.285560 0.958361i \(-0.592180\pi\)
−0.285560 + 0.958361i \(0.592180\pi\)
\(242\) 24.4745 1.57328
\(243\) 1.00000i 0.0641500i
\(244\) −26.9868 −1.72766
\(245\) −4.91348 6.96175i −0.313911 0.444770i
\(246\) −12.5910 −0.802772
\(247\) 0.586493i 0.0373177i
\(248\) 40.4432i 2.56815i
\(249\) 11.6307i 0.737068i
\(250\) 26.1116 1.65144
\(251\) 13.0925 0.826393 0.413196 0.910642i \(-0.364412\pi\)
0.413196 + 0.910642i \(0.364412\pi\)
\(252\) −10.1981 5.28466i −0.642422 0.332902i
\(253\) −5.41412 + 0.386309i −0.340383 + 0.0242870i
\(254\) −6.87838 −0.431588
\(255\) 3.73147i 0.233674i
\(256\) −31.5233 −1.97021
\(257\) 13.9075i 0.867524i 0.901027 + 0.433762i \(0.142814\pi\)
−0.901027 + 0.433762i \(0.857186\pi\)
\(258\) −16.9154 −1.05311
\(259\) −12.4141 + 23.9563i −0.771376 + 1.48857i
\(260\) 2.73851i 0.169835i
\(261\) 2.17687 0.134745
\(262\) 47.1383i 2.91221i
\(263\) 23.7917i 1.46706i 0.679659 + 0.733528i \(0.262128\pi\)
−0.679659 + 0.733528i \(0.737872\pi\)
\(264\) −6.67296 −0.410692
\(265\) 6.59099i 0.404882i
\(266\) 6.69507 + 3.46938i 0.410501 + 0.212721i
\(267\) 5.11366i 0.312951i
\(268\) 15.8540i 0.968436i
\(269\) 5.76275i 0.351361i 0.984447 + 0.175681i \(0.0562126\pi\)
−0.984447 + 0.175681i \(0.943787\pi\)
\(270\) 3.06538i 0.186553i
\(271\) 11.5422i 0.701137i 0.936537 + 0.350569i \(0.114012\pi\)
−0.936537 + 0.350569i \(0.885988\pi\)
\(272\) −18.8964 −1.14576
\(273\) 1.21729 + 0.630799i 0.0736739 + 0.0381777i
\(274\) 30.9807i 1.87161i
\(275\) 3.98187i 0.240116i
\(276\) −20.7675 + 1.48180i −1.25005 + 0.0891940i
\(277\) 24.5713 1.47634 0.738172 0.674613i \(-0.235689\pi\)
0.738172 + 0.674613i \(0.235689\pi\)
\(278\) 34.6993i 2.08113i
\(279\) 6.85952i 0.410669i
\(280\) −16.8595 8.73658i −1.00755 0.522111i
\(281\) 16.7001i 0.996244i −0.867107 0.498122i \(-0.834023\pi\)
0.867107 0.498122i \(-0.165977\pi\)
\(282\) 10.6099 0.631808
\(283\) 12.2172 0.726239 0.363120 0.931743i \(-0.381712\pi\)
0.363120 + 0.931743i \(0.381712\pi\)
\(284\) 9.39658 0.557585
\(285\) 1.37772i 0.0816092i
\(286\) 1.47691 0.0873313
\(287\) 6.08646 11.7454i 0.359273 0.693310i
\(288\) −3.73147 −0.219879
\(289\) −7.60342 −0.447260
\(290\) 6.67296 0.391849
\(291\) 18.1619i 1.06467i
\(292\) 44.3893i 2.59769i
\(293\) 22.0582 1.28866 0.644328 0.764749i \(-0.277137\pi\)
0.644328 + 0.764749i \(0.277137\pi\)
\(294\) 14.4017 10.1645i 0.839924 0.592803i
\(295\) 0.244491i 0.0142348i
\(296\) 60.1274i 3.49484i
\(297\) 1.13179 0.0656732
\(298\) 21.3159i 1.23480i
\(299\) 2.47889 0.176874i 0.143358 0.0102289i
\(300\) 15.2736i 0.881824i
\(301\) 8.17687 15.7794i 0.471307 0.909511i
\(302\) 44.2663 2.54724
\(303\) −8.88350 −0.510344
\(304\) 6.97688 0.400151
\(305\) 7.56702 0.433286
\(306\) 7.71925 0.441280
\(307\) 20.0167i 1.14241i −0.820807 0.571206i \(-0.806476\pi\)
0.820807 0.571206i \(-0.193524\pi\)
\(308\) 5.98114 11.5422i 0.340807 0.657676i
\(309\) 11.5009i 0.654265i
\(310\) 21.0271i 1.19426i
\(311\) 15.7430i 0.892705i 0.894857 + 0.446352i \(0.147277\pi\)
−0.894857 + 0.446352i \(0.852723\pi\)
\(312\) 3.05526 0.172970
\(313\) −8.46473 −0.478455 −0.239227 0.970964i \(-0.576894\pi\)
−0.239227 + 0.970964i \(0.576894\pi\)
\(314\) −46.9233 −2.64804
\(315\) 2.85952 + 1.48180i 0.161116 + 0.0834900i
\(316\) 37.3117i 2.09895i
\(317\) 28.1083 1.57872 0.789360 0.613930i \(-0.210412\pi\)
0.789360 + 0.613930i \(0.210412\pi\)
\(318\) 13.6347 0.764597
\(319\) 2.46377i 0.137945i
\(320\) 3.56949 0.199541
\(321\) −2.67908 −0.149531
\(322\) 12.6447 29.3439i 0.704661 1.63527i
\(323\) −3.46938 −0.193041
\(324\) 4.34132 0.241185
\(325\) 1.82313i 0.101129i
\(326\) 18.2248 1.00938
\(327\) −17.7464 −0.981377
\(328\) 29.4796i 1.62774i
\(329\) −5.12878 + 9.89733i −0.282759 + 0.545658i
\(330\) 3.46938 0.190983
\(331\) −9.22482 −0.507042 −0.253521 0.967330i \(-0.581589\pi\)
−0.253521 + 0.967330i \(0.581589\pi\)
\(332\) 50.4928 2.77115
\(333\) 10.1981i 0.558855i
\(334\) 44.8950i 2.45655i
\(335\) 4.44540i 0.242878i
\(336\) 7.50394 14.4808i 0.409374 0.789993i
\(337\) 14.0794i 0.766953i −0.923551 0.383476i \(-0.874727\pi\)
