Properties

Label 483.2.i.h.415.9
Level $483$
Weight $2$
Character 483.415
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(277,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.277");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{19} + 22 x^{18} - 43 x^{17} + 245 x^{16} - 416 x^{15} + 1707 x^{14} - 2021 x^{13} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 415.9
Root \(-1.03253 - 1.78839i\) of defining polynomial
Character \(\chi\) \(=\) 483.415
Dual form 483.2.i.h.277.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.03253 - 1.78839i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-1.13223 - 1.96108i) q^{4} +(0.304427 - 0.527282i) q^{5} +2.06506 q^{6} +(2.05425 + 1.66735i) q^{7} -0.546135 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.628658 - 1.08887i) q^{10} +(0.551216 + 0.954735i) q^{11} +(1.13223 - 1.96108i) q^{12} +1.84712 q^{13} +(5.10295 - 1.95222i) q^{14} +0.608853 q^{15} +(1.70056 - 2.94546i) q^{16} +(-2.94288 - 5.09722i) q^{17} +(1.03253 + 1.78839i) q^{18} +(-0.544070 + 0.942358i) q^{19} -1.37873 q^{20} +(-0.416841 + 2.61271i) q^{21} +2.27659 q^{22} +(-0.500000 + 0.866025i) q^{23} +(-0.273068 - 0.472967i) q^{24} +(2.31465 + 4.00909i) q^{25} +(1.90720 - 3.30337i) q^{26} -1.00000 q^{27} +(0.943923 - 5.91639i) q^{28} -0.804169 q^{29} +(0.628658 - 1.08887i) q^{30} +(-4.38680 - 7.59816i) q^{31} +(-4.05790 - 7.02849i) q^{32} +(-0.551216 + 0.954735i) q^{33} -12.1544 q^{34} +(1.50453 - 0.575585i) q^{35} +2.26446 q^{36} +(-4.55764 + 7.89406i) q^{37} +(1.12354 + 1.94602i) q^{38} +(0.923560 + 1.59965i) q^{39} +(-0.166258 + 0.287967i) q^{40} -9.79559 q^{41} +(4.24215 + 3.44317i) q^{42} +5.23469 q^{43} +(1.24821 - 2.16196i) q^{44} +(0.304427 + 0.527282i) q^{45} +(1.03253 + 1.78839i) q^{46} +(2.95439 - 5.11716i) q^{47} +3.40113 q^{48} +(1.43989 + 6.85031i) q^{49} +9.55977 q^{50} +(2.94288 - 5.09722i) q^{51} +(-2.09137 - 3.62236i) q^{52} +(-2.25507 - 3.90589i) q^{53} +(-1.03253 + 1.78839i) q^{54} +0.671220 q^{55} +(-1.12190 - 0.910598i) q^{56} -1.08814 q^{57} +(-0.830328 + 1.43817i) q^{58} +(3.70032 + 6.40914i) q^{59} +(-0.689363 - 1.19401i) q^{60} +(-2.51384 + 4.35410i) q^{61} -18.1180 q^{62} +(-2.47109 + 0.945359i) q^{63} -9.95734 q^{64} +(0.562312 - 0.973953i) q^{65} +(1.13829 + 1.97158i) q^{66} +(-1.03153 - 1.78666i) q^{67} +(-6.66405 + 11.5425i) q^{68} -1.00000 q^{69} +(0.524102 - 3.28500i) q^{70} +4.30092 q^{71} +(0.273068 - 0.472967i) q^{72} +(0.578067 + 1.00124i) q^{73} +(9.41179 + 16.3017i) q^{74} +(-2.31465 + 4.00909i) q^{75} +2.46406 q^{76} +(-0.459540 + 2.88034i) q^{77} +3.81441 q^{78} +(-7.58579 + 13.1390i) q^{79} +(-1.03539 - 1.79335i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-10.1142 + 17.5184i) q^{82} -10.7196 q^{83} +(5.59570 - 2.14073i) q^{84} -3.58356 q^{85} +(5.40497 - 9.36169i) q^{86} +(-0.402085 - 0.696431i) q^{87} +(-0.301039 - 0.521414i) q^{88} +(3.96083 - 6.86036i) q^{89} +1.25732 q^{90} +(3.79445 + 3.07979i) q^{91} +2.26446 q^{92} +(4.38680 - 7.59816i) q^{93} +(-6.10099 - 10.5672i) q^{94} +(0.331259 + 0.573757i) q^{95} +(4.05790 - 7.02849i) q^{96} -17.0648 q^{97} +(13.7378 + 4.49805i) q^{98} -1.10243 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 3 q^{2} + 10 q^{3} - 15 q^{4} + 5 q^{5} - 6 q^{6} + 18 q^{8} - 10 q^{9} - 11 q^{10} - 8 q^{11} + 15 q^{12} + 11 q^{14} + 10 q^{15} - 37 q^{16} + 11 q^{17} - 3 q^{18} - q^{19} - 30 q^{20} + 12 q^{22}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.03253 1.78839i 0.730108 1.26458i −0.226728 0.973958i \(-0.572803\pi\)
0.956837 0.290627i \(-0.0938637\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −1.13223 1.96108i −0.566116 0.980542i
\(5\) 0.304427 0.527282i 0.136144 0.235808i −0.789890 0.613248i \(-0.789862\pi\)
0.926034 + 0.377441i \(0.123196\pi\)
\(6\) 2.06506 0.843056
\(7\) 2.05425 + 1.66735i 0.776434 + 0.630199i
\(8\) −0.546135 −0.193088
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −0.628658 1.08887i −0.198799 0.344330i
\(11\) 0.551216 + 0.954735i 0.166198 + 0.287863i 0.937080 0.349115i \(-0.113518\pi\)
−0.770882 + 0.636978i \(0.780184\pi\)
\(12\) 1.13223 1.96108i 0.326847 0.566116i
\(13\) 1.84712 0.512299 0.256149 0.966637i \(-0.417546\pi\)
0.256149 + 0.966637i \(0.417546\pi\)
\(14\) 5.10295 1.95222i 1.36382 0.521753i
\(15\) 0.608853 0.157205
\(16\) 1.70056 2.94546i 0.425141 0.736366i
\(17\) −2.94288 5.09722i −0.713753 1.23626i −0.963438 0.267930i \(-0.913661\pi\)
0.249685 0.968327i \(-0.419673\pi\)
\(18\) 1.03253 + 1.78839i 0.243369 + 0.421528i
\(19\) −0.544070 + 0.942358i −0.124818 + 0.216192i −0.921662 0.387994i \(-0.873168\pi\)
