Properties

Label 483.2.i.h.277.3
Level $483$
Weight $2$
Character 483.277
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(277,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.277");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{19} + 22 x^{18} - 43 x^{17} + 245 x^{16} - 416 x^{15} + 1707 x^{14} - 2021 x^{13} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 277.3
Root \(1.13751 - 1.97023i\) of defining polynomial
Character \(\chi\) \(=\) 483.277
Dual form 483.2.i.h.415.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13751 - 1.97023i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-1.58786 + 2.75026i) q^{4} +(0.619347 + 1.07274i) q^{5} -2.27502 q^{6} +(1.84753 + 1.89384i) q^{7} +2.67481 q^{8} +(-0.500000 - 0.866025i) q^{9} +(1.40903 - 2.44051i) q^{10} +(-3.06335 + 5.30587i) q^{11} +(1.58786 + 2.75026i) q^{12} +0.910400 q^{13} +(1.62971 - 5.79432i) q^{14} +1.23869 q^{15} +(0.133103 + 0.230540i) q^{16} +(-2.45436 + 4.25108i) q^{17} +(-1.13751 + 1.97023i) q^{18} +(3.45185 + 5.97878i) q^{19} -3.93376 q^{20} +(2.56388 - 0.653086i) q^{21} +13.9384 q^{22} +(-0.500000 - 0.866025i) q^{23} +(1.33740 - 2.31645i) q^{24} +(1.73282 - 3.00133i) q^{25} +(-1.03559 - 1.79370i) q^{26} -1.00000 q^{27} +(-8.14219 + 2.07403i) q^{28} +3.36004 q^{29} +(-1.40903 - 2.44051i) q^{30} +(-2.71868 + 4.70889i) q^{31} +(2.97762 - 5.15739i) q^{32} +(3.06335 + 5.30587i) q^{33} +11.1675 q^{34} +(-0.887339 + 3.15486i) q^{35} +3.17573 q^{36} +(-3.27333 - 5.66957i) q^{37} +(7.85304 - 13.6019i) q^{38} +(0.455200 - 0.788430i) q^{39} +(1.65663 + 2.86938i) q^{40} -2.52207 q^{41} +(-4.20317 - 4.30853i) q^{42} -0.231369 q^{43} +(-9.72835 - 16.8500i) q^{44} +(0.619347 - 1.07274i) q^{45} +(-1.13751 + 1.97023i) q^{46} +(-6.67889 - 11.5682i) q^{47} +0.266205 q^{48} +(-0.173272 + 6.99786i) q^{49} -7.88440 q^{50} +(2.45436 + 4.25108i) q^{51} +(-1.44559 + 2.50384i) q^{52} +(-2.11340 + 3.66052i) q^{53} +(1.13751 + 1.97023i) q^{54} -7.58909 q^{55} +(4.94179 + 5.06567i) q^{56} +6.90370 q^{57} +(-3.82209 - 6.62005i) q^{58} +(0.377100 - 0.653157i) q^{59} +(-1.96688 + 3.40673i) q^{60} +(-1.78832 - 3.09747i) q^{61} +12.3701 q^{62} +(0.716350 - 2.54693i) q^{63} -13.0159 q^{64} +(0.563853 + 0.976623i) q^{65} +(6.96918 - 12.0710i) q^{66} +(2.24703 - 3.89197i) q^{67} +(-7.79440 - 13.5003i) q^{68} -1.00000 q^{69} +(7.22516 - 1.84043i) q^{70} +15.8575 q^{71} +(-1.33740 - 2.31645i) q^{72} +(2.13888 - 3.70465i) q^{73} +(-7.44689 + 12.8984i) q^{74} +(-1.73282 - 3.00133i) q^{75} -21.9243 q^{76} +(-15.7081 + 4.00126i) q^{77} -2.07118 q^{78} +(0.111008 + 0.192271i) q^{79} +(-0.164873 + 0.285569i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(2.86889 + 4.96906i) q^{82} +15.5197 q^{83} +(-2.27493 + 8.08835i) q^{84} -6.08041 q^{85} +(0.263184 + 0.455849i) q^{86} +(1.68002 - 2.90988i) q^{87} +(-8.19386 + 14.1922i) q^{88} +(-0.279682 - 0.484423i) q^{89} -2.81806 q^{90} +(1.68199 + 1.72415i) q^{91} +3.17573 q^{92} +(2.71868 + 4.70889i) q^{93} +(-15.1946 + 26.3179i) q^{94} +(-4.27579 + 7.40588i) q^{95} +(-2.97762 - 5.15739i) q^{96} +17.6476 q^{97} +(13.9845 - 7.61875i) q^{98} +6.12669 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 3 q^{2} + 10 q^{3} - 15 q^{4} + 5 q^{5} - 6 q^{6} + 18 q^{8} - 10 q^{9} - 11 q^{10} - 8 q^{11} + 15 q^{12} + 11 q^{14} + 10 q^{15} - 37 q^{16} + 11 q^{17} - 3 q^{18} - q^{19} - 30 q^{20} + 12 q^{22}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13751 1.97023i −0.804342 1.39316i −0.916734 0.399497i \(-0.869185\pi\)
0.112392 0.993664i \(-0.464149\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −1.58786 + 2.75026i −0.793932 + 1.37513i
\(5\) 0.619347 + 1.07274i 0.276980 + 0.479744i 0.970633 0.240566i \(-0.0773330\pi\)
−0.693652 + 0.720310i \(0.744000\pi\)
\(6\) −2.27502 −0.928774
\(7\) 1.84753 + 1.89384i 0.698300 + 0.715805i
\(8\) 2.67481 0.945688
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 1.40903 2.44051i 0.445574 0.771757i
\(11\) −3.06335 + 5.30587i −0.923633 + 1.59978i −0.129889 + 0.991529i \(0.541462\pi\)
−0.793745 + 0.608251i \(0.791871\pi\)
\(12\) 1.58786 + 2.75026i 0.458377 + 0.793932i
\(13\) 0.910400 0.252500 0.126250 0.991998i \(-0.459706\pi\)
0.126250 + 0.991998i \(0.459706\pi\)
\(14\) 1.62971 5.79432i 0.435559 1.54860i
\(15\) 1.23869 0.319829
\(16\) 0.133103 + 0.230540i 0.0332756 + 0.0576351i
\(17\) −2.45436 + 4.25108i −0.595271 + 1.03104i 0.398238 + 0.917282i \(0.369622\pi\)
−0.993509 + 0.113757i \(0.963711\pi\)
\(18\) −1.13751 + 1.97023i −0.268114 + 0.464387i
\(19\) 3.45185 + 5.97878i 0.791909 + 1.37163i 0.924784 + 0.380493i \(0.124246\pi\)
−0.132875 + 0.991133i \(0.542421\pi\)
\(20\) −3.93376 −0.879614
\(21\) 2.56388 0.653086i 0.559484 0.142515i
\(22\) 13.9384 2.97167
\(23\) −0.500000 0.866025i −0.104257 0.180579i
\(24\) 1.33740 2.31645i 0.272997 0.472844i
\(25\) 1.73282 3.00133i 0.346564 0.600266i
\(26\) −1.03559 1.79370i −0.203096 0.351773i
\(27\) −1.00000 −0.192450
\(28\) −8.14219 + 2.07403i −1.53873 + 0.391954i
\(29\) 3.36004 0.623944 0.311972 0.950091i \(-0.399010\pi\)
0.311972 + 0.950091i \(0.399010\pi\)
\(30\) −1.40903 2.44051i −0.257252 0.445574i
\(31\) −2.71868 + 4.70889i −0.488289 + 0.845741i −0.999909 0.0134707i \(-0.995712\pi\)
0.511621 + 0.859211i \(0.329045\pi\)
\(32\) 2.97762 5.15739i 0.526374 0.911706i
\(33\) 3.06335 + 5.30587i 0.533260 + 0.923633i
\(34\) 11.1675 1.91521
\(35\) −0.887339 + 3.15486i −0.149988 + 0.533269i
\(36\) 3.17573 0.529288
\(37\) −3.27333 5.66957i −0.538132 0.932071i −0.999005 0.0446052i \(-0.985797\pi\)
0.460873 0.887466i \(-0.347536\pi\)
\(38\) 7.85304 13.6019i 1.27393 2.20651i
\(39\) 0.455200 0.788430i 0.0728903 0.126250i
\(40\) 1.65663 + 2.86938i 0.261937 + 0.453688i
\(41\) −2.52207 −0.393882 −0.196941 0.980415i \(-0.563101\pi\)
−0.196941 + 0.980415i \(0.563101\pi\)
\(42\) −4.20317 4.30853i −0.648563 0.664821i
\(43\) −0.231369 −0.0352834 −0.0176417 0.999844i \(-0.505616\pi\)
−0.0176417 + 0.999844i \(0.505616\pi\)
\(44\) −9.72835 16.8500i −1.46660 2.54023i
\(45\) 0.619347 1.07274i 0.0923268 0.159915i
\(46\) −1.13751 + 1.97023i −0.167717 + 0.290494i
\(47\) −6.67889 11.5682i −0.974217 1.68739i −0.682496 0.730889i \(-0.739105\pi\)
−0.291721 0.956503i \(-0.594228\pi\)
\(48\) 0.266205 0.0384234
\(49\) −0.173272 + 6.99786i −0.0247532 + 0.999694i
\(50\) −7.88440 −1.11502
\(51\) 2.45436 + 4.25108i 0.343680 + 0.595271i
\(52\) −1.44559 + 2.50384i −0.200468 + 0.347220i
\(53\) −2.11340 + 3.66052i −0.290298 + 0.502812i −0.973880 0.227062i \(-0.927088\pi\)
0.683582 + 0.729874i \(0.260421\pi\)
\(54\) 1.13751 + 1.97023i 0.154796 + 0.268114i
\(55\) −7.58909 −1.02331
\(56\) 4.94179 + 5.06567i 0.660374 + 0.676928i
\(57\) 6.90370 0.914418
\(58\) −3.82209 6.62005i −0.501864 0.869255i
\(59\) 0.377100 0.653157i 0.0490943 0.0850338i −0.840434 0.541914i \(-0.817700\pi\)
0.889528 + 0.456880i \(0.151033\pi\)
\(60\) −1.96688 + 3.40673i −0.253923 + 0.439807i
\(61\) −1.78832 3.09747i −0.228971 0.396590i 0.728532 0.685011i \(-0.240203\pi\)
−0.957503 + 0.288422i \(0.906869\pi\)
\(62\) 12.3701 1.57100
\(63\) 0.716350 2.54693i 0.0902517 0.320883i
\(64\) −13.0159 −1.62699
\(65\) 0.563853 + 0.976623i 0.0699374 + 0.121135i
\(66\) 6.96918 12.0710i 0.857847 1.48583i