0.923551 0.383476i \(-0.125273\pi\)
\(338\) 32.0604 1.74385
\(339\) 2.21928 0.120535
\(340\) 16.1995 0.878543
\(341\) 7.76355 0.420420
\(342\) −2.85008 −0.154115
\(343\) 2.52009 + 18.3480i 0.136072 + 0.990699i
\(344\) 39.6044i 2.13533i
\(345\) 5.82313 0.415492i 0.313507 0.0223693i
\(346\) 50.9301i 2.73802i
\(347\) −4.50578 −0.241883 −0.120941 0.992660i \(-0.538591\pi\)
−0.120941 + 0.992660i \(0.538591\pi\)
\(348\) 9.45052i 0.506601i
\(349\) 11.8522i 0.634434i 0.948353 + 0.317217i \(0.102748\pi\)
−0.948353 + 0.317217i \(0.897252\pi\)
\(350\) −20.8118 10.7846i −1.11244 0.576463i
\(351\) −0.518199 −0.0276594
\(352\) 4.22325i 0.225100i
\(353\) 24.0167i 1.27828i 0.769091 + 0.639139i \(0.220709\pi\)
−0.769091 + 0.639139i \(0.779291\pi\)
\(354\) −0.505775 −0.0268817
\(355\) −2.63477 −0.139839
\(356\) −22.2001 −1.17660
\(357\) −3.73147 + 7.20085i −0.197490 + 0.381109i
\(358\) −26.2248 −1.38602
\(359\) 1.21729i 0.0642462i 0.999484 + 0.0321231i \(0.0102269\pi\)
−0.999484 + 0.0321231i \(0.989773\pi\)
\(360\) 7.17706 0.378264
\(361\) −17.7190 −0.932581
\(362\) 35.4193 1.86160
\(363\) 9.71905i 0.510118i
\(364\) −2.73851 + 5.28466i −0.143537 + 0.276992i
\(365\) 12.4466i 0.651485i
\(366\) 15.6538i 0.818237i
\(367\) 10.7434 0.560803 0.280401 0.959883i \(-0.409532\pi\)
0.280401 + 0.959883i \(0.409532\pi\)
\(368\) −2.10408 29.4887i −0.109683 1.53720i
\(369\) 5.00000i 0.260290i
\(370\) 31.2612i 1.62519i
\(371\) −6.59099 + 12.7190i −0.342187 + 0.660340i
\(372\) 29.7794 1.54399
\(373\) 28.3308i 1.46691i −0.679735 0.733457i \(-0.737905\pi\)
0.679735 0.733457i \(-0.262095\pi\)
\(374\) 8.73658i 0.451758i
\(375\) 10.3691i 0.535460i
\(376\) 24.8411i 1.28108i
\(377\) 1.12805i 0.0580977i
\(378\) −3.06538 + 5.91546i −0.157666 + 0.304259i
\(379\) 4.86917i 0.250112i −0.992150 0.125056i \(-0.960089\pi\)
0.992150 0.125056i \(-0.0399111\pi\)
\(380\) −5.98114 −0.306826
\(381\) 2.73147i 0.139937i
\(382\) 31.0542i 1.58887i
\(383\) −34.6326 −1.76964 −0.884822 0.465930i \(-0.845720\pi\)
−0.884822 + 0.465930i \(0.845720\pi\)
\(384\) 14.8471i 0.757663i
\(385\) −1.67709 + 3.23639i −0.0854725 + 0.164941i
\(386\) −8.00000 −0.407189
\(387\) 6.71726i 0.341458i
\(388\) 78.8466 4.00283
\(389\) 11.6307i 0.589702i 0.955543 + 0.294851i \(0.0952700\pi\)
−0.955543 + 0.294851i \(0.904730\pi\)
\(390\) −1.58848 −0.0804357
\(391\) 1.04629 + 14.6638i 0.0529132 + 0.741580i
\(392\) 23.7983 + 33.7190i 1.20199 + 1.70307i
\(393\) −18.7190 −0.944251
\(394\) 41.7168 2.10166
\(395\) 10.4621i 0.526404i
\(396\) 4.91348i 0.246911i
\(397\) 27.5109i 1.38073i −0.723460 0.690366i \(-0.757450\pi\)
0.723460 0.690366i \(-0.242550\pi\)
\(398\) −23.3731 −1.17159
\(399\) 1.37772 2.65868i 0.0689724 0.133100i
\(400\) −21.6878 −1.08439
\(401\) 15.1679i 0.757450i −0.925509 0.378725i \(-0.876363\pi\)
0.925509 0.378725i \(-0.123637\pi\)
\(402\) −9.19615 −0.458662
\(403\) −3.55460 −0.177067
\(404\) 38.5661i 1.91874i
\(405\) −1.21729 −0.0604878
\(406\) −12.8772 6.67296i −0.639085 0.331173i
\(407\) 11.5422 0.572124
\(408\) 18.0733i 0.894760i
\(409\) 23.2861i 1.15142i 0.817653 + 0.575711i \(0.195275\pi\)
−0.817653 + 0.575711i \(0.804725\pi\)
\(410\) 15.3269i 0.756943i
\(411\) 12.3027 0.606849
\(412\) −49.9293 −2.45984
\(413\) 0.244491 0.471809i 0.0120306 0.0232162i
\(414\) 0.859523 + 12.0462i 0.0422433 + 0.592040i
\(415\) −14.1580 −0.694990
\(416\) 1.93364i 0.0948046i
\(417\) 13.7794 0.674781
\(418\) 3.22569i 0.157774i
\(419\) −5.31385 −0.259598 −0.129799 0.991540i \(-0.541433\pi\)
−0.129799 + 0.991540i \(0.541433\pi\)
\(420\) −6.43298 + 12.4141i −0.313897 + 0.605747i
\(421\) 16.1136i 0.785329i 0.919682 + 0.392664i \(0.128447\pi\)
−0.919682 + 0.392664i \(0.871553\pi\)
\(422\) 20.0539 0.976210
\(423\) 4.21327i 0.204856i
\(424\) 31.9233i 1.55033i
\(425\) 10.7846 0.523132
\(426\) 5.45052i 0.264078i
\(427\) −14.6025 7.56702i −0.706667 0.366194i
\(428\) 11.6307i 0.562193i
\(429\) 0.586493i 0.0283162i
\(430\) 20.5910i 0.992986i
\(431\) 11.4274i 0.550441i −0.961381 0.275220i \(-0.911249\pi\)
0.961381 0.275220i \(-0.0887508\pi\)