0.796844 + 0.604186i \(0.206501\pi\)
\(20\) −1.37873 −0.308293
\(21\) −0.416841 + 2.61271i −0.0909623 + 0.570140i
\(22\) 2.27659 0.485370
\(23\) −0.500000 + 0.866025i −0.104257 + 0.180579i
\(24\) −0.273068 0.472967i −0.0557397 0.0965440i
\(25\) 2.31465 + 4.00909i 0.462930 + 0.801818i
\(26\) 1.90720 3.30337i 0.374034 0.647845i
\(27\) −1.00000 −0.192450
\(28\) 0.943923 5.91639i 0.178385 1.11809i
\(29\) −0.804169 −0.149330 −0.0746652 0.997209i \(-0.523789\pi\)
−0.0746652 + 0.997209i \(0.523789\pi\)
\(30\) 0.628658 1.08887i 0.114777 0.198799i
\(31\) −4.38680 7.59816i −0.787893 1.36467i −0.927256 0.374429i \(-0.877839\pi\)
0.139363 0.990241i \(-0.455495\pi\)
\(32\) −4.05790 7.02849i −0.717342 1.24247i
\(33\) −0.551216 + 0.954735i −0.0959545 + 0.166198i
\(34\) −12.1544 −2.08447
\(35\) 1.50453 0.575585i 0.254312 0.0972915i
\(36\) 2.26446 0.377411
\(37\) −4.55764 + 7.89406i −0.749271 + 1.29778i 0.198901 + 0.980020i \(0.436263\pi\)
−0.948172 + 0.317756i \(0.897071\pi\)
\(38\) 1.12354 + 1.94602i 0.182262 + 0.315687i
\(39\) 0.923560 + 1.59965i 0.147888 + 0.256149i
\(40\) −0.166258 + 0.287967i −0.0262877 + 0.0455317i
\(41\) −9.79559 −1.52981 −0.764907 0.644140i \(-0.777215\pi\)
−0.764907 + 0.644140i \(0.777215\pi\)
\(42\) 4.24215 + 3.44317i 0.654578 + 0.531293i
\(43\) 5.23469 0.798283 0.399142 0.916889i \(-0.369308\pi\)
0.399142 + 0.916889i \(0.369308\pi\)
\(44\) 1.24821 2.16196i 0.188175 0.325928i
\(45\) 0.304427 + 0.527282i 0.0453812 + 0.0786026i
\(46\) 1.03253 + 1.78839i 0.152238 + 0.263684i
\(47\) 2.95439 5.11716i 0.430942 0.746414i −0.566012 0.824397i \(-0.691515\pi\)
0.996955 + 0.0779827i \(0.0248479\pi\)
\(48\) 3.40113 0.490911
\(49\) 1.43989 + 6.85031i 0.205699 + 0.978615i
\(50\) 9.55977 1.35196
\(51\) 2.94288 5.09722i 0.412086 0.713753i
\(52\) −2.09137 3.62236i −0.290021 0.502330i
\(53\) −2.25507 3.90589i −0.309757 0.536515i 0.668552 0.743666i \(-0.266914\pi\)
−0.978309 + 0.207150i \(0.933581\pi\)
\(54\) −1.03253 + 1.78839i −0.140509 + 0.243369i
\(55\) 0.671220 0.0905072
\(56\) −1.12190 0.910598i −0.149920 0.121684i
\(57\) −1.08814 −0.144128
\(58\) −0.830328 + 1.43817i −0.109027 + 0.188841i
\(59\) 3.70032 + 6.40914i 0.481741 + 0.834399i 0.999780 0.0209574i \(-0.00667143\pi\)
−0.518040 + 0.855357i \(0.673338\pi\)
\(60\) −0.689363 1.19401i −0.0889964 0.154146i
\(61\) −2.51384 + 4.35410i −0.321864 + 0.557486i −0.980873 0.194650i \(-0.937643\pi\)
0.659008 + 0.752136i \(0.270976\pi\)
\(62\) −18.1180 −2.30099
\(63\) −2.47109 + 0.945359i −0.311328 + 0.119104i
\(64\) −9.95734 −1.24467
\(65\) 0.562312 0.973953i 0.0697462 0.120804i
\(66\) 1.13829 + 1.97158i 0.140114 + 0.242685i
\(67\) −1.03153 1.78666i −0.126021 0.218275i 0.796111 0.605151i \(-0.206887\pi\)
−0.922132 + 0.386876i \(0.873554\pi\)
\(68\) −6.66405 + 11.5425i −0.808134 + 1.39973i
\(69\) −1.00000 −0.120386
\(70\) 0.524102 3.28500i 0.0626422 0.392633i
\(71\) 4.30092 0.510425 0.255213 0.966885i \(-0.417855\pi\)
0.255213 + 0.966885i \(0.417855\pi\)
\(72\) 0.273068 0.472967i 0.0321813 0.0557397i
\(73\) 0.578067 + 1.00124i 0.0676577 + 0.117187i 0.897870 0.440261i \(-0.145114\pi\)
−0.830212 + 0.557448i \(0.811781\pi\)
\(74\) 9.41179 + 16.3017i 1.09410 + 1.89503i
\(75\) −2.31465 + 4.00909i −0.267273 + 0.462930i
\(76\) 2.46406 0.282647
\(77\) −0.459540 + 2.88034i −0.0523694 + 0.328245i
\(78\) 3.81441 0.431897
\(79\) −7.58579 + 13.1390i −0.853469 + 1.47825i 0.0245899 + 0.999698i \(0.492172\pi\)
−0.878058 + 0.478553i \(0.841161\pi\)
\(80\) −1.03539 1.79335i −0.115761 0.200503i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −10.1142 + 17.5184i −1.11693 + 1.93458i
\(83\) −10.7196 −1.17663 −0.588315 0.808632i \(-0.700209\pi\)
−0.588315 + 0.808632i \(0.700209\pi\)
\(84\) 5.59570 2.14073i 0.610541 0.233573i
\(85\) −3.58356 −0.388692
\(86\) 5.40497 9.36169i 0.582833 1.00950i
\(87\) −0.402085 0.696431i −0.0431080 0.0746652i
\(88\) −0.301039 0.521414i −0.0320908 0.0555830i
\(89\) 3.96083 6.86036i 0.419847 0.727197i −0.576076 0.817396i \(-0.695417\pi\)
0.995924 + 0.0901988i \(0.0287502\pi\)
\(90\) 1.25732 0.132533
\(91\) 3.79445 + 3.07979i 0.397766 + 0.322850i
\(92\) 2.26446 0.236087
\(93\) 4.38680 7.59816i 0.454890 0.787893i
\(94\) −6.10099 10.5672i −0.629269 1.08993i
\(95\) 0.331259 + 0.573757i 0.0339864 + 0.0588663i
\(96\) 4.05790 7.02849i 0.414158 0.717342i
\(97\) −17.0648 −1.73267 −0.866336 0.499461i \(-0.833531\pi\)
−0.866336 + 0.499461i \(0.833531\pi\)
\(98\) 13.7378 + 4.49805i 1.38772 + 0.454371i
\(99\) −1.10243 −0.110799
\(100\) 5.24144 9.07844i 0.524144 0.907844i