\(67\) 2.24703 3.89197i 0.274518 0.475479i −0.695495 0.718531i \(-0.744815\pi\)
0.970013 + 0.243051i \(0.0781483\pi\)
\(68\) −7.79440 13.5003i −0.945209 1.63715i
\(69\) −1.00000 −0.120386
\(70\) 7.22516 1.84043i 0.863571 0.219974i
\(71\) 15.8575 1.88194 0.940968 0.338495i \(-0.109918\pi\)
0.940968 + 0.338495i \(0.109918\pi\)
\(72\) −1.33740 2.31645i −0.157615 0.272997i
\(73\) 2.13888 3.70465i 0.250337 0.433597i −0.713281 0.700878i \(-0.752792\pi\)
0.963619 + 0.267281i \(0.0861252\pi\)
\(74\) −7.44689 + 12.8984i −0.865684 + 1.49941i
\(75\) −1.73282 3.00133i −0.200089 0.346564i
\(76\) −21.9243 −2.51489
\(77\) −15.7081 + 4.00126i −1.79010 + 0.455986i
\(78\) −2.07118 −0.234515
\(79\) 0.111008 + 0.192271i 0.0124893 + 0.0216322i 0.872203 0.489145i \(-0.162691\pi\)
−0.859713 + 0.510777i \(0.829358\pi\)
\(80\) −0.164873 + 0.285569i −0.0184334 + 0.0319276i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 2.86889 + 4.96906i 0.316816 + 0.548741i
\(83\) 15.5197 1.70351 0.851753 0.523944i \(-0.175540\pi\)
0.851753 + 0.523944i \(0.175540\pi\)
\(84\) −2.27493 + 8.08835i −0.248216 + 0.882512i
\(85\) −6.08041 −0.659513
\(86\) 0.263184 + 0.455849i 0.0283799 + 0.0491554i
\(87\) 1.68002 2.90988i 0.180117 0.311972i
\(88\) −8.19386 + 14.1922i −0.873469 + 1.51289i
\(89\) −0.279682 0.484423i −0.0296462 0.0513487i 0.850822 0.525455i \(-0.176105\pi\)
−0.880468 + 0.474106i \(0.842771\pi\)
\(90\) −2.81806 −0.297049
\(91\) 1.68199 + 1.72415i 0.176321 + 0.180740i
\(92\) 3.17573 0.331093
\(93\) 2.71868 + 4.70889i 0.281914 + 0.488289i
\(94\) −15.1946 + 26.3179i −1.56721 + 2.71448i
\(95\) −4.27579 + 7.40588i −0.438686 + 0.759827i
\(96\) −2.97762 5.15739i −0.303902 0.526374i
\(97\) 17.6476 1.79185 0.895923 0.444209i \(-0.146515\pi\)
0.895923 + 0.444209i \(0.146515\pi\)
\(98\) 13.9845 7.61875i 1.41264 0.769610i
\(99\) 6.12669 0.615756
\(100\) 5.50296 + 9.53141i 0.550296 + 0.953141i
\(101\) 4.06538 7.04144i 0.404520 0.700649i −0.589745 0.807589i \(-0.700772\pi\)
0.994265 + 0.106940i \(0.0341052\pi\)
\(102\) 5.58374 9.67131i 0.552872 0.957603i
\(103\) 7.13975 + 12.3664i 0.703500 + 1.21850i 0.967230 + 0.253902i \(0.0817140\pi\)
−0.263730 + 0.964597i \(0.584953\pi\)
\(104\) 2.43515 0.238786
\(105\) 2.28852 + 2.34589i 0.223337 + 0.228935i
\(106\) 9.61609 0.933997
\(107\) 3.27882 + 5.67908i 0.316975 + 0.549017i 0.979855 0.199708i \(-0.0639994\pi\)
−0.662880 + 0.748726i \(0.730666\pi\)
\(108\) 1.58786 2.75026i 0.152792 0.264644i
\(109\) −9.11792 + 15.7927i −0.873338 + 1.51267i −0.0148158 + 0.999890i \(0.504716\pi\)
−0.858522 + 0.512776i \(0.828617\pi\)
\(110\) 8.63268 + 14.9522i 0.823094 + 1.42564i
\(111\) −6.54665 −0.621381
\(112\) −0.190696 + 0.678005i −0.0180191 + 0.0640655i
\(113\) −18.5945 −1.74922 −0.874610 0.484828i \(-0.838882\pi\)
−0.874610 + 0.484828i \(0.838882\pi\)
\(114\) −7.85304 13.6019i −0.735504 1.27393i
\(115\) 0.619347 1.07274i 0.0577544 0.100034i
\(116\) −5.33529 + 9.24099i −0.495369 + 0.858005i
\(117\) −0.455200 0.788430i −0.0420833 0.0728903i
\(118\) −1.71582 −0.157954
\(119\) −12.5854 + 3.20582i −1.15370 + 0.293877i
\(120\) 3.31327 0.302459
\(121\) −13.2682 22.9811i −1.20620 2.08919i
\(122\) −4.06847 + 7.04680i −0.368342 + 0.637988i
\(123\) −1.26104 + 2.18418i −0.113704 + 0.196941i
\(124\) −8.63378 14.9541i −0.775336 1.34292i
\(125\) 10.4863 0.937926
\(126\) −5.83288 + 1.48579i −0.519635 + 0.132364i
\(127\) −4.19807 −0.372518 −0.186259 0.982501i \(-0.559636\pi\)
−0.186259 + 0.982501i \(0.559636\pi\)
\(128\) 8.85049 + 15.3295i 0.782280 + 1.35495i
\(129\) −0.115684 + 0.200371i −0.0101854 + 0.0176417i
\(130\) 1.28278 2.22184i 0.112507 0.194868i
\(131\) −1.91771 3.32157i −0.167551 0.290207i 0.770007 0.638035i \(-0.220253\pi\)
−0.937558 + 0.347828i \(0.886919\pi\)
\(132\) −19.4567 −1.69349
\(133\) −4.94547 + 17.5832i −0.428827 + 1.52466i
\(134\) −10.2241 −0.883226
\(135\) −0.619347 1.07274i −0.0533049 0.0923268i
\(136\) −6.56496 + 11.3708i −0.562940 + 0.975041i
\(137\) −3.62823 + 6.28428i −0.309981 + 0.536903i −0.978358 0.206920i \(-0.933656\pi\)
0.668377 + 0.743823i \(0.266989\pi\)
\(138\) 1.13751 + 1.97023i 0.0968314 + 0.167717i
\(139\) 3.52170 0.298707 0.149353 0.988784i \(-0.452281\pi\)
0.149353 + 0.988784i \(0.452281\pi\)
\(140\) −7.26773 7.44991i −0.614235 0.629632i
\(141\) −13.3578 −1.12493
\(142\) −18.0381 31.2428i −1.51372 2.62184i
\(143\) −2.78887 + 4.83046i −0.233217 + 0.403944i
\(144\) 0.133103 0.230540i 0.0110919 0.0192117i
\(145\) 2.08103 + 3.60445i 0.172820 + 0.299333i
\(146\) −9.73201 −0.805427
\(147\) 5.97368 + 3.64899i 0.492701 + 0.300963i
\(148\) 20.7904 1.70896
\(149\) 5.46213 + 9.46069i 0.447475 + 0.775050i 0.998221 0.0596230i \(-0.0189899\pi\)
−0.550746 + 0.834673i \(0.685657\pi\)
\(150\) −3.94220 + 6.82809i −0.321879 + 0.557512i
\(151\) 7.92677 13.7296i 0.645071 1.11730i −0.339214 0.940709i \(-0.610161\pi\)
0.984285 0.176587i \(-0.0565057\pi\)
\(152\) 9.23304 + 15.9921i 0.748899 + 1.29713i
\(153\) 4.90873 0.396847
\(154\) 25.7515 + 26.3970i 2.07512 + 2.12713i
\(155\) −6.73521 −0.540985
\(156\) 1.44559 + 2.50384i 0.115740 + 0.200468i
\(157\) 4.59998 7.96740i 0.367118 0.635868i −0.621995 0.783021i \(-0.713678\pi\)
0.989114 + 0.147153i \(0.0470111\pi\)
\(158\) 0.252545 0.437421i 0.0200914 0.0347993i
\(159\) 2.11340 + 3.66052i 0.167604 + 0.290298i
\(160\) 7.37672 0.583181
\(161\) 0.716350 2.54693i 0.0564563 0.200726i
\(162\) 2.27502 0.178743
\(163\) 0.824386 + 1.42788i 0.0645709 + 0.111840i 0.896504 0.443036i \(-0.146099\pi\)
−0.831933 + 0.554877i \(0.812765\pi\)
\(164\) 4.00471 6.93636i 0.312715 0.541639i
\(165\) −3.79455 + 6.57235i −0.295405 + 0.511657i
\(166\) −17.6538 30.5773i −1.37020 2.37326i
\(167\) 5.46655 0.423015 0.211507 0.977376i \(-0.432163\pi\)
0.211507 + 0.977376i \(0.432163\pi\)
\(168\) 6.85789 1.74688i 0.529098 0.134775i
\(169\) −12.1712 −0.936244
\(170\) 6.91654 + 11.9798i 0.530474 + 0.918808i
\(171\) 3.45185 5.97878i 0.263970 0.457209i
\(172\) 0.367382 0.636324i 0.0280126 0.0485193i
\(173\) 0.254586 + 0.440956i 0.0193558 + 0.0335253i 0.875541 0.483144i \(-0.160505\pi\)
−0.856185 + 0.516669i \(0.827172\pi\)
\(174\) −7.64417 −0.579503
\(175\) 8.88548 2.26336i 0.671679 0.171094i
\(176\) −1.63096 −0.122938
\(177\) −0.377100 0.653157i −0.0283446 0.0490943i
\(178\) −0.636282 + 1.10207i −0.0476914 + 0.0826039i
\(179\) −4.17543 + 7.23207i −0.312087 + 0.540550i −0.978814 0.204752i \(-0.934361\pi\)
0.666727 + 0.745302i \(0.267695\pi\)
\(180\) 1.96688 + 3.40673i 0.146602 + 0.253923i
\(181\) −2.42861 −0.180517 −0.0902584 0.995918i \(-0.528769\pi\)
−0.0902584 + 0.995918i \(0.528769\pi\)
\(182\) 1.48369 5.27515i 0.109979 0.391020i
\(183\) −3.57664 −0.264393
\(184\) −1.33740 2.31645i −0.0985948 0.170771i
\(185\) 4.05465 7.02286i 0.298104 0.516331i
\(186\) 6.18505 10.7128i 0.453510 0.785502i
\(187\) −15.0371 26.0451i −1.09962 1.90460i
\(188\) 42.4207 3.09385
\(189\) −1.84753 1.89384i −0.134388 0.137757i
\(190\) 19.4550 1.41142
\(191\) 7.14656 + 12.3782i 0.517107 + 0.895656i 0.999803 + 0.0198675i \(0.00632445\pi\)
−0.482696 + 0.875788i \(0.660342\pi\)
\(192\) −6.50795 + 11.2721i −0.469671 + 0.813494i
\(193\) −1.04502 + 1.81003i −0.0752225 + 0.130289i −0.901183 0.433439i \(-0.857300\pi\)