\(432\) 6.16445i 0.296587i
\(433\) 13.5351 0.650458 0.325229 0.945635i \(-0.394559\pi\)
0.325229 + 0.945635i \(0.394559\pi\)
\(434\) −21.0271 + 40.5772i −1.00933 + 1.94777i
\(435\) 2.64989i 0.127053i
\(436\) 77.0428i 3.68968i
\(437\) −0.386309 5.41412i −0.0184796 0.258992i
\(438\) −25.7481 −1.23029
\(439\) 36.0415i 1.72017i 0.510153 + 0.860084i \(0.329589\pi\)
−0.510153 + 0.860084i \(0.670411\pi\)
\(440\) 8.12294i 0.387246i
\(441\) −4.03640 5.71905i −0.192209 0.272336i
\(442\) 4.00010i 0.190266i
\(443\) −32.8034 −1.55854 −0.779268 0.626691i \(-0.784409\pi\)
−0.779268 + 0.626691i \(0.784409\pi\)
\(444\) 44.2734 2.10112
\(445\) 6.22482 0.295085
\(446\) 53.1259i 2.51558i
\(447\) −8.46473 −0.400368
\(448\) −6.88826 3.56949i −0.325440 0.168643i
\(449\) −20.7430 −0.978924 −0.489462 0.872025i \(-0.662807\pi\)
−0.489462 + 0.872025i \(0.662807\pi\)
\(450\) 8.85952 0.417642
\(451\) −5.65896 −0.266470
\(452\) 9.63461i 0.453174i
\(453\) 17.5786i 0.825913i
\(454\) −62.6506 −2.94034
\(455\) 0.767868 1.48180i 0.0359982 0.0694679i
\(456\) 6.67296i 0.312490i
\(457\) 3.13887i 0.146830i 0.997301 + 0.0734152i \(0.0233898\pi\)
−0.997301 + 0.0734152i \(0.976610\pi\)
\(458\) 49.1275 2.29558
\(459\) 3.06538i 0.143080i
\(460\) 1.80379 + 25.2801i 0.0841019 + 1.17869i
\(461\) 39.0094i 1.81685i 0.418051 + 0.908423i \(0.362713\pi\)
−0.418051 + 0.908423i \(0.637287\pi\)
\(462\) −6.69507 3.46938i −0.311483 0.161410i
\(463\) −20.2299 −0.940165 −0.470082 0.882623i \(-0.655776\pi\)
−0.470082 + 0.882623i \(0.655776\pi\)
\(464\) −13.4192 −0.622972
\(465\) −8.35005 −0.387224
\(466\) −21.0051 −0.973043
\(467\) 12.4617 0.576660 0.288330 0.957531i \(-0.406900\pi\)
0.288330 + 0.957531i \(0.406900\pi\)
\(468\) 2.24967i 0.103991i
\(469\) 4.44540 8.57857i 0.205270 0.396122i
\(470\) 12.9153i 0.595738i
\(471\) 18.6337i 0.858595i
\(472\) 1.18418i 0.0545065i
\(473\) −7.60254 −0.349565
\(474\) 21.6428 0.994085
\(475\) −3.98187 −0.182701
\(476\) −31.2612 16.1995i −1.43286 0.742504i
\(477\) 5.41447i 0.247912i
\(478\) −53.8334 −2.46228
\(479\) 25.2363 1.15307 0.576537 0.817071i \(-0.304404\pi\)
0.576537 + 0.817071i \(0.304404\pi\)
\(480\) 4.54229i 0.207326i
\(481\) −5.28466 −0.240960
\(482\) −22.3268 −1.01696
\(483\) −11.6527 5.02133i −0.530218 0.228478i
\(484\) 42.1935 1.91789
\(485\) −22.1083 −1.00389
\(486\) 2.51820i 0.114228i
\(487\) −19.0531 −0.863377 −0.431688 0.902023i \(-0.642082\pi\)
−0.431688 + 0.902023i \(0.642082\pi\)
\(488\) −36.6506 −1.65910
\(489\) 7.23725i 0.327280i
\(490\) −12.3731 17.5311i −0.558960 0.791973i
\(491\) −12.8471 −0.579782 −0.289891 0.957060i \(-0.593619\pi\)
−0.289891 + 0.957060i \(0.593619\pi\)
\(492\) −21.7066 −0.978610
\(493\) 6.67296 0.300535
\(494\) 1.47691i 0.0664492i
\(495\) 1.37772i 0.0619240i
\(496\) 42.2852i 1.89866i
\(497\) 5.08448 + 2.63477i 0.228070 + 0.118186i
\(498\) 29.2885i 1.31245i
\(499\) −8.62228 −0.385986 −0.192993 0.981200i \(-0.561819\pi\)
−0.192993 + 0.981200i \(0.561819\pi\)
\(500\) 45.0158 2.01317
\(501\) −17.8282 −0.796507
\(502\) 32.9696 1.47150
\(503\) −3.30988 −0.147580 −0.0737900 0.997274i \(-0.523509\pi\)
−0.0737900 + 0.997274i \(0.523509\pi\)
\(504\) −13.8500 7.17706i −0.616929 0.319692i
\(505\) 10.8138i 0.481208i
\(506\) −13.6338 + 0.972802i −0.606098 + 0.0432463i
\(507\) 12.7315i 0.565424i
\(508\) −11.8582 −0.526122
\(509\) 8.92077i 0.395406i 0.980262 + 0.197703i \(0.0633482\pi\)
−0.980262 + 0.197703i \(0.936652\pi\)
\(510\) 9.39658i 0.416088i
\(511\) 12.4466 24.0190i 0.550605 1.06254i
\(512\) −49.6878 −2.19591
\(513\) 1.13179i 0.0499698i
\(514\) 35.0218i 1.54474i
\(515\) 14.0000 0.616914
\(516\) −29.1618 −1.28378
\(517\) 4.76855 0.209720
\(518\) −31.2612 + 60.3267i −1.37354 + 2.65060i
\(519\) −20.2248 −0.887771
\(520\) 3.71914i 0.163095i
\(521\) −42.6255 −1.86746 −0.933729 0.357980i \(-0.883465\pi\)
−0.933729 + 0.357980i \(0.883465\pi\)
\(522\) 5.48180 0.239932
\(523\) −20.5553 −0.898819 −0.449410 0.893326i \(-0.648366\pi\)
−0.449410 + 0.893326i \(0.648366\pi\)
\(524\) 81.2655i 3.55010i
\(525\) −4.28268 + 8.26455i −0.186911 + 0.360694i