\(101\) 4.28278 + 7.41800i 0.426153 + 0.738118i 0.996527 0.0832664i \(-0.0265352\pi\)
−0.570374 + 0.821385i \(0.693202\pi\)
\(102\) −6.07722 10.5260i −0.601734 1.04223i
\(103\) −5.21864 + 9.03895i −0.514208 + 0.890634i 0.485656 + 0.874150i \(0.338581\pi\)
−0.999864 + 0.0164842i \(0.994753\pi\)
\(104\) −1.00878 −0.0989187
\(105\) 1.25074 + 1.01517i 0.122059 + 0.0990705i
\(106\) −9.31369 −0.904625
\(107\) 4.03634 6.99115i 0.390208 0.675860i −0.602269 0.798293i \(-0.705737\pi\)
0.992477 + 0.122434i \(0.0390699\pi\)
\(108\) 1.13223 + 1.96108i 0.108949 + 0.188705i
\(109\) −1.90581 3.30097i −0.182544 0.316175i 0.760202 0.649686i \(-0.225100\pi\)
−0.942746 + 0.333511i \(0.891766\pi\)
\(110\) 0.693054 1.20040i 0.0660801 0.114454i
\(111\) −9.11528 −0.865184
\(112\) 8.40450 3.21529i 0.794151 0.303816i
\(113\) 8.89428 0.836703 0.418352 0.908285i \(-0.362608\pi\)
0.418352 + 0.908285i \(0.362608\pi\)
\(114\) −1.12354 + 1.94602i −0.105229 + 0.182262i
\(115\) 0.304427 + 0.527282i 0.0283879 + 0.0491693i
\(116\) 0.910506 + 1.57704i 0.0845384 + 0.146425i
\(117\) −0.923560 + 1.59965i −0.0853831 + 0.147888i
\(118\) 15.2827 1.40689
\(119\) 2.45343 15.3778i 0.224905 1.40968i
\(120\) −0.332516 −0.0303544
\(121\) 4.89232 8.47375i 0.444756 0.770341i
\(122\) 5.19123 + 8.99147i 0.469992 + 0.814050i
\(123\) −4.89780 8.48323i −0.441619 0.764907i
\(124\) −9.93376 + 17.2058i −0.892078 + 1.54512i
\(125\) 5.86283 0.524387
\(126\) −0.860802 + 5.39539i −0.0766863 + 0.480660i
\(127\) 7.91043 0.701937 0.350969 0.936387i \(-0.385852\pi\)
0.350969 + 0.936387i \(0.385852\pi\)
\(128\) −2.16544 + 3.75066i −0.191400 + 0.331514i
\(129\) 2.61735 + 4.53338i 0.230445 + 0.399142i
\(130\) −1.16121 2.01127i −0.101845 0.176400i
\(131\) −0.237853 + 0.411974i −0.0207813 + 0.0359943i −0.876229 0.481895i \(-0.839949\pi\)
0.855448 + 0.517889i \(0.173282\pi\)
\(132\) 2.49642 0.217286
\(133\) −2.68890 + 1.02868i −0.233157 + 0.0891982i
\(134\) −4.26033 −0.368036
\(135\) −0.304427 + 0.527282i −0.0262009 + 0.0453812i
\(136\) 1.60721 + 2.78377i 0.137817 + 0.238706i
\(137\) 4.13651 + 7.16465i 0.353406 + 0.612117i 0.986844 0.161677i \(-0.0516901\pi\)
−0.633438 + 0.773794i \(0.718357\pi\)
\(138\) −1.03253 + 1.78839i −0.0878947 + 0.152238i
\(139\) −2.48191 −0.210513 −0.105257 0.994445i \(-0.533566\pi\)
−0.105257 + 0.994445i \(0.533566\pi\)
\(140\) −2.83225 2.29882i −0.239369 0.194286i
\(141\) 5.90878 0.497609
\(142\) 4.44082 7.69173i 0.372666 0.645476i
\(143\) 1.01816 + 1.76351i 0.0851430 + 0.147472i
\(144\) 1.70056 + 2.94546i 0.141714 + 0.245455i
\(145\) −0.244810 + 0.424024i −0.0203304 + 0.0352133i
\(146\) 2.38749 0.197590
\(147\) −5.21259 + 4.67214i −0.429928 + 0.385351i
\(148\) 20.6412 1.69670
\(149\) −10.2978 + 17.8364i −0.843631 + 1.46121i 0.0431743 + 0.999068i \(0.486253\pi\)
−0.886805 + 0.462144i \(0.847080\pi\)
\(150\) 4.77988 + 8.27900i 0.390276 + 0.675978i
\(151\) −6.39740 11.0806i −0.520613 0.901728i −0.999713 0.0239678i \(-0.992370\pi\)
0.479100 0.877761i \(-0.340963\pi\)
\(152\) 0.297136 0.514655i 0.0241009 0.0417440i
\(153\) 5.88576 0.475835
\(154\) 4.67668 + 3.79587i 0.376858 + 0.305880i
\(155\) −5.34183 −0.429066
\(156\) 2.09137 3.62236i 0.167443 0.290021i
\(157\) 2.28502 + 3.95778i 0.182365 + 0.315865i 0.942685 0.333683i \(-0.108291\pi\)
−0.760321 + 0.649548i \(0.774958\pi\)
\(158\) 15.6651 + 27.1328i 1.24625 + 2.15857i
\(159\) 2.25507 3.90589i 0.178838 0.309757i
\(160\) −4.94133 −0.390646
\(161\) −2.47109 + 0.945359i −0.194749 + 0.0745047i
\(162\) −2.06506 −0.162246
\(163\) 10.8772 18.8398i 0.851967 1.47565i −0.0274642 0.999623i \(-0.508743\pi\)
0.879431 0.476027i \(-0.157923\pi\)
\(164\) 11.0909 + 19.2100i 0.866053 + 1.50005i
\(165\) 0.335610 + 0.581293i 0.0261272 + 0.0452536i
\(166\) −11.0683 + 19.1709i −0.859068 + 1.48795i
\(167\) −3.92341 −0.303602 −0.151801 0.988411i \(-0.548507\pi\)
−0.151801 + 0.988411i \(0.548507\pi\)
\(168\) 0.227652 1.42689i 0.0175637 0.110087i
\(169\) −9.58815 −0.737550
\(170\) −3.70013 + 6.40882i −0.283787 + 0.491534i
\(171\) −0.544070 0.942358i −0.0416061 0.0720639i
\(172\) −5.92689 10.2657i −0.451921 0.782750i
\(173\) 12.0085 20.7994i 0.912993 1.58135i 0.103179 0.994663i \(-0.467098\pi\)
0.809814 0.586687i \(-0.199568\pi\)
\(174\) −1.66066 −0.125894
\(175\) −1.92968 + 12.0950i −0.145870 + 0.914296i
\(176\) 3.74952 0.282630
\(177\) −3.70032 + 6.40914i −0.278133 + 0.481741i
\(178\) −8.17935 14.1670i −0.613068 1.06187i
\(179\) −10.0845 17.4669i −0.753752 1.30554i −0.945993 0.324188i \(-0.894909\pi\)
0.192241 0.981348i \(-0.438424\pi\)
\(180\) 0.689363 1.19401i 0.0513821 0.0889964i