0.825961 + 0.563728i \(0.190633\pi\)
\(194\) −20.0744 34.7699i −1.44126 2.49633i
\(195\) 1.12771 0.0807568
\(196\) −18.9708 11.5882i −1.35506 0.827728i
\(197\) 10.8863 0.775614 0.387807 0.921741i \(-0.373233\pi\)
0.387807 + 0.921741i \(0.373233\pi\)
\(198\) −6.96918 12.0710i −0.495278 0.857847i
\(199\) −1.72027 + 2.97959i −0.121946 + 0.211217i −0.920535 0.390660i \(-0.872247\pi\)
0.798589 + 0.601877i \(0.205580\pi\)
\(200\) 4.63496 8.02799i 0.327741 0.567664i
\(201\) −2.24703 3.89197i −0.158493 0.274518i
\(202\) −18.4976 −1.30149
\(203\) 6.20777 + 6.36339i 0.435700 + 0.446622i
\(204\) −15.5888 −1.09143
\(205\) −1.56204 2.70553i −0.109097 0.188962i
\(206\) 16.2431 28.1339i 1.13171 1.96018i
\(207\) −0.500000 + 0.866025i −0.0347524 + 0.0601929i
\(208\) 0.121177 + 0.209884i 0.00840209 + 0.0145528i
\(209\) −42.2968 −2.92573
\(210\) 2.01872 7.17739i 0.139305 0.495287i
\(211\) 11.6690 0.803324 0.401662 0.915788i \(-0.368433\pi\)
0.401662 + 0.915788i \(0.368433\pi\)
\(212\) −6.71160 11.6248i −0.460955 0.798397i
\(213\) 7.92874 13.7330i 0.543268 0.940968i
\(214\) 7.45939 12.9200i 0.509913 0.883196i
\(215\) −0.143297 0.248198i −0.00977280 0.0169270i
\(216\) −2.67481 −0.181998
\(217\) −13.9407 + 3.55106i −0.946357 + 0.241062i
\(218\) 41.4869 2.80985
\(219\) −2.13888 3.70465i −0.144532 0.250337i
\(220\) 12.0504 20.8720i 0.812441 1.40719i
\(221\) −2.23445 + 3.87019i −0.150306 + 0.260337i
\(222\) 7.44689 + 12.8984i 0.499803 + 0.865684i
\(223\) 2.48168 0.166185 0.0830926 0.996542i \(-0.473520\pi\)
0.0830926 + 0.996542i \(0.473520\pi\)
\(224\) 15.2685 3.88929i 1.02017 0.259864i
\(225\) −3.46564 −0.231043
\(226\) 21.1514 + 36.6353i 1.40697 + 2.43694i
\(227\) 11.0247 19.0954i 0.731738 1.26741i −0.224402 0.974497i \(-0.572043\pi\)
0.956140 0.292910i \(-0.0946237\pi\)
\(228\) −10.9621 + 18.9870i −0.725985 + 1.25744i
\(229\) −7.37334 12.7710i −0.487244 0.843932i 0.512648 0.858599i \(-0.328664\pi\)
−0.999892 + 0.0146672i \(0.995331\pi\)
\(230\) −2.81806 −0.185817
\(231\) −4.38886 + 15.6042i −0.288766 + 1.02668i
\(232\) 8.98747 0.590056
\(233\) 1.70807 + 2.95847i 0.111900 + 0.193816i 0.916536 0.399952i \(-0.130973\pi\)
−0.804637 + 0.593768i \(0.797640\pi\)
\(234\) −1.03559 + 1.79370i −0.0676987 + 0.117258i
\(235\) 8.27310 14.3294i 0.539678 0.934749i
\(236\) 1.19757 + 2.07425i 0.0779550 + 0.135022i
\(237\) 0.222015 0.0144215
\(238\) 20.6322 + 21.1494i 1.33739 + 1.37091i
\(239\) −10.8751 −0.703453 −0.351727 0.936103i \(-0.614405\pi\)
−0.351727 + 0.936103i \(0.614405\pi\)
\(240\) 0.164873 + 0.285569i 0.0106425 + 0.0184334i
\(241\) 10.6982 18.5299i 0.689134 1.19361i −0.282985 0.959124i \(-0.591325\pi\)
0.972119 0.234490i \(-0.0753421\pi\)
\(242\) −30.1854 + 52.2826i −1.94039 + 3.36085i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 11.3585 0.727150
\(245\) −7.61420 + 4.14822i −0.486453 + 0.265020i
\(246\) 5.73777 0.365827
\(247\) 3.14257 + 5.44308i 0.199957 + 0.346335i
\(248\) −7.27194 + 12.5954i −0.461769 + 0.799807i
\(249\) 7.75984 13.4404i 0.491760 0.851753i
\(250\) −11.9283 20.6605i −0.754413 1.30668i
\(251\) 4.68560 0.295752 0.147876 0.989006i \(-0.452756\pi\)
0.147876 + 0.989006i \(0.452756\pi\)
\(252\) 5.86725 + 6.01433i 0.369602 + 0.378867i
\(253\) 6.12669 0.385182
\(254\) 4.77535 + 8.27115i 0.299632 + 0.518978i
\(255\) −3.04021 + 5.26579i −0.190385 + 0.329757i
\(256\) 7.11917 12.3308i 0.444948 0.770673i
\(257\) 13.5087 + 23.3978i 0.842650 + 1.45951i 0.887647 + 0.460525i \(0.152339\pi\)
−0.0449969 + 0.998987i \(0.514328\pi\)
\(258\) 0.526369 0.0327703
\(259\) 4.68970 16.6739i 0.291404 1.03606i
\(260\) −3.58129 −0.222102
\(261\) −1.68002 2.90988i −0.103991 0.180117i
\(262\) −4.36283 + 7.55664i −0.269536 + 0.466851i
\(263\) 10.0032 17.3260i 0.616822 1.06837i −0.373240 0.927735i \(-0.621753\pi\)
0.990062 0.140632i \(-0.0449134\pi\)
\(264\) 8.19386 + 14.1922i 0.504297 + 0.873469i
\(265\) −5.23572 −0.321628
\(266\) 40.2685 10.2574i 2.46902 0.628923i
\(267\) −0.559363 −0.0342325
\(268\) 7.13595 + 12.3598i 0.435898 + 0.754997i
\(269\) 3.14036 5.43926i 0.191471 0.331638i −0.754267 0.656568i \(-0.772008\pi\)
0.945738 + 0.324930i \(0.105341\pi\)
\(270\) −1.40903 + 2.44051i −0.0857507 + 0.148525i
\(271\) −12.7101 22.0146i −0.772085 1.33729i −0.936418 0.350886i \(-0.885881\pi\)
0.164333 0.986405i \(-0.447453\pi\)
\(272\) −1.30673 −0.0792321
\(273\) 2.33416 0.594570i 0.141270 0.0359850i
\(274\) 16.5086 0.997323
\(275\) 10.6164 + 18.3882i 0.640196 + 1.10885i
\(276\) 1.58786 2.75026i 0.0955782 0.165546i
\(277\) 7.57054 13.1126i 0.454869 0.787857i −0.543811 0.839208i \(-0.683019\pi\)
0.998681 + 0.0513506i \(0.0163526\pi\)
\(278\) −4.00597 6.93855i −0.240262 0.416146i
\(279\) 5.43735 0.325526
\(280\) −2.37346 + 8.43866i −0.141841 + 0.504306i
\(281\) −27.3149 −1.62947 −0.814736 0.579833i \(-0.803118\pi\)
−0.814736 + 0.579833i \(0.803118\pi\)
\(282\) 15.1946 + 26.3179i 0.904827 + 1.56721i
\(283\) −4.27130 + 7.39812i −0.253903 + 0.439772i −0.964597 0.263729i \(-0.915048\pi\)
0.710694 + 0.703501i \(0.248381\pi\)
\(284\) −25.1795 + 43.6122i −1.49413 + 2.58791i
\(285\) 4.27579 + 7.40588i 0.253276 + 0.438686i
\(286\) 12.6895 0.750345
\(287\) −4.65960 4.77641i −0.275048 0.281942i
\(288\) −5.95524 −0.350916
\(289\) −3.54781 6.14499i −0.208695 0.361470i
\(290\) 4.73439 8.20021i 0.278013 0.481533i
\(291\) 8.82382 15.2833i 0.517261 0.895923i
\(292\) 6.79251 + 11.7650i 0.397502 + 0.688493i
\(293\) 13.6153 0.795413 0.397707 0.917513i \(-0.369806\pi\)
0.397707 + 0.917513i \(0.369806\pi\)
\(294\) 0.394198 15.9203i 0.0229901 0.928490i
\(295\) 0.934224 0.0543926
\(296\) −8.75552 15.1650i −0.508905 0.881449i
\(297\) 3.06335 5.30587i 0.177753 0.307878i
\(298\) 12.4265 21.5233i 0.719847 1.24681i
\(299\) −0.455200 0.788430i −0.0263249 0.0455961i
\(300\) 11.0059 0.635427
\(301\) −0.427460 0.438176i −0.0246384 0.0252560i
\(302\) −36.0672 −2.07543
\(303\) −4.06538 7.04144i −0.233550 0.404520i
\(304\) −0.918900 + 1.59158i −0.0527026 + 0.0912835i
\(305\) 2.21518 3.83681i 0.126841 0.219695i
\(306\) −5.58374 9.67131i −0.319201 0.552872i
\(307\) −1.94494 −0.111003 −0.0555017 0.998459i \(-0.517676\pi\)
−0.0555017 + 0.998459i \(0.517676\pi\)
\(308\) 13.9378 49.5548i 0.794181 2.82365i
\(309\) 14.2795 0.812332
\(310\) 7.66138 + 13.2699i 0.435137 + 0.753680i
\(311\) 7.10098 12.2993i 0.402660 0.697427i −0.591386 0.806388i \(-0.701419\pi\)
0.994046 + 0.108961i \(0.0347525\pi\)
\(312\) 1.21757 2.10890i 0.0689315 0.119393i
\(313\) 2.10228 + 3.64126i 0.118828 + 0.205816i 0.919304 0.393549i \(-0.128753\pi\)
−0.800475 + 0.599366i \(0.795420\pi\)
\(314\) −20.9301 −1.18115
\(315\) 3.17586 0.808974i 0.178940 0.0455805i
\(316\) −0.705061 −0.0396628
\(317\) −0.369216 0.639501i −0.0207373 0.0359180i 0.855471 0.517851i \(-0.173268\pi\)
−0.876208 + 0.481933i \(0.839935\pi\)
\(318\) 4.80804 8.32778i 0.269622 0.466998i
\(319\) −10.2930 + 17.8279i −0.576295 + 0.998173i
\(320\) −8.06136 13.9627i −0.450644 0.780537i
\(321\) 6.55764 0.366012
\(322\) −5.83288 + 1.48579i −0.325054 + 0.0827996i
\(323\) −33.8884 −1.88560
\(324\) −1.58786 2.75026i −0.0882147 0.152792i
\(325\) 1.57756 2.73241i 0.0875072 0.151567i
\(326\) 1.87550 3.24846i 0.103874 0.179915i
\(327\) 9.11792 + 15.7927i 0.504222 + 0.873338i