\(526\) 59.9121i 2.61229i
\(527\) 21.0271i 0.915954i
\(528\) −6.97688 −0.303630
\(529\) −22.7670 + 3.26557i −0.989869 + 0.141981i
\(530\) 16.5974i 0.720946i
\(531\) 0.200848i 0.00871606i
\(532\) 11.5422 + 5.98114i 0.500417 + 0.259315i
\(533\) 2.59099 0.112228
\(534\) 12.8772i 0.557252i
\(535\) 3.26122i 0.140995i
\(536\) 21.5312i 0.930005i
\(537\) 10.4141i 0.449402i
\(538\) 14.5118i 0.625646i
\(539\) 6.47277 4.56836i 0.278802 0.196773i
\(540\) 5.28466i 0.227416i
\(541\) 5.98027 0.257112 0.128556 0.991702i \(-0.458966\pi\)
0.128556 + 0.991702i \(0.458966\pi\)
\(542\) 29.0655i 1.24847i
\(543\) 14.0653i 0.603601i
\(544\) −11.4384 −0.490417
\(545\) 21.6025i 0.925351i
\(546\) 3.06538 + 1.58848i 0.131186 + 0.0679806i
\(547\) 4.06037 0.173609 0.0868045 0.996225i \(-0.472334\pi\)
0.0868045 + 0.996225i \(0.472334\pi\)
\(548\) 53.4102i 2.28157i
\(549\) 6.21627 0.265304
\(550\) 10.0271i 0.427559i
\(551\) −2.46377 −0.104960
\(552\) −28.2041 + 2.01242i −1.20045 + 0.0856544i
\(553\) −10.4621 + 20.1893i −0.444892 + 0.858536i
\(554\) 61.8753 2.62883
\(555\) −12.4141 −0.526950
\(556\) 59.8209i 2.53697i
\(557\) 2.49295i 0.105630i −0.998604 0.0528149i \(-0.983181\pi\)
0.998604 0.0528149i \(-0.0168193\pi\)
\(558\) 17.2736i 0.731252i
\(559\) 3.48088 0.147225
\(560\) −17.6274 9.13449i −0.744893 0.386003i
\(561\) 3.46938 0.146477
\(562\) 42.0542i 1.77395i
\(563\) −0.846107 −0.0356592 −0.0178296 0.999841i \(-0.505676\pi\)
−0.0178296 + 0.999841i \(0.505676\pi\)
\(564\) 18.2912 0.770198
\(565\) 2.70151i 0.113653i
\(566\) 30.7654 1.29317
\(567\) 2.34908 + 1.21729i 0.0986523 + 0.0511215i
\(568\) 12.7614 0.535458
\(569\) 40.2916i 1.68911i −0.535469 0.844555i \(-0.679865\pi\)
0.535469 0.844555i \(-0.320135\pi\)
\(570\) 3.46938i 0.145316i
\(571\) 38.1275i 1.59559i 0.602930 + 0.797794i \(0.294000\pi\)
−0.602930 + 0.797794i \(0.706000\pi\)
\(572\) 2.54616 0.106460
\(573\) 12.3319 0.515173
\(574\) 15.3269 29.5773i 0.639733 1.23453i
\(575\) 1.20085 + 16.8299i 0.0500788 + 0.701855i
\(576\) 2.93232 0.122180
\(577\) 23.7918i 0.990467i −0.868760 0.495234i \(-0.835082\pi\)
0.868760 0.495234i \(-0.164918\pi\)
\(578\) −19.1469 −0.796407
\(579\) 3.17687i 0.132026i
\(580\) 11.5040 0.477679
\(581\) 27.3216 + 14.1580i 1.13349 + 0.587373i
\(582\) 45.7352i 1.89579i
\(583\) 6.12805 0.253798
\(584\) 60.2847i 2.49460i
\(585\) 0.630799i 0.0260803i
\(586\) 55.5470 2.29463
\(587\) 16.3049i 0.672976i 0.941688 + 0.336488i \(0.109239\pi\)
−0.941688 + 0.336488i \(0.890761\pi\)
\(588\) 24.8282 17.5233i 1.02390 0.722649i
\(589\) 7.76355i 0.319892i
\(590\) 0.615677i 0.0253470i
\(591\) 16.5661i 0.681440i
\(592\) 62.8659i 2.58377i
\(593\) 3.57346i 0.146744i 0.997305 + 0.0733721i \(0.0233761\pi\)
−0.997305 + 0.0733721i \(0.976624\pi\)
\(594\) 2.85008 0.116940
\(595\) 8.76554 + 4.54229i 0.359352 + 0.186216i
\(596\) 36.7481i 1.50526i
\(597\) 9.28165i 0.379873i
\(598\) 6.24234 0.445404i 0.255268 0.0182139i
\(599\) −16.3100 −0.666410 −0.333205 0.942854i \(-0.608130\pi\)
−0.333205 + 0.942854i \(0.608130\pi\)
\(600\) 20.7430i 0.846830i
\(601\) 21.8771i 0.892384i −0.894937 0.446192i \(-0.852780\pi\)
0.894937 0.446192i \(-0.147220\pi\)
\(602\) 20.5910 39.7357i 0.839226 1.61951i
\(603\) 3.65188i 0.148716i
\(604\) 76.3143 3.10518
\(605\) −11.8309 −0.480995
\(606\) −22.3704 −0.908736
\(607\) 17.8355i 0.723923i 0.932193 + 0.361961i \(0.117893\pi\)
−0.932193 + 0.361961i \(0.882107\pi\)
\(608\) 4.22325 0.171275
\(609\) −2.64989 + 5.11366i −0.107379 + 0.207216i
\(610\) 19.0553 0.771525
\(611\) −2.18331 −0.0883273
\(612\) 13.3078 0.537937
\(613\) 28.6488i 1.15711i −0.815642 0.578557i \(-0.803616\pi\)
0.815642 0.578557i \(-0.196384\pi\)
\(614\) 50.4059i 2.03422i
\(615\) 6.08646 0.245430
\(616\) 8.12294 15.6753i 0.327283 0.631577i
\(617\) 30.6387i 1.23347i 0.787171 + 0.616734i \(0.211545\pi\)
−0.787171 + 0.616734i \(0.788455\pi\)
\(618\) 28.9616i 1.16501i
\(619\) −27.1135 −1.08979 −0.544893 0.838506i \(-0.683430\pi\)
−0.544893 + 0.838506i \(0.683430\pi\)
\(620\) 36.2503i 1.45585i
\(621\) 4.78367 0.341325i 0.191962 0.0136969i