\(181\) 16.7087 1.24195 0.620973 0.783832i \(-0.286738\pi\)
0.620973 + 0.783832i \(0.286738\pi\)
\(182\) 9.42576 3.60598i 0.698684 0.267293i
\(183\) −5.02768 −0.371657
\(184\) 0.273068 0.472967i 0.0201308 0.0348676i
\(185\) 2.77493 + 4.80632i 0.204017 + 0.353368i
\(186\) −9.05900 15.6906i −0.664238 1.15049i
\(187\) 3.24433 5.61934i 0.237249 0.410927i
\(188\) −13.3802 −0.975854
\(189\) −2.05425 1.66735i −0.149425 0.121282i
\(190\) 1.36814 0.0992551
\(191\) −1.75479 + 3.03938i −0.126972 + 0.219922i −0.922502 0.385992i \(-0.873859\pi\)
0.795530 + 0.605914i \(0.207193\pi\)
\(192\) −4.97867 8.62331i −0.359305 0.622334i
\(193\) 6.82110 + 11.8145i 0.490993 + 0.850426i 0.999946 0.0103688i \(-0.00330056\pi\)
−0.508953 + 0.860794i \(0.669967\pi\)
\(194\) −17.6199 + 30.5186i −1.26504 + 2.19111i
\(195\) 1.12462 0.0805360
\(196\) 11.8037 10.5799i 0.843124 0.755706i
\(197\) −13.4651 −0.959349 −0.479675 0.877447i \(-0.659245\pi\)
−0.479675 + 0.877447i \(0.659245\pi\)
\(198\) −1.13829 + 1.97158i −0.0808950 + 0.140114i
\(199\) −7.14872 12.3820i −0.506760 0.877733i −0.999969 0.00782287i \(-0.997510\pi\)
0.493210 0.869910i \(-0.335823\pi\)
\(200\) −1.26411 2.18951i −0.0893862 0.154821i
\(201\) 1.03153 1.78666i 0.0727583 0.126021i
\(202\) 17.6884 1.24455
\(203\) −1.65196 1.34083i −0.115945 0.0941079i
\(204\) −13.3281 −0.933153
\(205\) −2.98204 + 5.16504i −0.208275 + 0.360742i
\(206\) 10.7768 + 18.6660i 0.750855 + 1.30052i
\(207\) −0.500000 0.866025i −0.0347524 0.0601929i
\(208\) 3.14115 5.44062i 0.217799 0.377239i
\(209\) −1.19960 −0.0829782
\(210\) 3.10695 1.18862i 0.214400 0.0820223i
\(211\) 2.83108 0.194900 0.0974499 0.995240i \(-0.468931\pi\)
0.0974499 + 0.995240i \(0.468931\pi\)
\(212\) −5.10652 + 8.84475i −0.350717 + 0.607460i
\(213\) 2.15046 + 3.72471i 0.147347 + 0.255213i
\(214\) −8.33528 14.4371i −0.569788 0.986901i
\(215\) 1.59358 2.76016i 0.108681 0.188241i
\(216\) 0.546135 0.0371598
\(217\) 3.65720 22.9229i 0.248267 1.55611i
\(218\) −7.87123 −0.533107
\(219\) −0.578067 + 1.00124i −0.0390622 + 0.0676577i
\(220\) −0.759977 1.31632i −0.0512376 0.0887461i
\(221\) −5.43585 9.41517i −0.365655 0.633333i
\(222\) −9.41179 + 16.3017i −0.631678 + 1.09410i
\(223\) 4.78780 0.320615 0.160307 0.987067i \(-0.448751\pi\)
0.160307 + 0.987067i \(0.448751\pi\)
\(224\) 3.38300 21.2042i 0.226036 1.41677i
\(225\) −4.62930 −0.308620
\(226\) 9.18360 15.9065i 0.610884 1.05808i
\(227\) −9.64756 16.7101i −0.640331 1.10909i −0.985359 0.170493i \(-0.945464\pi\)
0.345028 0.938592i \(-0.387869\pi\)
\(228\) 1.23203 + 2.13394i 0.0815931 + 0.141323i
\(229\) −4.06477 + 7.04038i −0.268607 + 0.465242i −0.968502 0.249004i \(-0.919897\pi\)
0.699895 + 0.714246i \(0.253230\pi\)
\(230\) 1.25732 0.0829050
\(231\) −2.72421 + 1.04219i −0.179240 + 0.0685714i
\(232\) 0.439185 0.0288339
\(233\) −3.97470 + 6.88438i −0.260391 + 0.451011i −0.966346 0.257246i \(-0.917185\pi\)
0.705955 + 0.708257i \(0.250518\pi\)
\(234\) 1.90720 + 3.30337i 0.124678 + 0.215948i
\(235\) −1.79879 3.11560i −0.117340 0.203239i
\(236\) 8.37924 14.5133i 0.545442 0.944734i
\(237\) −15.1716 −0.985501
\(238\) −24.9683 20.2657i −1.61845 1.31363i
\(239\) 15.7789 1.02065 0.510326 0.859981i \(-0.329525\pi\)
0.510326 + 0.859981i \(0.329525\pi\)
\(240\) 1.03539 1.79335i 0.0668344 0.115761i
\(241\) 5.63279 + 9.75628i 0.362840 + 0.628457i 0.988427 0.151697i \(-0.0484738\pi\)
−0.625587 + 0.780154i \(0.715141\pi\)
\(242\) −10.1029 17.4988i −0.649441 1.12486i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 11.3850 0.728851
\(245\) 4.05039 + 1.32619i 0.258770 + 0.0847269i
\(246\) −20.2285 −1.28972
\(247\) −1.00496 + 1.74065i −0.0639443 + 0.110755i
\(248\) 2.39579 + 4.14963i 0.152133 + 0.263501i
\(249\) −5.35981 9.28346i −0.339664 0.588315i
\(250\) 6.05354 10.4850i 0.382859 0.663132i
\(251\) −2.27255 −0.143442 −0.0717209 0.997425i \(-0.522849\pi\)
−0.0717209 + 0.997425i \(0.522849\pi\)
\(252\) 4.65178 + 3.77565i 0.293035 + 0.237844i
\(253\) −1.10243 −0.0693094
\(254\) 8.16775 14.1470i 0.512490 0.887659i
\(255\) −1.79178 3.10346i −0.112206 0.194346i
\(256\) −5.48557 9.50129i −0.342848 0.593831i
\(257\) 0.435642 0.754555i 0.0271746 0.0470678i −0.852118 0.523349i \(-0.824682\pi\)
0.879293 + 0.476281i \(0.158016\pi\)
\(258\) 10.8099 0.672998
\(259\) −22.5247 + 8.61721i −1.39962 + 0.535447i
\(260\) −2.54667 −0.157938
\(261\) 0.402085 0.696431i 0.0248884 0.0431080i
\(262\) 0.491181 + 0.850750i 0.0303452 + 0.0525595i
\(263\) 2.66738 + 4.62004i 0.164478 + 0.284884i 0.936470 0.350748i \(-0.114073\pi\)
−0.771992 + 0.635632i \(0.780739\pi\)