\(328\) −6.74607 −0.372489
\(329\) 9.56886 34.0213i 0.527548 1.87566i
\(330\) 17.2654 0.950427
\(331\) 10.2994 + 17.8392i 0.566108 + 0.980528i 0.996946 + 0.0780988i \(0.0248850\pi\)
−0.430837 + 0.902430i \(0.641782\pi\)
\(332\) −24.6431 + 42.6832i −1.35247 + 2.34254i
\(333\) −3.27333 + 5.66957i −0.179377 + 0.310690i
\(334\) −6.21827 10.7704i −0.340248 0.589327i
\(335\) 5.56676 0.304145
\(336\) 0.491822 + 0.504150i 0.0268311 + 0.0275037i
\(337\) −27.9032 −1.51999 −0.759993 0.649932i \(-0.774797\pi\)
−0.759993 + 0.649932i \(0.774797\pi\)
\(338\) 13.8448 + 23.9800i 0.753060 + 1.30434i
\(339\) −9.29723 + 16.1033i −0.504956 + 0.874610i
\(340\) 9.65487 16.7227i 0.523609 0.906917i
\(341\) −16.6565 28.8499i −0.901999 1.56231i
\(342\) −15.7061 −0.849287
\(343\) −13.5730 + 12.6006i −0.732871 + 0.680368i
\(344\) −0.618867 −0.0333671
\(345\) −0.619347 1.07274i −0.0333445 0.0577544i
\(346\) 0.579189 1.00319i 0.0311374 0.0539316i
\(347\) 1.04267 1.80595i 0.0559732 0.0969485i −0.836681 0.547690i \(-0.815507\pi\)
0.892654 + 0.450742i \(0.148841\pi\)
\(348\) 5.33529 + 9.24099i 0.286002 + 0.495369i
\(349\) −4.04322 −0.216429 −0.108214 0.994128i \(-0.534513\pi\)
−0.108214 + 0.994128i \(0.534513\pi\)
\(350\) −14.5667 14.9318i −0.778621 0.798139i
\(351\) −0.910400 −0.0485936
\(352\) 18.2430 + 31.5977i 0.972353 + 1.68416i
\(353\) 2.25397 3.90398i 0.119966 0.207788i −0.799788 0.600283i \(-0.795055\pi\)
0.919754 + 0.392495i \(0.128388\pi\)
\(354\) −0.857912 + 1.48595i −0.0455975 + 0.0789772i
\(355\) 9.82128 + 17.0110i 0.521259 + 0.902848i
\(356\) 1.77639 0.0941483
\(357\) −3.51637 + 12.5022i −0.186106 + 0.661686i
\(358\) 18.9984 1.00410
\(359\) 10.4069 + 18.0252i 0.549254 + 0.951336i 0.998326 + 0.0578401i \(0.0184213\pi\)
−0.449072 + 0.893496i \(0.648245\pi\)
\(360\) 1.65663 2.86938i 0.0873123 0.151229i
\(361\) −14.3305 + 24.8212i −0.754239 + 1.30638i
\(362\) 2.76257 + 4.78490i 0.145197 + 0.251489i
\(363\) −26.5363 −1.39280
\(364\) −7.41265 + 1.88819i −0.388528 + 0.0989682i
\(365\) 5.29884 0.277354
\(366\) 4.06847 + 7.04680i 0.212663 + 0.368342i
\(367\) −4.28609 + 7.42373i −0.223732 + 0.387515i −0.955938 0.293568i \(-0.905157\pi\)
0.732206 + 0.681083i \(0.238491\pi\)
\(368\) 0.133103 0.230540i 0.00693845 0.0120178i
\(369\) 1.26104 + 2.18418i 0.0656470 + 0.113704i
\(370\) −18.4488 −0.959109
\(371\) −10.8370 + 2.76047i −0.562631 + 0.143317i
\(372\) −17.2676 −0.895281
\(373\) 0.727535 + 1.26013i 0.0376703 + 0.0652470i 0.884246 0.467022i \(-0.154673\pi\)
−0.846576 + 0.532269i \(0.821340\pi\)
\(374\) −34.2098 + 59.2531i −1.76895 + 3.06391i
\(375\) 5.24317 9.08143i 0.270756 0.468963i
\(376\) −17.8648 30.9427i −0.921305 1.59575i
\(377\) 3.05898 0.157546
\(378\) −1.62971 + 5.79432i −0.0838234 + 0.298028i
\(379\) −2.61370 −0.134257 −0.0671283 0.997744i \(-0.521384\pi\)
−0.0671283 + 0.997744i \(0.521384\pi\)
\(380\) −13.5787 23.5191i −0.696574 1.20650i
\(381\) −2.09903 + 3.63563i −0.107537 + 0.186259i
\(382\) 16.2586 28.1607i 0.831862 1.44083i
\(383\) 5.66013 + 9.80363i 0.289219 + 0.500942i 0.973624 0.228160i \(-0.0732711\pi\)
−0.684404 + 0.729103i \(0.739938\pi\)
\(384\) 17.7010 0.903300
\(385\) −14.0211 14.3725i −0.714580 0.732492i
\(386\) 4.75491 0.242018
\(387\) 0.115684 + 0.200371i 0.00588056 + 0.0101854i
\(388\) −28.0221 + 48.5356i −1.42260 + 2.46402i
\(389\) 15.4855 26.8217i 0.785147 1.35991i −0.143765 0.989612i \(-0.545921\pi\)
0.928911 0.370302i \(-0.120746\pi\)
\(390\) −1.28278 2.22184i −0.0649561 0.112507i
\(391\) 4.90873 0.248245
\(392\) −0.463470 + 18.7179i −0.0234088 + 0.945398i
\(393\) −3.83542 −0.193471
\(394\) −12.3833 21.4484i −0.623859 1.08056i
\(395\) −0.137505 + 0.238165i −0.00691861 + 0.0119834i
\(396\) −9.72835 + 16.8500i −0.488868 + 0.846744i
\(397\) −12.5198 21.6849i −0.628350 1.08833i −0.987883 0.155201i \(-0.950397\pi\)
0.359533 0.933132i \(-0.382936\pi\)
\(398\) 7.82728 0.392346
\(399\) 12.7548 + 13.0745i 0.638538 + 0.654545i
\(400\) 0.922571 0.0461285
\(401\) −17.4873 30.2888i −0.873272 1.51255i −0.858593 0.512659i \(-0.828661\pi\)
−0.0146791 0.999892i \(-0.504673\pi\)
\(402\) −5.11204 + 8.85431i −0.254965 + 0.441613i
\(403\) −2.47508 + 4.28697i −0.123293 + 0.213549i
\(404\) 12.9105 + 22.3617i 0.642323 + 1.11254i
\(405\) −1.23869 −0.0615512
\(406\) 5.47590 19.4692i 0.271765 0.966238i
\(407\) 40.1093 1.98815
\(408\) 6.56496 + 11.3708i 0.325014 + 0.562940i
\(409\) 12.0852 20.9322i 0.597576 1.03503i −0.395602 0.918422i \(-0.629464\pi\)
0.993178 0.116610i \(-0.0372026\pi\)
\(410\) −3.55367 + 6.15514i −0.175503 + 0.303981i
\(411\) 3.62823 + 6.28428i 0.178968 + 0.309981i
\(412\) −45.3478 −2.23413
\(413\) 1.93368 0.492558i 0.0951501 0.0242372i
\(414\) 2.27502 0.111811
\(415\) 9.61206 + 16.6486i 0.471838 + 0.817247i
\(416\) 2.71083 4.69529i 0.132909 0.230205i
\(417\) 1.76085 3.04988i 0.0862292 0.149353i
\(418\) 48.1131 + 83.3344i 2.35329 + 4.07602i
\(419\) −19.9385 −0.974059 −0.487029 0.873386i \(-0.661920\pi\)
−0.487029 + 0.873386i \(0.661920\pi\)
\(420\) −10.0857 + 2.56908i −0.492131 + 0.125358i
\(421\) −36.1003 −1.75942 −0.879711 0.475508i \(-0.842264\pi\)
−0.879711 + 0.475508i \(0.842264\pi\)
\(422\) −13.2736 22.9905i −0.646147 1.11916i
\(423\) −6.67889 + 11.5682i −0.324739 + 0.562464i
\(424\) −5.65295 + 9.79120i −0.274532 + 0.475503i
\(425\) 8.50594 + 14.7327i 0.412599 + 0.714642i
\(426\) −36.0761 −1.74789
\(427\) 2.56213 9.10946i 0.123990 0.440837i
\(428\) −20.8253 −1.00663
\(429\) 2.78887 + 4.83046i 0.134648 + 0.233217i
\(430\) −0.326005 + 0.564657i −0.0157214 + 0.0272302i
\(431\) −5.43385 + 9.41171i −0.261739 + 0.453346i −0.966704 0.255896i \(-0.917629\pi\)
0.704965 + 0.709242i \(0.250963\pi\)
\(432\) −0.133103 0.230540i −0.00640390 0.0110919i
\(433\) −26.1898 −1.25860 −0.629301 0.777161i \(-0.716659\pi\)
−0.629301 + 0.777161i \(0.716659\pi\)
\(434\) 22.8541 + 23.4270i 1.09703 + 1.12453i
\(435\) 4.16206 0.199556
\(436\) −28.9560 50.1533i −1.38674 2.40191i
\(437\) 3.45185 5.97878i 0.165124 0.286004i
\(438\) −4.86601 + 8.42817i −0.232507 + 0.402713i
\(439\) 15.7031 + 27.1986i 0.749468 + 1.29812i 0.948078 + 0.318037i \(0.103024\pi\)
−0.198611 + 0.980078i \(0.563643\pi\)
\(440\) −20.2994 −0.967735
\(441\) 6.14696 3.34887i 0.292712 0.159470i
\(442\) 10.1669 0.483589
\(443\) 4.53943 + 7.86253i 0.215675 + 0.373560i 0.953481 0.301453i \(-0.0974715\pi\)
−0.737806 + 0.675013i \(0.764138\pi\)
\(444\) 10.3952 18.0050i 0.493334 0.854480i
\(445\) 0.346440 0.600052i 0.0164228 0.0284452i
\(446\) −2.82293 4.88947i −0.133670 0.231523i
\(447\) 10.9243 0.516700
\(448\) −24.0473 24.6501i −1.13613 1.16461i
\(449\) 23.9369 1.12965 0.564825 0.825211i \(-0.308944\pi\)
0.564825 + 0.825211i \(0.308944\pi\)
\(450\) 3.94220 + 6.82809i 0.185837 + 0.321879i
\(451\) 7.72598 13.3818i 0.363802 0.630124i
\(452\) 29.5255 51.1396i 1.38876 2.40541i
\(453\) −7.92677 13.7296i −0.372432 0.645071i
\(454\) −50.1631 −2.35427
\(455\) −0.807833 + 2.87219i −0.0378718 + 0.134650i
\(456\) 18.4661 0.864754
\(457\) 2.40518 + 4.16589i 0.112509 + 0.194872i 0.916781 0.399389i \(-0.130778\pi\)
−0.804272 + 0.594261i \(0.797444\pi\)
\(458\) −16.7745 + 29.0543i −0.783822 + 1.35762i
\(459\) 2.45436 4.25108i 0.114560 0.198424i