\(622\) 39.6441i 1.58958i
\(623\) −12.0124 6.22482i −0.481268 0.249392i
\(624\) 3.19441 0.127879
\(625\) 4.96872 0.198749
\(626\) −21.3159 −0.851954
\(627\) −1.28095 −0.0511563
\(628\) −80.8949 −3.22806
\(629\) 31.2612i 1.24647i
\(630\) 7.20085 + 3.73147i 0.286889 + 0.148665i
\(631\) 39.5904i 1.57607i −0.615631 0.788034i \(-0.711099\pi\)
0.615631 0.788034i \(-0.288901\pi\)
\(632\) 50.6727i 2.01565i
\(633\) 7.96360i 0.316525i
\(634\) 70.7823 2.81113
\(635\) 3.32500 0.131949
\(636\) 23.5060 0.932072
\(637\) −2.96360 + 2.09166i −0.117422 + 0.0828744i
\(638\) 6.20426i 0.245629i
\(639\) −2.16445 −0.0856243
\(640\) 18.0733 0.714409
\(641\) 27.2725i 1.07720i 0.842562 + 0.538600i \(0.181047\pi\)
−0.842562 + 0.538600i \(0.818953\pi\)
\(642\) −6.74645 −0.266261
\(643\) 32.3127 1.27429 0.637144 0.770745i \(-0.280116\pi\)
0.637144 + 0.770745i \(0.280116\pi\)
\(644\) 21.7992 50.5883i 0.859009 1.99346i
\(645\) 8.17687 0.321964
\(646\) −8.73658 −0.343736
\(647\) 1.89168i 0.0743696i −0.999308 0.0371848i \(-0.988161\pi\)
0.999308 0.0371848i \(-0.0118390\pi\)
\(648\) 5.89592 0.231614
\(649\) −0.227318 −0.00892302
\(650\) 4.59099i 0.180074i
\(651\) 16.1136 + 8.35005i 0.631542 + 0.327264i
\(652\) 31.4192 1.23047
\(653\) 39.2903 1.53755 0.768774 0.639520i \(-0.220867\pi\)
0.768774 + 0.639520i \(0.220867\pi\)
\(654\) −44.6889 −1.74748
\(655\) 22.7866i 0.890344i
\(656\) 30.8223i 1.20341i
\(657\) 10.2248i 0.398908i
\(658\) −12.9153 + 24.9234i −0.503491 + 0.971617i
\(659\) 22.8600i 0.890501i −0.895406 0.445251i \(-0.853115\pi\)
0.895406 0.445251i \(-0.146885\pi\)
\(660\) 5.98114 0.232816
\(661\) −46.0209 −1.79001 −0.895003 0.446060i \(-0.852827\pi\)
−0.895003 + 0.446060i \(0.852827\pi\)
\(662\) −23.2299 −0.902857
\(663\) −1.58848 −0.0616914
\(664\) 68.5739 2.66118
\(665\) −3.23639 1.67709i −0.125502 0.0650348i
\(666\) 25.6809i 0.995116i
\(667\) 0.743021 + 10.4134i 0.0287699 + 0.403210i
\(668\) 77.3982i 2.99463i
\(669\) 21.0968 0.815648
\(670\) 11.1944i 0.432478i
\(671\) 7.03552i 0.271603i
\(672\) 4.54229 8.76554i 0.175223 0.338138i
\(673\) −11.6347 −0.448485 −0.224242 0.974533i \(-0.571991\pi\)
−0.224242 + 0.974533i \(0.571991\pi\)
\(674\) 35.4547i 1.36566i
\(675\) 3.51820i 0.135416i
\(676\) 55.2714 2.12582
\(677\) −36.8519 −1.41633 −0.708166 0.706046i \(-0.750477\pi\)
−0.708166 + 0.706046i \(0.750477\pi\)
\(678\) 5.58858 0.214628
\(679\) 42.6638 + 22.1083i 1.63729 + 0.848439i
\(680\) 22.0005 0.843679
\(681\) 24.8791i 0.953371i
\(682\) 19.5502 0.748615
\(683\) −20.6034 −0.788368 −0.394184 0.919032i \(-0.628973\pi\)
−0.394184 + 0.919032i \(0.628973\pi\)
\(684\) −4.91348 −0.187871
\(685\) 14.9760i 0.572205i
\(686\) 6.34608 + 46.2039i 0.242294 + 1.76407i
\(687\) 19.5090i 0.744314i
\(688\) 41.4082i 1.57867i
\(689\) −2.80577 −0.106891
\(690\) 14.6638 1.04629i 0.558241 0.0398316i
\(691\) 27.9314i 1.06256i −0.847196 0.531281i \(-0.821711\pi\)
0.847196 0.531281i \(-0.178289\pi\)
\(692\) 87.8025i 3.33775i
\(693\) −1.37772 + 2.65868i −0.0523353 + 0.100995i
\(694\) −11.3464 −0.430705
\(695\) 16.7736i 0.636258i
\(696\) 12.8347i 0.486497i
\(697\) 15.3269i 0.580549i
\(698\) 29.8462i 1.12970i
\(699\) 8.34132i 0.315498i
\(700\) −35.8791 18.5925i −1.35610 0.702730i
\(701\) 45.7180i 1.72675i 0.504566 + 0.863373i \(0.331653\pi\)
−0.504566 + 0.863373i \(0.668347\pi\)
\(702\) −1.30493 −0.0492513
\(703\) 11.5422i 0.435321i
\(704\) 3.31877i 0.125081i
\(705\) −5.12878 −0.193161
\(706\) 60.4787i 2.27615i
\(707\) 10.8138 20.8681i 0.406695 0.784825i
\(708\) −0.871947 −0.0327698
\(709\) 15.4536i 0.580373i 0.956970 + 0.290186i \(0.0937173\pi\)
−0.956970 + 0.290186i \(0.906283\pi\)
\(710\) −6.63487 −0.249002
\(711\) 8.59454i 0.322320i
\(712\) −30.1497 −1.12991
\(713\) 32.8137 2.34132i 1.22888 0.0876833i
\(714\) −9.39658 + 18.1332i −0.351658 + 0.678617i
\(715\) −0.713934 −0.0266996
\(716\) −45.2111 −1.68962
\(717\) 21.3777i 0.798366i
\(718\) 3.06538i 0.114399i
\(719\) 23.3820i 0.872000i −0.899947 0.436000i \(-0.856395\pi\)
0.899947 0.436000i \(-0.143605\pi\)
\(720\) 7.50394 0.279655