\(264\) 0.301039 0.521414i 0.0185277 0.0320908i
\(265\) −2.74601 −0.168686
\(266\) −0.936674 + 5.87095i −0.0574311 + 0.359971i
\(267\) 7.92167 0.484798
\(268\) −2.33586 + 4.04582i −0.142685 + 0.247138i
\(269\) −11.3694 19.6923i −0.693203 1.20066i −0.970783 0.239960i \(-0.922866\pi\)
0.277580 0.960703i \(-0.410468\pi\)
\(270\) 0.628658 + 1.08887i 0.0382589 + 0.0662664i
\(271\) 3.21075 5.56119i 0.195039 0.337818i −0.751874 0.659307i \(-0.770850\pi\)
0.946913 + 0.321489i \(0.104183\pi\)
\(272\) −20.0182 −1.21378
\(273\) −0.769956 + 4.82598i −0.0465999 + 0.292082i
\(274\) 17.0843 1.03210
\(275\) −2.55175 + 4.41975i −0.153876 + 0.266521i
\(276\) 1.13223 + 1.96108i 0.0681524 + 0.118043i
\(277\) −7.01764 12.1549i −0.421649 0.730317i 0.574452 0.818538i \(-0.305215\pi\)
−0.996101 + 0.0882210i \(0.971882\pi\)
\(278\) −2.56265 + 4.43864i −0.153697 + 0.266212i
\(279\) 8.77360 0.525262
\(280\) −0.821678 + 0.314347i −0.0491047 + 0.0187858i
\(281\) 24.5278 1.46321 0.731603 0.681731i \(-0.238773\pi\)
0.731603 + 0.681731i \(0.238773\pi\)
\(282\) 6.10099 10.5672i 0.363309 0.629269i
\(283\) 2.19970 + 3.81000i 0.130759 + 0.226481i 0.923969 0.382467i \(-0.124925\pi\)
−0.793210 + 0.608948i \(0.791592\pi\)
\(284\) −4.86964 8.43446i −0.288960 0.500493i
\(285\) −0.331259 + 0.573757i −0.0196221 + 0.0339864i
\(286\) 4.20513 0.248655
\(287\) −20.1226 16.3327i −1.18780 0.964087i
\(288\) 8.11580 0.478228
\(289\) −8.82108 + 15.2786i −0.518887 + 0.898739i
\(290\) 0.505548 + 0.875634i 0.0296868 + 0.0514190i
\(291\) −8.53242 14.7786i −0.500179 0.866336i
\(292\) 1.30901 2.26728i 0.0766042 0.132682i
\(293\) 13.3413 0.779407 0.389704 0.920940i \(-0.372577\pi\)
0.389704 + 0.920940i \(0.372577\pi\)
\(294\) 2.97346 + 14.1463i 0.173416 + 0.825028i
\(295\) 4.50590 0.262344
\(296\) 2.48909 4.31123i 0.144675 0.250585i
\(297\) −0.551216 0.954735i −0.0319848 0.0553993i
\(298\) 21.2656 + 36.8331i 1.23188 + 2.13369i
\(299\) −0.923560 + 1.59965i −0.0534108 + 0.0925103i
\(300\) 10.4829 0.605230
\(301\) 10.7534 + 8.72806i 0.619814 + 0.503077i
\(302\) −26.4220 −1.52042
\(303\) −4.28278 + 7.41800i −0.246039 + 0.426153i
\(304\) 1.85045 + 3.20508i 0.106131 + 0.183824i
\(305\) 1.53056 + 2.65101i 0.0876396 + 0.151796i
\(306\) 6.07722 10.5260i 0.347411 0.601734i
\(307\) 24.5499 1.40114 0.700569 0.713585i \(-0.252930\pi\)
0.700569 + 0.713585i \(0.252930\pi\)
\(308\) 6.16889 2.36001i 0.351505 0.134474i
\(309\) −10.4373 −0.593756
\(310\) −5.51560 + 9.55330i −0.313265 + 0.542591i
\(311\) −13.0387 22.5836i −0.739355 1.28060i −0.952786 0.303643i \(-0.901797\pi\)
0.213431 0.976958i \(-0.431536\pi\)
\(312\) −0.504389 0.873627i −0.0285554 0.0494594i
\(313\) −12.0987 + 20.9555i −0.683857 + 1.18448i 0.289937 + 0.957046i \(0.406366\pi\)
−0.973794 + 0.227430i \(0.926968\pi\)
\(314\) 9.43741 0.532584
\(315\) −0.253795 + 1.59076i −0.0142997 + 0.0896289i
\(316\) 34.3555 1.93265
\(317\) −1.80488 + 3.12614i −0.101372 + 0.175582i −0.912250 0.409633i \(-0.865657\pi\)
0.810878 + 0.585215i \(0.198990\pi\)
\(318\) −4.65684 8.06589i −0.261143 0.452313i
\(319\) −0.443271 0.767768i −0.0248184 0.0429868i
\(320\) −3.03128 + 5.25033i −0.169454 + 0.293502i
\(321\) 8.07268 0.450573
\(322\) −0.860802 + 5.39539i −0.0479706 + 0.300674i
\(323\) 6.40453 0.356358
\(324\) −1.13223 + 1.96108i −0.0629018 + 0.108949i
\(325\) 4.27543 + 7.40527i 0.237158 + 0.410770i
\(326\) −22.4620 38.9053i −1.24406 2.15477i
\(327\) 1.90581 3.30097i 0.105392 0.182544i
\(328\) 5.34972 0.295389
\(329\) 14.6012 5.58592i 0.804987 0.307962i
\(330\) 1.38611 0.0763027
\(331\) −4.11702 + 7.13089i −0.226292 + 0.391949i −0.956706 0.291055i \(-0.905994\pi\)
0.730414 + 0.683004i \(0.239327\pi\)
\(332\) 12.1371 + 21.0221i 0.666110 + 1.15374i
\(333\) −4.55764 7.89406i −0.249757 0.432592i
\(334\) −4.05103 + 7.01659i −0.221663 + 0.383931i
\(335\) −1.25610 −0.0686279
\(336\) 6.98677 + 5.67087i 0.381160 + 0.309371i
\(337\) 26.1865 1.42647 0.713235 0.700925i \(-0.247229\pi\)
0.713235 + 0.700925i \(0.247229\pi\)
\(338\) −9.90004 + 17.1474i −0.538491 + 0.932694i
\(339\) 4.44714 + 7.70267i 0.241535 + 0.418352i
\(340\) 4.05743 + 7.02767i 0.220045 + 0.381129i
\(341\) 4.83615 8.37646i 0.261892 0.453611i
\(342\) −2.24707 −0.121508
\(343\) −8.46396 + 16.4731i −0.457011 + 0.889461i
\(344\) −2.85885 −0.154139
\(345\) −0.304427 + 0.527282i −0.0163898 + 0.0283879i
\(346\) −24.7983 42.9520i −1.33317 2.30911i
\(347\) 2.96367 + 5.13323i 0.159098 + 0.275566i 0.934544 0.355848i \(-0.115808\pi\)
−0.775445 + 0.631415i \(0.782475\pi\)
\(348\) −0.910506 + 1.57704i −0.0488083 + 0.0845384i