\(460\) 1.96688 + 3.40673i 0.0917061 + 0.158840i
\(461\) 23.4694 1.09308 0.546540 0.837433i \(-0.315945\pi\)
0.546540 + 0.837433i \(0.315945\pi\)
\(462\) 35.7363 9.10295i 1.66260 0.423508i
\(463\) 23.4343 1.08908 0.544542 0.838733i \(-0.316703\pi\)
0.544542 + 0.838733i \(0.316703\pi\)
\(464\) 0.447230 + 0.774625i 0.0207621 + 0.0359611i
\(465\) −3.36761 + 5.83287i −0.156169 + 0.270493i
\(466\) 3.88591 6.73059i 0.180011 0.311789i
\(467\) −6.72528 11.6485i −0.311209 0.539029i 0.667416 0.744685i \(-0.267400\pi\)
−0.978624 + 0.205656i \(0.934067\pi\)
\(468\) 2.89118 0.133645
\(469\) 11.5222 2.93501i 0.532047 0.135526i
\(470\) −37.6430 −1.73634
\(471\) −4.59998 7.96740i −0.211956 0.367118i
\(472\) 1.00867 1.74707i 0.0464279 0.0804154i
\(473\) 0.708762 1.22761i 0.0325889 0.0564456i
\(474\) −0.252545 0.437421i −0.0115998 0.0200914i
\(475\) 23.9257 1.09779
\(476\) 11.1670 39.7035i 0.511840 1.81981i
\(477\) 4.22681 0.193532
\(478\) 12.3706 + 21.4265i 0.565817 + 0.980023i
\(479\) −3.38082 + 5.85575i −0.154474 + 0.267556i −0.932867 0.360220i \(-0.882701\pi\)
0.778394 + 0.627777i \(0.216035\pi\)
\(480\) 3.68836 6.38843i 0.168350 0.291590i
\(481\) −2.98004 5.16158i −0.135878 0.235348i
\(482\) −48.6774 −2.21720
\(483\) −1.84753 1.89384i −0.0840655 0.0861728i
\(484\) 84.2722 3.83055
\(485\) 10.9300 + 18.9313i 0.496306 + 0.859627i
\(486\) 1.13751 1.97023i 0.0515986 0.0893713i
\(487\) −9.93329 + 17.2050i −0.450121 + 0.779632i −0.998393 0.0566681i \(-0.981952\pi\)
0.548273 + 0.836300i \(0.315286\pi\)
\(488\) −4.78342 8.28513i −0.216535 0.375050i
\(489\) 1.64877 0.0745601
\(490\) 16.8342 + 10.2830i 0.760491 + 0.464541i
\(491\) 4.20340 0.189697 0.0948483 0.995492i \(-0.469763\pi\)
0.0948483 + 0.995492i \(0.469763\pi\)
\(492\) −4.00471 6.93636i −0.180546 0.312715i
\(493\) −8.24677 + 14.2838i −0.371416 + 0.643311i
\(494\) 7.14941 12.3831i 0.321667 0.557144i
\(495\) 3.79455 + 6.57235i 0.170552 + 0.295405i
\(496\) −1.44745 −0.0649925
\(497\) 29.2972 + 30.0316i 1.31416 + 1.34710i
\(498\) −35.3076 −1.58217
\(499\) −3.47420 6.01749i −0.155527 0.269380i 0.777724 0.628606i \(-0.216374\pi\)
−0.933251 + 0.359226i \(0.883041\pi\)
\(500\) −16.6509 + 28.8402i −0.744650 + 1.28977i
\(501\) 2.73328 4.73417i 0.122114 0.211507i
\(502\) −5.32992 9.23169i −0.237886 0.412030i
\(503\) 5.90346 0.263222 0.131611 0.991301i \(-0.457985\pi\)
0.131611 + 0.991301i \(0.457985\pi\)
\(504\) 1.91610 6.81255i 0.0853499 0.303455i
\(505\) 10.0715 0.448176
\(506\) −6.96918 12.0710i −0.309818 0.536620i
\(507\) −6.08559 + 10.5405i −0.270270 + 0.468122i
\(508\) 6.66596 11.5458i 0.295754 0.512261i
\(509\) 13.3324 + 23.0923i 0.590947 + 1.02355i 0.994105 + 0.108420i \(0.0345790\pi\)
−0.403158 + 0.915130i \(0.632088\pi\)
\(510\) 13.8331 0.612539
\(511\) 10.9677 2.79375i 0.485181 0.123588i
\(512\) 3.00941 0.132998
\(513\) −3.45185 5.97878i −0.152403 0.263970i
\(514\) 30.7326 53.2304i 1.35556 2.34789i
\(515\) −8.84396 + 15.3182i −0.389712 + 0.675000i
\(516\) −0.367382 0.636324i −0.0161731 0.0280126i
\(517\) 81.8390 3.59928
\(518\) −38.1859 + 9.72693i −1.67779 + 0.427377i
\(519\) 0.509172 0.0223502
\(520\) 1.50820 + 2.61228i 0.0661390 + 0.114556i
\(521\) −2.65655 + 4.60129i −0.116386 + 0.201586i −0.918333 0.395809i \(-0.870464\pi\)
0.801947 + 0.597395i \(0.203798\pi\)
\(522\) −3.82209 + 6.62005i −0.167288 + 0.289752i
\(523\) −8.51931 14.7559i −0.372524 0.645230i 0.617430 0.786626i \(-0.288174\pi\)
−0.989953 + 0.141397i \(0.954841\pi\)
\(524\) 12.1802 0.532096
\(525\) 2.48261 8.82673i 0.108350 0.385230i
\(526\) −45.5149 −1.98454
\(527\) −13.3452 23.1146i −0.581328 1.00689i
\(528\) −0.815478 + 1.41245i −0.0354891 + 0.0614690i
\(529\) −0.500000 + 0.866025i −0.0217391 + 0.0376533i
\(530\) 5.95569 + 10.3156i 0.258699 + 0.448079i
\(531\) −0.754201 −0.0327295
\(532\) −40.5057 41.5211i −1.75615 1.80017i
\(533\) −2.29610 −0.0994550
\(534\) 0.636282 + 1.10207i 0.0275346 + 0.0476914i
\(535\) −4.06145 + 7.03464i −0.175592 + 0.304134i
\(536\) 6.01037 10.4103i 0.259609 0.449655i
\(537\) 4.17543 + 7.23207i 0.180183 + 0.312087i
\(538\) −14.2888 −0.616033
\(539\) −36.5989 22.3562i −1.57643 0.962950i
\(540\) 3.93376 0.169282
\(541\) −19.3980 33.5984i −0.833986 1.44451i −0.894853 0.446360i \(-0.852720\pi\)
0.0608675 0.998146i \(-0.480613\pi\)
\(542\) −28.9158 + 50.0837i −1.24204 + 2.15128i
\(543\) −1.21430 + 2.10323i −0.0521107 + 0.0902584i
\(544\) 14.6163 + 25.3162i 0.626670 + 1.08542i
\(545\) −22.5886 −0.967590
\(546\) −3.82657 3.92249i −0.163762 0.167867i
\(547\) 29.7356 1.27140 0.635701 0.771935i \(-0.280711\pi\)
0.635701 + 0.771935i \(0.280711\pi\)
\(548\) −11.5223 19.9572i −0.492208 0.852529i
\(549\) −1.78832 + 3.09747i −0.0763237 + 0.132197i
\(550\) 24.1527 41.8336i 1.02987 1.78379i
\(551\) 11.5984 + 20.0889i 0.494107 + 0.855818i
\(552\) −2.67481 −0.113847
\(553\) −0.159041 + 0.565457i −0.00676311 + 0.0240457i
\(554\) −34.4463 −1.46348
\(555\) −4.05465 7.02286i −0.172110 0.298104i
\(556\) −5.59198 + 9.68559i −0.237153 + 0.410761i
\(557\) 16.7822 29.0677i 0.711086 1.23164i −0.253364 0.967371i \(-0.581537\pi\)
0.964450 0.264266i \(-0.0851297\pi\)
\(558\) −6.18505 10.7128i −0.261834 0.453510i
\(559\) −0.210638 −0.00890904
\(560\) −0.845431 + 0.215353i −0.0357260 + 0.00910033i
\(561\) −30.0743 −1.26974
\(562\) 31.0710 + 53.8166i 1.31065 + 2.27012i
\(563\) 15.2766 26.4598i 0.643831 1.11515i −0.340739 0.940158i \(-0.610677\pi\)
0.984570 0.174991i \(-0.0559895\pi\)
\(564\) 21.2104 36.7374i 0.893117 1.54692i
\(565\) −11.5164 19.9470i −0.484499 0.839178i
\(566\) 19.4346 0.816898
\(567\) −2.56388 + 0.653086i −0.107673 + 0.0274270i
\(568\) 42.4157 1.77972
\(569\) −21.0580 36.4735i −0.882797 1.52905i −0.848218 0.529648i \(-0.822324\pi\)
−0.0345799 0.999402i \(-0.511009\pi\)
\(570\) 9.72751 16.8485i 0.407441 0.705708i
\(571\) −3.25852 + 5.64391i −0.136365 + 0.236190i −0.926118 0.377234i \(-0.876875\pi\)
0.789753 + 0.613425i \(0.210209\pi\)
\(572\) −8.85669 15.3402i −0.370317 0.641408i
\(573\) 14.2931 0.597104
\(574\) −4.11026 + 14.6137i −0.171559 + 0.609964i
\(575\) −3.46564 −0.144527
\(576\) 6.50795 + 11.2721i 0.271165 + 0.469671i
\(577\) −20.7678 + 35.9709i −0.864575 + 1.49749i 0.00289316 + 0.999996i \(0.499079\pi\)
−0.867468 + 0.497492i \(0.834254\pi\)
\(578\) −8.07135 + 13.9800i −0.335724 + 0.581491i
\(579\) 1.04502 + 1.81003i 0.0434297 + 0.0752225i
\(580\) −13.2176 −0.548830
\(581\) 28.6731 + 29.3918i 1.18956 + 1.21938i
\(582\) −40.1488 −1.66422
\(583\) −12.9482 22.4269i −0.536259 0.928827i
\(584\) 5.72110 9.90924i 0.236741 0.410047i
\(585\) 0.563853 0.976623i 0.0233125 0.0403784i
\(586\) −15.4875 26.8252i −0.639784 1.10814i
\(587\) 12.6109 0.520506 0.260253 0.965540i \(-0.416194\pi\)
0.260253 + 0.965540i \(0.416194\pi\)
\(588\) −19.5211 + 10.6351i −0.805035 + 0.438584i
\(589\) −37.5379 −1.54672
\(590\) −1.06269 1.84063i −0.0437503 0.0757777i
\(591\) 5.44313 9.42778i 0.223901 0.387807i
\(592\) 0.871376 1.50927i 0.0358134 0.0620305i
\(593\) −5.19295 8.99445i −0.213249 0.369358i 0.739481 0.673178i \(-0.235071\pi\)
−0.952729 + 0.303820i \(0.901738\pi\)
\(594\) −13.9384 −0.571898
\(595\) −11.2337 11.5153i −0.460538 0.472083i
\(596\) −34.6925 −1.42106
\(597\) 1.72027 + 2.97959i 0.0704058 + 0.121946i