\(721\) −27.0167 14.0000i −1.00615 0.521387i
\(722\) −44.6201 −1.66059
\(723\) 8.86616i 0.329736i
\(724\) 61.0621 2.26936
\(725\) 7.65868 0.284436
\(726\) 24.4745i 0.908334i
\(727\) 0.447787 0.0166075 0.00830376 0.999966i \(-0.497357\pi\)
0.00830376 + 0.999966i \(0.497357\pi\)
\(728\) −3.71914 + 7.17706i −0.137841 + 0.266000i
\(729\) −1.00000 −0.0370370
\(730\) 31.3430i 1.16006i
\(731\) 20.5910i 0.761585i
\(732\) 26.9868i 0.997463i
\(733\) −19.9959 −0.738566 −0.369283 0.929317i \(-0.620397\pi\)
−0.369283 + 0.929317i \(0.620397\pi\)
\(734\) 27.0541 0.998585
\(735\) −6.96175 + 4.91348i −0.256788 + 0.181236i
\(736\) −1.27364 17.8501i −0.0469471 0.657964i
\(737\) −4.13317 −0.152247
\(738\) 12.5910i 0.463481i
\(739\) −18.8449 −0.693221 −0.346610 0.938009i \(-0.612667\pi\)
−0.346610 + 0.938009i \(0.612667\pi\)
\(740\) 53.8937i 1.98117i
\(741\) 0.586493 0.0215454
\(742\) −16.5974 + 32.0291i −0.609311 + 1.17582i
\(743\) 4.81285i 0.176566i −0.996095 0.0882832i \(-0.971862\pi\)
0.996095 0.0882832i \(-0.0281381\pi\)
\(744\) 40.4432 1.48272
\(745\) 10.3041i 0.377511i
\(746\) 71.3427i 2.61204i
\(747\) −11.6307 −0.425546
\(748\) 15.0617i 0.550710i
\(749\) 3.26122 6.29338i 0.119162 0.229955i
\(750\) 26.1116i 0.953459i
\(751\) 40.5772i 1.48068i −0.672230 0.740342i \(-0.734663\pi\)
0.672230 0.740342i \(-0.265337\pi\)
\(752\) 25.9725i 0.947120i
\(753\) 13.0925i 0.477118i
\(754\) 2.84066i 0.103451i
\(755\) −21.3983 −0.778763
\(756\) −5.28466 + 10.1981i −0.192201 + 0.370903i
\(757\) 39.0471i 1.41919i −0.704609 0.709596i \(-0.748877\pi\)
0.704609 0.709596i \(-0.251123\pi\)
\(758\) 12.2615i 0.445359i
\(759\) 0.386309 + 5.41412i 0.0140221 + 0.196520i
\(760\) −8.12294 −0.294650
\(761\) 40.8959i 1.48248i 0.671242 + 0.741238i \(0.265761\pi\)
−0.671242 + 0.741238i \(0.734239\pi\)
\(762\) 6.87838i 0.249178i
\(763\) 21.6025 41.6878i 0.782065 1.50920i
\(764\) 53.5369i 1.93690i
\(765\) −3.73147 −0.134912
\(766\) −87.2118 −3.15109
\(767\) 0.104079 0.00375808
\(768\) 31.5233i 1.13750i
\(769\) 28.8730 1.04119 0.520594 0.853804i \(-0.325711\pi\)
0.520594 + 0.853804i \(0.325711\pi\)
\(770\) −4.22325 + 8.14986i −0.152195 + 0.293701i
\(771\) 13.9075 0.500865
\(772\) −13.7918 −0.496379
\(773\) 23.7213 0.853195 0.426598 0.904442i \(-0.359712\pi\)
0.426598 + 0.904442i \(0.359712\pi\)
\(774\) 16.9154i 0.608012i
\(775\) 24.1332i 0.866889i
\(776\) 107.081 3.84398
\(777\) 23.9563 + 12.4141i 0.859427 + 0.445354i
\(778\) 29.2885i 1.05004i
\(779\) 5.65896i 0.202753i
\(780\) −2.73851 −0.0980542
\(781\) 2.44971i 0.0876574i
\(782\) 2.63477 + 36.9263i 0.0942192 + 1.32048i
\(783\) 2.17687i 0.0777951i
\(784\) 24.8822 + 35.2548i 0.888649 + 1.25910i
\(785\) 22.6826 0.809578
\(786\) −47.1383 −1.68137
\(787\) 33.2615 1.18564 0.592822 0.805334i \(-0.298014\pi\)
0.592822 + 0.805334i \(0.298014\pi\)
\(788\) 71.9190 2.56201
\(789\) 23.7917 0.847005
\(790\) 26.3456i 0.937333i
\(791\) −2.70151 + 5.21327i −0.0960547 + 0.185363i
\(792\) 6.67296i 0.237113i
\(793\) 3.22126i 0.114390i
\(794\) 69.2779i 2.45858i
\(795\) −6.59099 −0.233758
\(796\) −40.2947 −1.42821
\(797\) 9.62571 0.340960 0.170480 0.985361i \(-0.445468\pi\)
0.170480 + 0.985361i \(0.445468\pi\)
\(798\) 3.46938 6.69507i 0.122815 0.237003i
\(799\) 12.9153i 0.456910i
\(800\) −13.1281 −0.464147
\(801\) 5.11366 0.180682
\(802\) 38.1959i 1.34874i
\(803\) −11.5724 −0.408380
\(804\) −15.8540 −0.559127
\(805\) −6.11242 + 14.1848i −0.215435 + 0.499948i
\(806\) −8.95118 −0.315292
\(807\) 5.76275 0.202859
\(808\) 52.3764i 1.84260i
\(809\) 20.6869 0.727312 0.363656 0.931533i \(-0.381528\pi\)
0.363656 + 0.931533i \(0.381528\pi\)
\(810\) −3.06538 −0.107707
\(811\) 2.81158i 0.0987278i −0.998781 0.0493639i \(-0.984281\pi\)
0.998781 0.0493639i \(-0.0157194\pi\)
\(812\) −22.2001 11.5040i −0.779070 0.403713i
\(813\) 11.5422 0.404802
\(814\) 29.0655 1.01874
\(815\) −8.80985 −0.308595
\(816\) 18.8964i 0.661507i
\(817\) 7.60254i 0.265979i
\(818\) 58.6389i 2.05026i
\(819\) 0.630799 1.21729i 0.0220419 0.0425356i
\(820\) 26.4233i 0.922742i