\(349\) 29.6319 1.58616 0.793080 0.609118i \(-0.208476\pi\)
0.793080 + 0.609118i \(0.208476\pi\)
\(350\) 19.6382 + 15.9395i 1.04970 + 0.852001i
\(351\) −1.84712 −0.0985919
\(352\) 4.47356 7.74844i 0.238442 0.412993i
\(353\) 7.11938 + 12.3311i 0.378926 + 0.656320i 0.990906 0.134554i \(-0.0429600\pi\)
−0.611980 + 0.790873i \(0.709627\pi\)
\(354\) 7.64137 + 13.2352i 0.406134 + 0.703446i
\(355\) 1.30931 2.26780i 0.0694912 0.120362i
\(356\) −17.9383 −0.950730
\(357\) 14.5443 5.56415i 0.769764 0.294486i
\(358\) −41.6502 −2.20128
\(359\) −1.39115 + 2.40954i −0.0734220 + 0.127171i −0.900399 0.435065i \(-0.856725\pi\)
0.826977 + 0.562236i \(0.190059\pi\)
\(360\) −0.166258 0.287967i −0.00876257 0.0151772i
\(361\) 8.90797 + 15.4291i 0.468841 + 0.812056i
\(362\) 17.2522 29.8817i 0.906755 1.57055i
\(363\) 9.78464 0.513561
\(364\) 1.74354 10.9283i 0.0913862 0.572797i
\(365\) 0.703916 0.0368447
\(366\) −5.19123 + 8.99147i −0.271350 + 0.469992i
\(367\) 3.33224 + 5.77160i 0.173941 + 0.301275i 0.939794 0.341740i \(-0.111016\pi\)
−0.765853 + 0.643016i \(0.777683\pi\)
\(368\) 1.70056 + 2.94546i 0.0886480 + 0.153543i
\(369\) 4.89780 8.48323i 0.254969 0.441619i
\(370\) 11.4608 0.595818
\(371\) 1.88001 11.7837i 0.0976053 0.611777i
\(372\) −19.8675 −1.03008
\(373\) 9.54119 16.5258i 0.494024 0.855675i −0.505952 0.862562i \(-0.668859\pi\)
0.999976 + 0.00688662i \(0.00219210\pi\)
\(374\) −6.69972 11.6043i −0.346434 0.600042i
\(375\) 2.93141 + 5.07736i 0.151378 + 0.262194i
\(376\) −1.61350 + 2.79466i −0.0832098 + 0.144124i
\(377\) −1.48540 −0.0765018
\(378\) −5.10295 + 1.95222i −0.262467 + 0.100411i
\(379\) 13.2631 0.681282 0.340641 0.940193i \(-0.389356\pi\)
0.340641 + 0.940193i \(0.389356\pi\)
\(380\) 0.750124 1.29925i 0.0384806 0.0666503i
\(381\) 3.95521 + 6.85063i 0.202632 + 0.350969i
\(382\) 3.62374 + 6.27650i 0.185407 + 0.321134i
\(383\) 1.55801 2.69855i 0.0796105 0.137889i −0.823471 0.567358i \(-0.807966\pi\)
0.903082 + 0.429468i \(0.141299\pi\)
\(384\) −4.33089 −0.221010
\(385\) 1.37885 + 1.11916i 0.0702729 + 0.0570376i
\(386\) 28.1719 1.43391
\(387\) −2.61735 + 4.53338i −0.133047 + 0.230445i
\(388\) 19.3214 + 33.4656i 0.980894 + 1.69896i
\(389\) 4.99205 + 8.64648i 0.253107 + 0.438394i 0.964380 0.264522i \(-0.0852143\pi\)
−0.711273 + 0.702916i \(0.751881\pi\)
\(390\) 1.16121 2.01127i 0.0588000 0.101845i
\(391\) 5.88576 0.297656
\(392\) −0.786376 3.74120i −0.0397180 0.188959i
\(393\) −0.475706 −0.0239962
\(394\) −13.9031 + 24.0809i −0.700429 + 1.21318i
\(395\) 4.61863 + 7.99971i 0.232389 + 0.402509i
\(396\) 1.24821 + 2.16196i 0.0627249 + 0.108643i
\(397\) −2.82222 + 4.88823i −0.141643 + 0.245333i −0.928116 0.372292i \(-0.878572\pi\)
0.786472 + 0.617626i \(0.211905\pi\)
\(398\) −29.5251 −1.47996
\(399\) −2.23531 1.81431i −0.111906 0.0908291i
\(400\) 15.7448 0.787242
\(401\) −19.2811 + 33.3959i −0.962853 + 1.66771i −0.247576 + 0.968869i \(0.579634\pi\)
−0.715277 + 0.698841i \(0.753699\pi\)
\(402\) −2.13016 3.68955i −0.106243 0.184018i
\(403\) −8.10294 14.0347i −0.403636 0.699119i
\(404\) 9.69821 16.7978i 0.482504 0.835722i
\(405\) −0.608853 −0.0302542
\(406\) −4.10363 + 1.56992i −0.203660 + 0.0779136i
\(407\) −10.0490 −0.498110
\(408\) −1.60721 + 2.78377i −0.0795688 + 0.137817i
\(409\) 18.4036 + 31.8759i 0.909997 + 1.57616i 0.814065 + 0.580774i \(0.197250\pi\)
0.0959322 + 0.995388i \(0.469417\pi\)
\(410\) 6.15808 + 10.6661i 0.304126 + 0.526762i
\(411\) −4.13651 + 7.16465i −0.204039 + 0.353406i
\(412\) 23.6349 1.16441
\(413\) −3.08489 + 19.3357i −0.151798 + 0.951448i
\(414\) −2.06506 −0.101492
\(415\) −3.26334 + 5.65226i −0.160191 + 0.277459i
\(416\) −7.49542 12.9825i −0.367493 0.636517i
\(417\) −1.24096 2.14940i −0.0607699 0.105257i
\(418\) −1.23862 + 2.14536i −0.0605831 + 0.104933i
\(419\) −6.45390 −0.315293 −0.157647 0.987496i \(-0.550391\pi\)
−0.157647 + 0.987496i \(0.550391\pi\)
\(420\) 0.574710 3.60221i 0.0280430 0.175770i
\(421\) 29.9287 1.45863 0.729317 0.684176i \(-0.239838\pi\)
0.729317 + 0.684176i \(0.239838\pi\)
\(422\) 2.92318 5.06309i 0.142298 0.246467i
\(423\) 2.95439 + 5.11716i 0.143647 + 0.248805i
\(424\) 1.23157 + 2.13315i 0.0598104 + 0.103595i
\(425\) 13.6235 23.5965i 0.660835 1.14460i
\(426\) 8.88165 0.430317
\(427\) −12.4239 + 4.75296i −0.601233 + 0.230012i
\(428\) −18.2803 −0.883612
\(429\) −1.01816 + 1.76351i −0.0491574 + 0.0851430i
\(430\) −3.29083 5.69989i −0.158698 0.274873i
\(431\) −3.87420 6.71030i −0.186613 0.323224i 0.757506 0.652829i \(-0.226418\pi\)
−0.944119 + 0.329605i \(0.893085\pi\)
\(432\) −1.70056 + 2.94546i −0.0818184 + 0.141714i