\(598\) −1.03559 + 1.79370i −0.0423484 + 0.0733497i
\(599\) −14.0179 + 24.2797i −0.572757 + 0.992044i 0.423525 + 0.905885i \(0.360793\pi\)
−0.996281 + 0.0861591i \(0.972541\pi\)
\(600\) −4.63496 8.02799i −0.189221 0.327741i
\(601\) 3.81190 0.155491 0.0777454 0.996973i \(-0.475228\pi\)
0.0777454 + 0.996973i \(0.475228\pi\)
\(602\) −0.377065 + 1.34062i −0.0153680 + 0.0546397i
\(603\) −4.49406 −0.183012
\(604\) 25.1733 + 43.6014i 1.02429 + 1.77411i
\(605\) 16.4352 28.4666i 0.668186 1.15733i
\(606\) −9.24882 + 16.0194i −0.375708 + 0.650745i
\(607\) −0.0799650 0.138503i −0.00324568 0.00562168i 0.864398 0.502808i \(-0.167700\pi\)
−0.867644 + 0.497187i \(0.834366\pi\)
\(608\) 41.1132 1.66736
\(609\) 8.61474 2.19440i 0.349087 0.0889215i
\(610\) −10.0792 −0.408094
\(611\) −6.08047 10.5317i −0.245989 0.426066i
\(612\) −7.79440 + 13.5003i −0.315070 + 0.545717i
\(613\) 8.26694 14.3188i 0.333899 0.578329i −0.649374 0.760469i \(-0.724969\pi\)
0.983273 + 0.182140i \(0.0583023\pi\)
\(614\) 2.21239 + 3.83197i 0.0892846 + 0.154646i
\(615\) −3.12408 −0.125975
\(616\) −42.0162 + 10.7026i −1.69288 + 0.431220i
\(617\) 35.8727 1.44418 0.722091 0.691798i \(-0.243181\pi\)
0.722091 + 0.691798i \(0.243181\pi\)
\(618\) −16.2431 28.1339i −0.653393 1.13171i
\(619\) 18.3475 31.7788i 0.737448 1.27730i −0.216192 0.976351i \(-0.569364\pi\)
0.953641 0.300947i \(-0.0973028\pi\)
\(620\) 10.6946 18.5236i 0.429506 0.743926i
\(621\) 0.500000 + 0.866025i 0.0200643 + 0.0347524i
\(622\) −32.3098 −1.29550
\(623\) 0.400700 1.42466i 0.0160537 0.0570777i
\(624\) 0.242353 0.00970189
\(625\) −2.16942 3.75754i −0.0867767 0.150302i
\(626\) 4.78274 8.28395i 0.191157 0.331093i
\(627\) −21.1484 + 36.6301i −0.844586 + 1.46287i
\(628\) 14.6083 + 25.3023i 0.582934 + 1.00967i
\(629\) 32.1358 1.28134
\(630\) −5.20644 5.33695i −0.207430 0.212629i
\(631\) 12.3865 0.493098 0.246549 0.969130i \(-0.420703\pi\)
0.246549 + 0.969130i \(0.420703\pi\)
\(632\) 0.296925 + 0.514288i 0.0118110 + 0.0204573i
\(633\) 5.83448 10.1056i 0.231900 0.401662i
\(634\) −0.839976 + 1.45488i −0.0333597 + 0.0577807i
\(635\) −2.60006 4.50344i −0.103180 0.178713i
\(636\) −13.4232 −0.532264
\(637\) −0.157747 + 6.37085i −0.00625016 + 0.252422i
\(638\) 46.8335 1.85415
\(639\) −7.92874 13.7330i −0.313656 0.543268i
\(640\) −10.9630 + 18.9886i −0.433353 + 0.750589i
\(641\) −13.5191 + 23.4158i −0.533974 + 0.924870i 0.465238 + 0.885185i \(0.345969\pi\)
−0.999212 + 0.0396845i \(0.987365\pi\)
\(642\) −7.45939 12.9200i −0.294399 0.509913i
\(643\) −27.4371 −1.08201 −0.541006 0.841019i \(-0.681956\pi\)
−0.541006 + 0.841019i \(0.681956\pi\)
\(644\) 5.86725 + 6.01433i 0.231202 + 0.236998i
\(645\) −0.286595 −0.0112847
\(646\) 38.5484 + 66.7679i 1.51667 + 2.62695i
\(647\) −0.437768 + 0.758237i −0.0172104 + 0.0298094i −0.874502 0.485021i \(-0.838812\pi\)
0.857292 + 0.514831i \(0.172145\pi\)
\(648\) −1.33740 + 2.31645i −0.0525382 + 0.0909989i
\(649\) 2.31038 + 4.00169i 0.0906902 + 0.157080i
\(650\) −7.17796 −0.281543
\(651\) −3.89505 + 13.8485i −0.152659 + 0.542767i
\(652\) −5.23606 −0.205060
\(653\) 7.77433 + 13.4655i 0.304233 + 0.526947i 0.977090 0.212825i \(-0.0682665\pi\)
−0.672857 + 0.739772i \(0.734933\pi\)
\(654\) 20.7435 35.9287i 0.811134 1.40493i
\(655\) 2.37545 4.11440i 0.0928166 0.160763i
\(656\) −0.335694 0.581440i −0.0131067 0.0227014i
\(657\) −4.27776 −0.166891
\(658\) −77.9144 + 19.8468i −3.03742 + 0.773710i
\(659\) 21.1989 0.825794 0.412897 0.910778i \(-0.364517\pi\)
0.412897 + 0.910778i \(0.364517\pi\)
\(660\) −12.0504 20.8720i −0.469063 0.812441i
\(661\) 4.32546 7.49192i 0.168241 0.291402i −0.769560 0.638574i \(-0.779525\pi\)
0.937801 + 0.347172i \(0.112858\pi\)
\(662\) 23.4315 40.5845i 0.910690 1.57736i
\(663\) 2.23445 + 3.87019i 0.0867790 + 0.150306i
\(664\) 41.5122 1.61099
\(665\) −21.9252 + 5.58491i −0.850223 + 0.216574i
\(666\) 14.8938 0.577122
\(667\) −1.68002 2.90988i −0.0650507 0.112671i
\(668\) −8.68014 + 15.0345i −0.335845 + 0.581700i
\(669\) 1.24084 2.14919i 0.0479736 0.0830926i
\(670\) −6.33225 10.9678i −0.244636 0.423722i
\(671\) 21.9130 0.845942
\(672\) 4.26604 15.1676i 0.164566 0.585102i
\(673\) −9.05137 −0.348905 −0.174452 0.984666i \(-0.555816\pi\)
−0.174452 + 0.984666i \(0.555816\pi\)
\(674\) 31.7402 + 54.9757i 1.22259 + 2.11758i
\(675\) −1.73282 + 3.00133i −0.0666962 + 0.115521i
\(676\) 19.3262 33.4739i 0.743314 1.28746i
\(677\) 8.44978 + 14.6354i 0.324751 + 0.562486i 0.981462 0.191657i \(-0.0613860\pi\)
−0.656711 + 0.754143i \(0.728053\pi\)
\(678\) 42.3028 1.62463
\(679\) 32.6045 + 33.4218i 1.25125 + 1.28261i
\(680\) −16.2639 −0.623694
\(681\) −11.0247 19.0954i −0.422469 0.731738i
\(682\) −37.8939 + 65.6341i −1.45103 + 2.51326i
\(683\) −11.3709 + 19.6950i −0.435097 + 0.753610i −0.997304 0.0733869i \(-0.976619\pi\)
0.562207 + 0.826997i \(0.309953\pi\)
\(684\) 10.9621 + 18.9870i 0.419148 + 0.725985i
\(685\) −8.98854 −0.343434
\(686\) 40.2654 + 12.4085i 1.53734 + 0.473758i
\(687\) −14.7467 −0.562621
\(688\) −0.0307958 0.0533398i −0.00117408 0.00203356i
\(689\) −1.92404 + 3.33254i −0.0733002 + 0.126960i
\(690\) −1.40903 + 2.44051i −0.0536408 + 0.0929086i
\(691\) −17.5809 30.4511i −0.668810 1.15841i −0.978237 0.207490i \(-0.933471\pi\)
0.309427 0.950923i \(-0.399863\pi\)
\(692\) −1.61699 −0.0614689
\(693\) 11.3192 + 11.6030i 0.429982 + 0.440761i
\(694\) −4.74418 −0.180086
\(695\) 2.18115 + 3.77787i 0.0827359 + 0.143303i
\(696\) 4.49373 7.78338i 0.170335 0.295028i
\(697\) 6.19009 10.7215i 0.234466 0.406108i
\(698\) 4.59921 + 7.96606i 0.174083 + 0.301520i
\(699\) 3.41615 0.129211
\(700\) −7.88410 + 28.0313i −0.297991 + 1.05948i
\(701\) −35.0402 −1.32345 −0.661725 0.749746i \(-0.730175\pi\)
−0.661725 + 0.749746i \(0.730175\pi\)
\(702\) 1.03559 + 1.79370i 0.0390858 + 0.0676987i
\(703\) 22.5981 39.1410i 0.852302 1.47623i
\(704\) 39.8722 69.0607i 1.50274 2.60282i
\(705\) −8.27310 14.3294i −0.311583 0.539678i
\(706\) −10.2556 −0.385976
\(707\) 20.8463 5.31008i 0.784005 0.199706i
\(708\) 2.39514 0.0900147
\(709\) 24.8322 + 43.0106i 0.932593 + 1.61530i 0.778871 + 0.627184i \(0.215793\pi\)
0.153721 + 0.988114i \(0.450874\pi\)
\(710\) 22.3436 38.7003i 0.838542 1.45240i
\(711\) 0.111008 0.192271i 0.00416312 0.00721073i
\(712\) −0.748095 1.29574i −0.0280361 0.0485599i
\(713\) 5.43735 0.203630
\(714\) 28.6321 7.29332i 1.07153 0.272946i
\(715\) −6.90911 −0.258386
\(716\) −13.2600 22.9671i −0.495551 0.858320i
\(717\) −5.43756 + 9.41813i −0.203069 + 0.351727i
\(718\) 23.6759 41.0078i 0.883576 1.53040i
\(719\) −1.77044 3.06648i −0.0660261 0.114361i 0.831123 0.556089i \(-0.187699\pi\)
−0.897149 + 0.441729i \(0.854365\pi\)
\(720\) 0.329747 0.0122889
\(721\) −10.2291 + 36.3689i −0.380952 + 1.35445i
\(722\) 65.2046 2.42667
\(723\) −10.6982 18.5299i −0.397872 0.689134i
\(724\) 3.85630 6.67930i 0.143318 0.248234i
\(725\) 5.82234 10.0846i 0.216236 0.374532i
\(726\) 30.1854 + 52.2826i 1.12028 + 1.94039i
\(727\) 7.64097 0.283388 0.141694 0.989911i \(-0.454745\pi\)
0.141694 + 0.989911i \(0.454745\pi\)
\(728\) 4.49900 + 4.61178i 0.166744 + 0.170924i
\(729\) 1.00000 0.0370370
\(730\) −6.02749 10.4399i −0.223087 0.386399i
\(731\) 0.567863 0.983568i 0.0210032 0.0363786i
\(732\) 5.67923 9.83671i 0.209910 0.363575i