\(821\) 39.1092 1.36492 0.682460 0.730923i \(-0.260910\pi\)
0.682460 + 0.730923i \(0.260910\pi\)
\(822\) 30.9807 1.08058
\(823\) 34.8689 1.21545 0.607726 0.794147i \(-0.292082\pi\)
0.607726 + 0.794147i \(0.292082\pi\)
\(824\) −67.8086 −2.36222
\(825\) 3.98187 0.138631
\(826\) 0.615677 1.18811i 0.0214221 0.0413396i
\(827\) 56.4343i 1.96241i 0.192957 + 0.981207i \(0.438192\pi\)
−0.192957 + 0.981207i \(0.561808\pi\)
\(828\) 1.48180 + 20.7675i 0.0514962 + 0.721719i
\(829\) 49.9687i 1.73549i −0.497014 0.867743i \(-0.665570\pi\)
0.497014 0.867743i \(-0.334430\pi\)
\(830\) −35.6527 −1.23752
\(831\) 24.5713i 0.852368i
\(832\) 1.51952i 0.0526800i
\(833\) −12.3731 17.5311i −0.428703 0.607416i
\(834\) 34.6993 1.20154
\(835\) 21.7022i 0.751035i
\(836\) 5.56103i 0.192332i
\(837\) −6.85952 −0.237100
\(838\) −13.3813 −0.462250
\(839\) 10.4958 0.362356 0.181178 0.983450i \(-0.442009\pi\)
0.181178 + 0.983450i \(0.442009\pi\)
\(840\) −8.73658 + 16.8595i −0.301441 + 0.581709i
\(841\) −24.2612 −0.836594
\(842\) 40.5772i 1.39838i
\(843\) −16.7001 −0.575182
\(844\) 34.5726 1.19004
\(845\) −15.4979 −0.533145
\(846\) 10.6099i 0.364774i
\(847\) 22.8309 + 11.8309i 0.784478 + 0.406515i
\(848\) 33.3772i 1.14618i
\(849\) 12.2172i 0.419294i
\(850\) 27.1578 0.931506
\(851\) 48.7845 3.48088i 1.67231 0.119323i
\(852\) 9.39658i 0.321922i
\(853\) 40.7803i 1.39629i −0.715956 0.698145i \(-0.754009\pi\)
0.715956 0.698145i \(-0.245991\pi\)
\(854\) −36.7721 19.0553i −1.25832 0.652058i
\(855\) 1.37772 0.0471171
\(856\) 15.7956i 0.539883i
\(857\) 22.6150i 0.772513i 0.922392 + 0.386256i \(0.126232\pi\)
−0.922392 + 0.386256i \(0.873768\pi\)
\(858\) 1.47691i 0.0504208i
\(859\) 35.5983i 1.21460i 0.794473 + 0.607299i \(0.207747\pi\)
−0.794473 + 0.607299i \(0.792253\pi\)
\(860\) 35.4985i 1.21049i
\(861\) −11.7454 6.08646i −0.400283 0.207426i
\(862\) 28.7766i 0.980134i
\(863\) 34.8282 1.18557 0.592784 0.805362i \(-0.298029\pi\)
0.592784 + 0.805362i \(0.298029\pi\)
\(864\) 3.73147i 0.126947i
\(865\) 24.6195i 0.837089i
\(866\) 34.0842 1.15823
\(867\) 7.60342i 0.258226i
\(868\) −36.2503 + 69.9544i −1.23041 + 2.37441i
\(869\) 9.72723 0.329974
\(870\) 6.67296i 0.226234i
\(871\) 1.89240 0.0641215
\(872\) 104.631i 3.54326i
\(873\) −18.1619 −0.614686
\(874\) −0.972802 13.6338i −0.0329055 0.461171i
\(875\) 24.3580 + 12.6223i 0.823450 + 0.426711i
\(876\) −44.3893 −1.49977
\(877\) 45.2350 1.52748 0.763740 0.645525i \(-0.223361\pi\)
0.763740 + 0.645525i \(0.223361\pi\)
\(878\) 90.7597i 3.06299i
\(879\) 22.0582i 0.744006i
\(880\) 8.49290i 0.286296i
\(881\) 47.2653 1.59241 0.796205 0.605027i \(-0.206838\pi\)
0.796205 + 0.605027i \(0.206838\pi\)
\(882\) −10.1645 14.4017i −0.342255 0.484930i
\(883\) 3.85865 0.129854 0.0649270 0.997890i \(-0.479319\pi\)
0.0649270 + 0.997890i \(0.479319\pi\)
\(884\) 6.89610i 0.231941i
\(885\) 0.244491 0.00821847
\(886\) −82.6055 −2.77518
\(887\) 41.3944i 1.38989i −0.719064 0.694944i \(-0.755429\pi\)
0.719064 0.694944i \(-0.244571\pi\)
\(888\) 60.1274 2.01774
\(889\) −6.41645 3.32500i −0.215201 0.111517i
\(890\) 15.6753 0.525439
\(891\) 1.13179i 0.0379165i
\(892\) 91.5879i 3.06659i
\(893\) 4.76855i 0.159573i
\(894\) −21.3159 −0.712910
\(895\) 12.6770 0.423746
\(896\) −34.8771 18.0733i −1.16516 0.603785i
\(897\) −0.176874 2.47889i −0.00590565 0.0827678i
\(898\) −52.2350 −1.74311
\(899\) 14.9323i 0.498021i
\(900\) 15.2736 0.509121
\(901\) 16.5974i 0.552941i
\(902\) −14.2504 −0.474486
\(903\) −15.7794 8.17687i −0.525106 0.272109i
\(904\) 13.0847i 0.435190i
\(905\) −17.1216 −0.569142
\(906\) 44.2663i 1.47065i
\(907\) 22.9335i 0.761496i −0.924679 0.380748i \(-0.875667\pi\)
0.924679 0.380748i \(-0.124333\pi\)
\(908\) −108.008 −3.58439
\(909\) 8.88350i 0.294647i
\(910\) 1.93364 3.73147i 0.0640996 0.123697i
\(911\) 7.56337i 0.250586i 0.992120 + 0.125293i \(0.0399870\pi\)
−0.992120 + 0.125293i \(0.960013\pi\)
\(912\) 6.97688i 0.231027i
\(913\) 13.1636i 0.435651i
\(914\) 7.90431i 0.261451i
\(915\) 7.56702i 0.250158i
\(916\) 84.6948 2.79840
\(917\) 22.7866 43.9726i 0.752478 1.45210i
\(918\) 7.71925i 0.254773i