\(433\) 5.17696 0.248789 0.124394 0.992233i \(-0.460301\pi\)
0.124394 + 0.992233i \(0.460301\pi\)
\(434\) −37.2189 30.2090i −1.78656 1.45008i
\(435\) −0.489621 −0.0234755
\(436\) −4.31565 + 7.47492i −0.206682 + 0.357984i
\(437\) −0.544070 0.942358i −0.0260264 0.0450791i
\(438\) 1.19374 + 2.06762i 0.0570392 + 0.0987948i
\(439\) 15.1460 26.2337i 0.722881 1.25207i −0.236960 0.971519i \(-0.576151\pi\)
0.959840 0.280547i \(-0.0905157\pi\)
\(440\) −0.366577 −0.0174759
\(441\) −6.65249 2.17817i −0.316785 0.103722i
\(442\) −22.4507 −1.06787
\(443\) −19.1011 + 33.0840i −0.907519 + 1.57187i −0.0900186 + 0.995940i \(0.528693\pi\)
−0.817500 + 0.575928i \(0.804641\pi\)
\(444\) 10.3206 + 17.8758i 0.489795 + 0.848349i
\(445\) −2.41157 4.17695i −0.114319 0.198007i
\(446\) 4.94354 8.56246i 0.234083 0.405444i
\(447\) −20.5957 −0.974141
\(448\) −20.4549 16.6024i −0.966402 0.784388i
\(449\) 2.95568 0.139487 0.0697435 0.997565i \(-0.477782\pi\)
0.0697435 + 0.997565i \(0.477782\pi\)
\(450\) −4.77988 + 8.27900i −0.225326 + 0.390276i
\(451\) −5.39949 9.35219i −0.254252 0.440378i
\(452\) −10.0704 17.4424i −0.473671 0.820423i
\(453\) 6.39740 11.0806i 0.300576 0.520613i
\(454\) −39.8455 −1.87004
\(455\) 2.77905 1.06317i 0.130284 0.0498423i
\(456\) 0.594272 0.0278293
\(457\) −8.84772 + 15.3247i −0.413879 + 0.716859i −0.995310 0.0967363i \(-0.969160\pi\)
0.581431 + 0.813596i \(0.302493\pi\)
\(458\) 8.39398 + 14.5388i 0.392225 + 0.679354i
\(459\) 2.94288 + 5.09722i 0.137362 + 0.237918i
\(460\) 0.689363 1.19401i 0.0321417 0.0556711i
\(461\) −11.7447 −0.547005 −0.273503 0.961871i \(-0.588182\pi\)
−0.273503 + 0.961871i \(0.588182\pi\)
\(462\) −0.948976 + 5.94806i −0.0441504 + 0.276729i
\(463\) 27.0872 1.25885 0.629424 0.777062i \(-0.283291\pi\)
0.629424 + 0.777062i \(0.283291\pi\)
\(464\) −1.36754 + 2.36865i −0.0634865 + 0.109962i
\(465\) −2.67092 4.62616i −0.123861 0.214533i
\(466\) 8.20799 + 14.2167i 0.380228 + 0.658574i
\(467\) −11.5760 + 20.0502i −0.535673 + 0.927813i 0.463457 + 0.886119i \(0.346609\pi\)
−0.999130 + 0.0416937i \(0.986725\pi\)
\(468\) 4.18274 0.193347
\(469\) 0.859967 5.39016i 0.0397096 0.248894i
\(470\) −7.42921 −0.342684
\(471\) −2.28502 + 3.95778i −0.105288 + 0.182365i
\(472\) −2.02088 3.50026i −0.0930183 0.161112i
\(473\) 2.88545 + 4.99775i 0.132673 + 0.229797i
\(474\) −15.6651 + 27.1328i −0.719522 + 1.24625i
\(475\) −5.03733 −0.231128
\(476\) −32.9350 + 12.5998i −1.50957 + 0.577512i
\(477\) 4.51013 0.206505
\(478\) 16.2922 28.2189i 0.745187 1.29070i
\(479\) −11.1838 19.3709i −0.510999 0.885077i −0.999919 0.0127478i \(-0.995942\pi\)
0.488919 0.872329i \(-0.337391\pi\)
\(480\) −2.47066 4.27932i −0.112770 0.195323i
\(481\) −8.41850 + 14.5813i −0.383851 + 0.664849i
\(482\) 23.2641 1.05965
\(483\) −2.05425 1.66735i −0.0934716 0.0758670i
\(484\) −22.1570 −1.00714
\(485\) −5.19499 + 8.99799i −0.235892 + 0.408578i
\(486\) −1.03253 1.78839i −0.0468365 0.0811231i
\(487\) −20.9261 36.2451i −0.948252 1.64242i −0.749105 0.662452i \(-0.769516\pi\)
−0.199148 0.979969i \(-0.563817\pi\)
\(488\) 1.37290 2.37793i 0.0621482 0.107644i
\(489\) 21.7544 0.983766
\(490\) 6.55388 5.87436i 0.296074 0.265376i
\(491\) 16.2658 0.734063 0.367032 0.930209i \(-0.380374\pi\)
0.367032 + 0.930209i \(0.380374\pi\)
\(492\) −11.0909 + 19.2100i −0.500016 + 0.866053i
\(493\) 2.36657 + 4.09902i 0.106585 + 0.184611i
\(494\) 2.07531 + 3.59454i 0.0933725 + 0.161726i
\(495\) −0.335610 + 0.581293i −0.0150845 + 0.0261272i
\(496\) −29.8401 −1.33986
\(497\) 8.83517 + 7.17113i 0.396311 + 0.321669i
\(498\) −22.1366 −0.991966
\(499\) 9.91250 17.1689i 0.443744 0.768588i −0.554219 0.832371i \(-0.686983\pi\)
0.997964 + 0.0637829i \(0.0203165\pi\)
\(500\) −6.63808 11.4975i −0.296864 0.514184i
\(501\) −1.96170 3.39777i −0.0876424 0.151801i
\(502\) −2.34647 + 4.06420i −0.104728 + 0.181394i
\(503\) 9.18201 0.409406 0.204703 0.978824i \(-0.434377\pi\)
0.204703 + 0.978824i \(0.434377\pi\)
\(504\) 1.34955 0.516294i 0.0601138 0.0229976i
\(505\) 5.21517 0.232072
\(506\) −1.13829 + 1.97158i −0.0506033 + 0.0876476i
\(507\) −4.79408 8.30358i −0.212912 0.368775i
\(508\) −8.95644 15.5130i −0.397378 0.688279i
\(509\) 16.4007 28.4068i 0.726948 1.25911i −0.231219 0.972902i \(-0.574271\pi\)
0.958167 0.286210i \(-0.0923954\pi\)
\(510\) −7.40026 −0.327689
\(511\) −0.481925 + 3.02064i −0.0213191 + 0.133625i
\(512\) −31.3178 −1.38407
\(513\) 0.544070 0.942358i 0.0240213 0.0416061i
\(514\) −0.899627 1.55820i −0.0396808 0.0687292i
\(515\) 3.17738 + 5.50339i 0.140012 + 0.242508i
\(516\) 5.92689 10.2657i 0.260917 0.451921i