\(733\) −10.0728 17.4466i −0.372047 0.644404i 0.617833 0.786309i \(-0.288011\pi\)
−0.989880 + 0.141905i \(0.954677\pi\)
\(734\) 19.5019 0.719829
\(735\) −0.214631 + 8.66820i −0.00791679 + 0.319731i
\(736\) −5.95524 −0.219513
\(737\) 13.7668 + 23.8449i 0.507108 + 0.878337i
\(738\) 2.86889 4.96906i 0.105605 0.182914i
\(739\) −19.4540 + 33.6953i −0.715626 + 1.23950i 0.247092 + 0.968992i \(0.420525\pi\)
−0.962718 + 0.270508i \(0.912808\pi\)
\(740\) 12.8765 + 22.3027i 0.473348 + 0.819863i
\(741\) 6.28513 0.230890
\(742\) 17.7660 + 18.2113i 0.652210 + 0.668560i
\(743\) −12.5828 −0.461617 −0.230809 0.972999i \(-0.574137\pi\)
−0.230809 + 0.972999i \(0.574137\pi\)
\(744\) 7.27194 + 12.5954i 0.266602 + 0.461769i
\(745\) −6.76591 + 11.7189i −0.247884 + 0.429347i
\(746\) 1.65516 2.86682i 0.0605997 0.104962i
\(747\) −7.75984 13.4404i −0.283918 0.491760i
\(748\) 95.5077 3.49211
\(749\) −4.69757 + 16.7018i −0.171645 + 0.610272i
\(750\) −23.8566 −0.871122
\(751\) 11.6128 + 20.1139i 0.423756 + 0.733966i 0.996303 0.0859051i \(-0.0273782\pi\)
−0.572548 + 0.819871i \(0.694045\pi\)
\(752\) 1.77796 3.07951i 0.0648354 0.112298i
\(753\) 2.34280 4.05784i 0.0853763 0.147876i
\(754\) −3.47963 6.02689i −0.126721 0.219486i
\(755\) 19.6377 0.714688
\(756\) 8.14219 2.07403i 0.296128 0.0754316i
\(757\) −31.3210 −1.13838 −0.569191 0.822205i \(-0.692744\pi\)
−0.569191 + 0.822205i \(0.692744\pi\)
\(758\) 2.97311 + 5.14958i 0.107988 + 0.187041i
\(759\) 3.06335 5.30587i 0.111192 0.192591i
\(760\) −11.4369 + 19.8093i −0.414860 + 0.718559i
\(761\) 12.9385 + 22.4101i 0.469020 + 0.812367i 0.999373 0.0354105i \(-0.0112739\pi\)
−0.530353 + 0.847777i \(0.677941\pi\)
\(762\) 9.55070 0.345985
\(763\) −46.7545 + 11.9096i −1.69263 + 0.431156i
\(764\) −45.3911 −1.64219
\(765\) 3.04021 + 5.26579i 0.109919 + 0.190385i
\(766\) 12.8769 22.3035i 0.465262 0.805858i
\(767\) 0.343312 0.594634i 0.0123963 0.0214710i
\(768\) −7.11917 12.3308i −0.256891 0.444948i
\(769\) 2.66864 0.0962338 0.0481169 0.998842i \(-0.484678\pi\)
0.0481169 + 0.998842i \(0.484678\pi\)
\(770\) −12.3680 + 43.9736i −0.445713 + 1.58470i
\(771\) 27.0174 0.973008
\(772\) −3.31871 5.74818i −0.119443 0.206881i
\(773\) 2.89143 5.00811i 0.103998 0.180129i −0.809331 0.587353i \(-0.800170\pi\)
0.913328 + 0.407224i \(0.133503\pi\)
\(774\) 0.263184 0.455849i 0.00945997 0.0163851i
\(775\) 9.42195 + 16.3193i 0.338446 + 0.586206i
\(776\) 47.2041 1.69453
\(777\) −12.0951 12.3983i −0.433910 0.444787i
\(778\) −70.4598 −2.52611
\(779\) −8.70582 15.0789i −0.311918 0.540259i
\(780\) −1.79065 + 3.10149i −0.0641154 + 0.111051i
\(781\) −48.5769 + 84.1377i −1.73822 + 3.01068i
\(782\) −5.58374 9.67131i −0.199674 0.345845i
\(783\) −3.36004 −0.120078
\(784\) −1.63635 + 0.891486i −0.0584411 + 0.0318388i
\(785\) 11.3959 0.406738
\(786\) 4.36283 + 7.55664i 0.155617 + 0.269536i
\(787\) 3.77728 6.54244i 0.134645 0.233213i −0.790817 0.612053i \(-0.790344\pi\)
0.925462 + 0.378841i \(0.123677\pi\)
\(788\) −17.2859 + 29.9401i −0.615785 + 1.06657i
\(789\) −10.0032 17.3260i −0.356122 0.616822i
\(790\) 0.625652 0.0222597
\(791\) −34.3538 35.2150i −1.22148 1.25210i
\(792\) 16.3877 0.582313
\(793\) −1.62809 2.81993i −0.0578151 0.100139i
\(794\) −28.4828 + 49.3336i −1.01082 + 1.75078i
\(795\) −2.61786 + 4.53427i −0.0928460 + 0.160814i
\(796\) −5.46310 9.46236i −0.193634 0.335384i
\(797\) −17.6173 −0.624035 −0.312018 0.950076i \(-0.601005\pi\)
−0.312018 + 0.950076i \(0.601005\pi\)
\(798\) 11.2511 40.0022i 0.398283 1.41606i
\(799\) 65.5698 2.31969
\(800\) −10.3194 17.8736i −0.364844 0.631929i
\(801\) −0.279682 + 0.484423i −0.00988207 + 0.0171162i
\(802\) −39.7839 + 68.9077i −1.40482 + 2.43322i
\(803\) 13.1043 + 22.6973i 0.462440 + 0.800969i
\(804\) 14.2719 0.503331
\(805\) 3.17586 0.808974i 0.111934 0.0285126i
\(806\) 11.2617 0.396678
\(807\) −3.14036 5.43926i −0.110546 0.191471i
\(808\) 10.8741 18.8345i 0.382550 0.662596i
\(809\) −11.6420 + 20.1646i −0.409312 + 0.708950i −0.994813 0.101722i \(-0.967565\pi\)
0.585501 + 0.810672i \(0.300898\pi\)
\(810\) 1.40903 + 2.44051i 0.0495082 + 0.0857507i
\(811\) 35.2946 1.23936 0.619680 0.784855i \(-0.287262\pi\)
0.619680 + 0.784855i \(0.287262\pi\)
\(812\) −27.3581 + 6.96881i −0.960080 + 0.244557i
\(813\) −25.4203 −0.891527
\(814\) −45.6248 79.0245i −1.59915 2.76981i
\(815\) −1.02116 + 1.76871i −0.0357698 + 0.0619550i
\(816\) −0.653365 + 1.13166i −0.0228723 + 0.0396160i
\(817\) −0.798650 1.38330i −0.0279412 0.0483956i
\(818\) −54.9883 −1.92262
\(819\) 0.652165 2.31872i 0.0227885 0.0810228i
\(820\) 9.92122 0.346464
\(821\) −0.934194 1.61807i −0.0326036 0.0564711i 0.849263 0.527970i \(-0.177047\pi\)
−0.881867 + 0.471499i \(0.843713\pi\)
\(822\) 8.25431 14.2969i 0.287902 0.498661i
\(823\) 9.72518 16.8445i 0.338999 0.587163i −0.645246 0.763975i \(-0.723245\pi\)
0.984245 + 0.176812i \(0.0565785\pi\)
\(824\) 19.0975 + 33.0778i 0.665292 + 1.15232i
\(825\) 21.2329 0.739234
\(826\) −3.17003 3.24950i −0.110300 0.113064i
\(827\) 11.1883 0.389055 0.194527 0.980897i \(-0.437683\pi\)
0.194527 + 0.980897i \(0.437683\pi\)
\(828\) −1.58786 2.75026i −0.0551821 0.0955782i
\(829\) −0.299484 + 0.518721i −0.0104015 + 0.0180159i −0.871179 0.490965i \(-0.836644\pi\)
0.860778 + 0.508981i \(0.169978\pi\)
\(830\) 21.8677 37.8759i 0.759038 1.31469i
\(831\) −7.57054 13.1126i −0.262619 0.454869i
\(832\) −11.8497 −0.410814
\(833\) −29.3232 17.9119i −1.01599 0.620610i
\(834\) −8.01195 −0.277431
\(835\) 3.38569 + 5.86419i 0.117167 + 0.202939i
\(836\) 67.1616 116.327i 2.32283 4.02327i
\(837\) 2.71868 4.70889i 0.0939712 0.162763i
\(838\) 22.6803 + 39.2834i 0.783477 + 1.35702i
\(839\) −43.0684 −1.48689 −0.743443 0.668799i \(-0.766809\pi\)
−0.743443 + 0.668799i \(0.766809\pi\)
\(840\) 6.12136 + 6.27481i 0.211207 + 0.216501i
\(841\) −17.7101 −0.610694
\(842\) 41.0645 + 71.1259i 1.41518 + 2.45116i
\(843\) −13.6575 + 23.6554i −0.470388 + 0.814736i
\(844\) −18.5287 + 32.0927i −0.637785 + 1.10468i
\(845\) −7.53818 13.0565i −0.259321 0.449157i
\(846\) 30.3893 1.04480
\(847\) 19.0093 67.5861i 0.653168 2.32229i
\(848\) −1.12520 −0.0386395
\(849\) 4.27130 + 7.39812i 0.146591 + 0.253903i
\(850\) 19.3512 33.5173i 0.663741 1.14963i
\(851\) −3.27333 + 5.66957i −0.112208 + 0.194350i
\(852\) 25.1795 + 43.6122i 0.862636 + 1.49413i
\(853\) 32.0125 1.09609 0.548043 0.836450i \(-0.315373\pi\)
0.548043 + 0.836450i \(0.315373\pi\)
\(854\) −20.8622 + 5.31413i −0.713888 + 0.181846i
\(855\) 8.55157 0.292458
\(856\) 8.77022 + 15.1905i 0.299760 + 0.519199i
\(857\) 22.8842 39.6366i 0.781710 1.35396i −0.149235 0.988802i \(-0.547681\pi\)
0.930945 0.365160i \(-0.118986\pi\)
\(858\) 6.34474 10.9894i 0.216606 0.375172i
\(859\) 21.6245 + 37.4548i 0.737820 + 1.27794i 0.953475 + 0.301472i \(0.0974778\pi\)
−0.215656 + 0.976470i \(0.569189\pi\)
\(860\) 0.910147 0.0310358
\(861\) −6.46629 + 1.64713i −0.220371 + 0.0561341i
\(862\) 24.7243 0.842112
\(863\) 18.0192 + 31.2101i 0.613380 + 1.06241i 0.990666 + 0.136309i \(0.0435239\pi\)
−0.377286 + 0.926097i \(0.623143\pi\)
\(864\) −2.97762 + 5.15739i −0.101301 + 0.175458i
\(865\) −0.315354 + 0.546210i −0.0107224 + 0.0185717i
\(866\) 29.7912 + 51.5999i 1.01235 + 1.75344i
\(867\) −7.09562 −0.240980