\(919\) 27.9586i 0.922269i 0.887330 + 0.461134i \(0.152557\pi\)
−0.887330 + 0.461134i \(0.847443\pi\)
\(920\) 2.44971 + 34.3327i 0.0807645 + 1.13192i
\(921\) −20.0167 −0.659571
\(922\) 98.2333i 3.23514i
\(923\) 1.12162i 0.0369184i
\(924\) −11.5422 5.98114i −0.379710 0.196765i
\(925\) 35.8791i 1.17970i
\(926\) −50.9430 −1.67409
\(927\) 11.5009 0.377740
\(928\) −8.12294 −0.266649
\(929\) 11.3298i 0.371718i 0.982576 + 0.185859i \(0.0595067\pi\)
−0.982576 + 0.185859i \(0.940493\pi\)
\(930\) −21.0271 −0.689505
\(931\) 4.56836 + 6.47277i 0.149722 + 0.212137i
\(932\) −36.2124 −1.18618
\(933\) 15.7430 0.515403
\(934\) 31.3811 1.02682
\(935\) 4.22325i 0.138115i
\(936\) 3.05526i 0.0998642i
\(937\) −7.75154 −0.253232 −0.126616 0.991952i \(-0.540412\pi\)
−0.126616 + 0.991952i \(0.540412\pi\)
\(938\) 11.1944 21.6025i 0.365510 0.705348i
\(939\) 8.46473i 0.276236i
\(940\) 22.2657i 0.726228i
\(941\) −4.38019 −0.142790 −0.0713950 0.997448i \(-0.522745\pi\)
−0.0713950 + 0.997448i \(0.522745\pi\)
\(942\) 46.9233i 1.52884i
\(943\) −23.9183 + 1.70662i −0.778889 + 0.0555753i
\(944\) 1.23812i 0.0402973i
\(945\) 1.48180 2.85952i 0.0482030 0.0930203i
\(946\) −19.1447 −0.622448
\(947\) 4.60985 0.149800 0.0749001 0.997191i \(-0.476136\pi\)
0.0749001 + 0.997191i \(0.476136\pi\)
\(948\) 37.3117 1.21183
\(949\) 5.29849 0.171996
\(950\) −10.0271 −0.325323
\(951\) 28.1083i 0.911475i
\(952\) −42.4556 22.0005i −1.37599 0.713039i
\(953\) 2.26047i 0.0732239i 0.999330 + 0.0366119i \(0.0116565\pi\)
−0.999330 + 0.0366119i \(0.988343\pi\)
\(954\) 13.6347i 0.441440i
\(955\) 15.0116i 0.485762i
\(956\) −92.8076 −3.00161
\(957\) 2.46377 0.0796423
\(958\) 63.5499 2.05321
\(959\) −14.9760 + 28.9002i −0.483601 + 0.933235i
\(960\) 3.56949i 0.115205i
\(961\) −16.0531 −0.517841
\(962\) −13.3078 −0.429062
\(963\) 2.67908i 0.0863320i
\(964\) −38.4909 −1.23971
\(965\) 3.86719 0.124489
\(966\) −29.3439 12.6447i −0.944125 0.406836i
\(967\) 33.1820 1.06706 0.533530 0.845781i \(-0.320865\pi\)
0.533530 + 0.845781i \(0.320865\pi\)
\(968\) 57.3027 1.84178
\(969\) 3.46938i 0.111452i
\(970\) −55.6731 −1.78756
\(971\) −13.1660 −0.422517 −0.211259 0.977430i \(-0.567756\pi\)
−0.211259 + 0.977430i \(0.567756\pi\)
\(972\) 4.34132i 0.139248i
\(973\) −16.7736 + 32.3690i −0.537736 + 1.03770i
\(974\) −47.9794 −1.53736
\(975\) −1.82313 −0.0583868
\(976\) −38.3199 −1.22659
\(977\) 24.5200i 0.784463i −0.919866 0.392232i \(-0.871703\pi\)
0.919866 0.392232i \(-0.128297\pi\)
\(978\) 18.2248i 0.582766i
\(979\) 5.78760i 0.184973i
\(980\) −21.3310 30.2232i −0.681394 0.965446i
\(981\) 17.7464i 0.566598i
\(982\) −32.3516 −1.03238
\(983\) 47.6949 1.52123 0.760615 0.649203i \(-0.224897\pi\)
0.760615 + 0.649203i \(0.224897\pi\)
\(984\) −29.4796 −0.939775
\(985\) −20.1658 −0.642537
\(986\) 16.8038 0.535143
\(987\) 9.89733 + 5.12878i 0.315036 + 0.163251i
\(988\) 2.54616i 0.0810041i
\(989\) −32.1332 + 2.29277i −1.02178 + 0.0729058i
\(990\) 3.46938i 0.110264i
\(991\) 15.9512 0.506706 0.253353 0.967374i \(-0.418467\pi\)
0.253353 + 0.967374i \(0.418467\pi\)
\(992\) 25.5961i 0.812677i
\(993\) 9.22482i 0.292741i
\(994\) 12.8037 + 6.63487i 0.406110 + 0.210445i
\(995\) 11.2985 0.358186
\(996\) 50.4928i 1.59993i
\(997\) 27.8959i 0.883473i −0.897145 0.441736i \(-0.854363\pi\)
0.897145 0.441736i \(-0.145637\pi\)
\(998\) −21.7126 −0.687301
\(999\) −10.1981 −0.322655
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.h.c.160.9 12
3.2 odd 2 1449.2.h.e.1126.4 12
7.6 odd 2 inner 483.2.h.c.160.12 yes 12
21.20 even 2 1449.2.h.e.1126.2 12
23.22 odd 2 inner 483.2.h.c.160.10 yes 12
69.68 even 2 1449.2.h.e.1126.1 12
161.160 even 2 inner 483.2.h.c.160.11 yes 12
483.482 odd 2 1449.2.h.e.1126.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.h.c.160.9 12 1.1 even 1 trivial
483.2.h.c.160.10 yes 12 23.22 odd 2 inner
483.2.h.c.160.11 yes 12 161.160 even 2 inner
483.2.h.c.160.12 yes 12 7.6 odd 2 inner
1449.2.h.e.1126.1 12 69.68 even 2
1449.2.h.e.1126.2 12 21.20 even 2
1449.2.h.e.1126.3 12 483.482 odd 2
1449.2.h.e.1126.4 12 3.2 odd 2