\(868\) 12.3696 43.9792i 0.419852 1.49275i
\(869\) −1.36022 −0.0461423
\(870\) −4.73439 8.20021i −0.160511 0.278013i
\(871\) 2.04569 3.54325i 0.0693157 0.120058i
\(872\) −24.3887 + 42.2425i −0.825905 + 1.43051i
\(873\) −8.82382 15.2833i −0.298641 0.517261i
\(874\) −15.7061 −0.531266
\(875\) 19.3738 + 19.8595i 0.654954 + 0.671372i
\(876\) 13.5850 0.458995
\(877\) −13.4716 23.3335i −0.454903 0.787915i 0.543780 0.839228i \(-0.316993\pi\)
−0.998683 + 0.0513130i \(0.983659\pi\)
\(878\) 35.7249 61.8773i 1.20566 2.08826i
\(879\) 6.80764 11.7912i 0.229616 0.397707i
\(880\) −1.01013 1.74959i −0.0340514 0.0589788i
\(881\) −36.5231 −1.23050 −0.615248 0.788334i \(-0.710944\pi\)
−0.615248 + 0.788334i \(0.710944\pi\)
\(882\) −13.5903 8.30153i −0.457608 0.279527i
\(883\) −54.7823 −1.84357 −0.921785 0.387702i \(-0.873269\pi\)
−0.921785 + 0.387702i \(0.873269\pi\)
\(884\) −7.09602 12.2907i −0.238665 0.413380i
\(885\) 0.467112 0.809061i 0.0157018 0.0271963i
\(886\) 10.3273 17.8874i 0.346953 0.600940i
\(887\) 6.87188 + 11.9024i 0.230735 + 0.399645i 0.958025 0.286686i \(-0.0925535\pi\)
−0.727289 + 0.686331i \(0.759220\pi\)
\(888\) −17.5110 −0.587632
\(889\) −7.75605 7.95047i −0.260130 0.266650i
\(890\) −1.57632 −0.0528383
\(891\) −3.06335 5.30587i −0.102626 0.177753i
\(892\) −3.94056 + 6.82526i −0.131940 + 0.228527i
\(893\) 46.1091 79.8633i 1.54298 2.67252i
\(894\) −12.4265 21.5233i −0.415604 0.719847i
\(895\) −10.3442 −0.345767
\(896\) −12.6801 + 45.0831i −0.423613 + 1.50612i
\(897\) −0.910400 −0.0303974
\(898\) −27.2284 47.1611i −0.908625 1.57378i
\(899\) −9.13486 + 15.8220i −0.304665 + 0.527695i
\(900\) 5.50296 9.53141i 0.183432 0.317714i
\(901\) −10.3741 17.9685i −0.345612 0.598618i
\(902\) −35.1536 −1.17049
\(903\) −0.593201 + 0.151104i −0.0197405 + 0.00502842i
\(904\) −49.7366 −1.65422
\(905\) −1.50415 2.60526i −0.0499996 0.0866019i
\(906\) −18.0336 + 31.2351i −0.599126 + 1.03772i
\(907\) 10.9920 19.0388i 0.364985 0.632172i −0.623789 0.781593i \(-0.714408\pi\)
0.988774 + 0.149421i \(0.0477409\pi\)
\(908\) 35.0116 + 60.6418i 1.16190 + 2.01247i
\(909\) −8.13075 −0.269680
\(910\) 6.57778 1.67553i 0.218051 0.0555433i
\(911\) −17.3602 −0.575170 −0.287585 0.957755i \(-0.592852\pi\)
−0.287585 + 0.957755i \(0.592852\pi\)
\(912\) 0.918900 + 1.59158i 0.0304278 + 0.0527026i
\(913\) −47.5421 + 82.3454i −1.57341 + 2.72523i
\(914\) 5.47183 9.47750i 0.180992 0.313488i
\(915\) −2.21518 3.83681i −0.0732317 0.126841i
\(916\) 46.8315 1.54735
\(917\) 2.74750 9.76853i 0.0907305 0.322585i
\(918\) −11.1675 −0.368581
\(919\) −2.57423 4.45869i −0.0849159 0.147079i 0.820439 0.571733i \(-0.193729\pi\)
−0.905355 + 0.424655i \(0.860395\pi\)
\(920\) 1.65663 2.86938i 0.0546176 0.0946005i
\(921\) −0.972468 + 1.68436i −0.0320439 + 0.0555017i
\(922\) −26.6967 46.2401i −0.879210 1.52284i
\(923\) 14.4367 0.475188
\(924\) −35.9468 36.8479i −1.18256 1.21221i
\(925\) −22.6883 −0.745988
\(926\) −26.6568 46.1709i −0.875996 1.51727i
\(927\) 7.13975 12.3664i 0.234500 0.406166i
\(928\) 10.0049 17.3290i 0.328428 0.568854i
\(929\) −6.23246 10.7949i −0.204480 0.354170i 0.745487 0.666520i \(-0.232217\pi\)
−0.949967 + 0.312350i \(0.898884\pi\)
\(930\) 15.3228 0.502453
\(931\) −42.4367 + 23.1196i −1.39081 + 0.757714i
\(932\) −10.8488 −0.355363
\(933\) −7.10098 12.2993i −0.232476 0.402660i
\(934\) −15.3002 + 26.5007i −0.500636 + 0.867128i
\(935\) 18.6264 32.2619i 0.609148 1.05508i
\(936\) −1.21757 2.10890i −0.0397976 0.0689315i
\(937\) −1.66532 −0.0544038 −0.0272019 0.999630i \(-0.508660\pi\)
−0.0272019 + 0.999630i \(0.508660\pi\)
\(938\) −18.8893 19.3628i −0.616757 0.632217i
\(939\) 4.20457 0.137211
\(940\) 26.2731 + 45.5064i 0.856935 + 1.48426i
\(941\) 17.0831 29.5887i 0.556892 0.964565i −0.440862 0.897575i \(-0.645327\pi\)
0.997754 0.0669898i \(-0.0213395\pi\)
\(942\) −10.4651 + 18.1260i −0.340970 + 0.590577i
\(943\) 1.26104 + 2.18418i 0.0410650 + 0.0711267i
\(944\) 0.200772 0.00653457
\(945\) 0.887339 3.15486i 0.0288651 0.102628i
\(946\) −3.22490 −0.104851
\(947\) −26.1581 45.3071i −0.850024 1.47228i −0.881186 0.472770i \(-0.843254\pi\)
0.0311620 0.999514i \(-0.490079\pi\)
\(948\) −0.352530 + 0.610601i −0.0114497 + 0.0198314i
\(949\) 1.94724 3.37272i 0.0632100 0.109483i
\(950\) −27.2158 47.1391i −0.882997 1.52940i
\(951\) −0.738433 −0.0239453
\(952\) −33.6635 + 8.57497i −1.09104 + 0.277916i
\(953\) −35.3873 −1.14631 −0.573154 0.819448i \(-0.694280\pi\)
−0.573154 + 0.819448i \(0.694280\pi\)
\(954\) −4.80804 8.32778i −0.155666 0.269622i
\(955\) −8.85240 + 15.3328i −0.286457 + 0.496158i
\(956\) 17.2682 29.9094i 0.558494 0.967340i
\(957\) 10.2930 + 17.8279i 0.332724 + 0.576295i
\(958\) 15.3829 0.496998
\(959\) −18.6047 + 4.73910i −0.600777 + 0.153033i
\(960\) −16.1227 −0.520358
\(961\) 0.717600 + 1.24292i 0.0231484 + 0.0400942i
\(962\) −6.77965 + 11.7427i −0.218585 + 0.378600i
\(963\) 3.27882 5.67908i 0.105658 0.183006i
\(964\) 33.9747 + 58.8459i 1.09425 + 1.89530i
\(965\) −2.58893 −0.0833406
\(966\) −1.62971 + 5.79432i −0.0524352 + 0.186429i
\(967\) −1.97543 −0.0635254 −0.0317627 0.999495i \(-0.510112\pi\)
−0.0317627 + 0.999495i \(0.510112\pi\)
\(968\) −35.4898 61.4702i −1.14069 1.97573i
\(969\) −16.9442 + 29.3482i −0.544326 + 0.942801i
\(970\) 24.8660 43.0692i 0.798400 1.38287i
\(971\) 14.3768 + 24.9013i 0.461373 + 0.799122i 0.999030 0.0440423i \(-0.0140236\pi\)
−0.537657 + 0.843164i \(0.680690\pi\)
\(972\) −3.17573 −0.101862
\(973\) 6.50644 + 6.66954i 0.208587 + 0.213816i
\(974\) 45.1969 1.44820
\(975\) −1.57756 2.73241i −0.0505223 0.0875072i
\(976\) 0.476061 0.824561i 0.0152383 0.0263936i
\(977\) 5.36870 9.29886i 0.171760 0.297497i −0.767275 0.641318i \(-0.778388\pi\)
0.939035 + 0.343821i \(0.111721\pi\)
\(978\) −1.87550 3.24846i −0.0599718 0.103874i
\(979\) 3.42705 0.109529
\(980\) 0.681610 27.5278i 0.0217732 0.879345i
\(981\) 18.2358 0.582226
\(982\) −4.78141 8.28164i −0.152581 0.264278i
\(983\) 23.1383 40.0767i 0.737997 1.27825i −0.215399 0.976526i \(-0.569105\pi\)
0.953396 0.301722i \(-0.0975616\pi\)
\(984\) −3.37303 + 5.84226i −0.107528 + 0.186245i
\(985\) 6.74238 + 11.6781i 0.214830 + 0.372096i
\(986\) 37.5232 1.19498
\(987\) −24.6789 25.2975i −0.785538 0.805229i
\(988\) −19.9599 −0.635008
\(989\) 0.115684 + 0.200371i 0.00367855 + 0.00637143i
\(990\) 8.63268 14.9522i 0.274365 0.475213i
\(991\) 21.4876 37.2176i 0.682576 1.18226i −0.291616 0.956536i \(-0.594193\pi\)
0.974192 0.225721i \(-0.0724739\pi\)
\(992\) 16.1904 + 28.0425i 0.514045 + 0.890352i
\(993\) 20.5989 0.653686
\(994\) 25.8431 91.8833i 0.819695 2.91436i
\(995\) −4.26176 −0.135107
\(996\) 24.6431 + 42.6832i 0.780848 + 1.35247i
\(997\) 6.04080 10.4630i 0.191314 0.331365i −0.754372 0.656447i \(-0.772058\pi\)
0.945686 + 0.325082i \(0.105392\pi\)
\(998\) −7.90388 + 13.6899i −0.250193 + 0.433347i
\(999\) 3.27333 + 5.66957i 0.103563 + 0.179377i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.i.h.277.3 20
7.2 even 3 inner 483.2.i.h.415.3 yes 20
7.3 odd 6 3381.2.a.bj.1.8 10
7.4 even 3 3381.2.a.bi.1.8 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.i.h.277.3 20 1.1 even 1 trivial
483.2.i.h.415.3 yes 20 7.2 even 3 inner
3381.2.a.bi.1.8 10 7.4 even 3
3381.2.a.bj.1.8 10 7.3 odd 6