\(517\) 6.51404 0.286487
\(518\) −7.84645 + 49.1805i −0.344753 + 2.16087i
\(519\) 24.0171 1.05423
\(520\) −0.307099 + 0.531910i −0.0134672 + 0.0233258i
\(521\) −3.43178 5.94402i −0.150349 0.260412i 0.781007 0.624523i \(-0.214706\pi\)
−0.931356 + 0.364110i \(0.881373\pi\)
\(522\) −0.830328 1.43817i −0.0363425 0.0629470i
\(523\) −4.88311 + 8.45780i −0.213524 + 0.369834i −0.952815 0.303552i \(-0.901827\pi\)
0.739291 + 0.673386i \(0.235161\pi\)
\(524\) 1.07722 0.0470586
\(525\) −11.4394 + 4.37635i −0.499257 + 0.190999i
\(526\) 11.0166 0.480347
\(527\) −25.8197 + 44.7210i −1.12472 + 1.94808i
\(528\) 1.87476 + 3.24718i 0.0815884 + 0.141315i
\(529\) −0.500000 0.866025i −0.0217391 0.0376533i
\(530\) −2.83533 + 4.91094i −0.123159 + 0.213318i
\(531\) −7.40064 −0.321160
\(532\) 5.06179 + 4.10844i 0.219456 + 0.178124i
\(533\) −18.0936 −0.783722
\(534\) 8.17935 14.1670i 0.353955 0.613068i
\(535\) −2.45754 4.25658i −0.106249 0.184028i
\(536\) 0.563354 + 0.975757i 0.0243332 + 0.0421463i
\(537\) 10.0845 17.4669i 0.435179 0.753752i
\(538\) −46.9568 −2.02445
\(539\) −5.74653 + 5.15072i −0.247521 + 0.221857i
\(540\) 1.37873 0.0593309
\(541\) 2.32104 4.02015i 0.0997891 0.172840i −0.811808 0.583924i \(-0.801517\pi\)
0.911597 + 0.411084i \(0.134850\pi\)
\(542\) −6.63039 11.4842i −0.284800 0.493288i
\(543\) 8.35434 + 14.4701i 0.358519 + 0.620973i
\(544\) −23.8838 + 41.3680i −1.02401 + 1.77364i
\(545\) −2.32072 −0.0994088
\(546\) 7.83575 + 6.35995i 0.335339 + 0.272181i
\(547\) 21.6976 0.927722 0.463861 0.885908i \(-0.346464\pi\)
0.463861 + 0.885908i \(0.346464\pi\)
\(548\) 9.36698 16.2241i 0.400138 0.693059i
\(549\) −2.51384 4.35410i −0.107288 0.185829i
\(550\) 5.26950 + 9.12704i 0.224692 + 0.389179i
\(551\) 0.437525 0.757815i 0.0186392 0.0322840i
\(552\) 0.546135 0.0232451
\(553\) −37.4904 + 14.3426i −1.59425 + 0.609909i
\(554\) −28.9836 −1.23140
\(555\) −2.77493 + 4.80632i −0.117789 + 0.204017i
\(556\) 2.81010 + 4.86724i 0.119175 + 0.206417i
\(557\) 16.0798 + 27.8510i 0.681323 + 1.18009i 0.974577 + 0.224051i \(0.0719283\pi\)
−0.293255 + 0.956034i \(0.594738\pi\)
\(558\) 9.05900 15.6906i 0.383498 0.664238i
\(559\) 9.66910 0.408960
\(560\) 0.863190 5.41036i 0.0364764 0.228630i
\(561\) 6.48865 0.273951
\(562\) 25.3257 43.8653i 1.06830 1.85035i
\(563\) 6.15797 + 10.6659i 0.259528 + 0.449515i 0.966115 0.258110i \(-0.0830998\pi\)
−0.706588 + 0.707625i \(0.749767\pi\)
\(564\) −6.69012 11.5876i −0.281705 0.487927i
\(565\) 2.70765 4.68979i 0.113912 0.197301i
\(566\) 9.08503 0.381872
\(567\) 0.416841 2.61271i 0.0175057 0.109723i
\(568\) −2.34888 −0.0985570
\(569\) 13.1175 22.7202i 0.549914 0.952479i −0.448366 0.893850i \(-0.647994\pi\)
0.998280 0.0586291i \(-0.0186729\pi\)
\(570\) 0.684069 + 1.18484i 0.0286525 + 0.0496276i
\(571\) 2.79914 + 4.84826i 0.117141 + 0.202893i 0.918633 0.395111i \(-0.129294\pi\)
−0.801493 + 0.598004i \(0.795961\pi\)
\(572\) 2.30559 3.99340i 0.0964017 0.166973i
\(573\) −3.50958 −0.146615
\(574\) −49.9864 + 19.1232i −2.08639 + 0.798185i
\(575\) −4.62930 −0.193055
\(576\) 4.97867 8.62331i 0.207445 0.359305i
\(577\) 5.06738 + 8.77696i 0.210958 + 0.365390i 0.952015 0.306053i \(-0.0990084\pi\)
−0.741057 + 0.671442i \(0.765675\pi\)
\(578\) 18.2160 + 31.5511i 0.757688 + 1.31235i
\(579\) −6.82110 + 11.8145i −0.283475 + 0.490993i
\(580\) 1.10873 0.0460375
\(581\) −22.0208 17.8733i −0.913576 0.741511i
\(582\) −35.2399 −1.46074
\(583\) 2.48606 4.30598i 0.102962 0.178336i
\(584\) −0.315703 0.546814i −0.0130639 0.0226273i
\(585\) 0.562312 + 0.973953i 0.0232487 + 0.0402680i
\(586\) 13.7753 23.8595i 0.569052 0.985627i
\(587\) 27.2323 1.12400 0.561999 0.827138i \(-0.310032\pi\)
0.561999 + 0.827138i \(0.310032\pi\)
\(588\) 15.0643 + 4.93239i 0.621242 + 0.203408i
\(589\) 9.54691 0.393374
\(590\) 4.65247 8.05832i 0.191539 0.331756i
\(591\) −6.73255 11.6611i −0.276940 0.479675i
\(592\) 15.5011 + 26.8487i 0.637092 + 1.10348i
\(593\) −19.1773 + 33.2161i −0.787519 + 1.36402i 0.139964 + 0.990157i \(0.455301\pi\)
−0.927483 + 0.373866i \(0.878032\pi\)
\(594\) −2.27659 −0.0934095
\(595\) −7.36154 5.97505i −0.301794 0.244953i
\(596\) 46.6381 1.91037
\(597\) 7.14872 12.3820i 0.292578 0.506760i
\(598\) 1.90720 + 3.30337i 0.0779914 + 0.135085i
\(599\) 3.44189 + 5.96153i 0.140632 + 0.243581i 0.927735 0.373240i \(-0.121753\pi\)
−0.787103 + 0.616822i \(0.788420\pi\)
\(600\) 1.26411 2.18951i 0.0516071 0.0893862i
\(601\) 1.80012 0.0734283 0.0367141 0.999326i \(-0.488311\pi\)
0.0367141 + 0.999326i \(0.488311\pi\)
\(602\) 26.7124 10.2193i 1.08872 0.416507i
\(603\) 2.06305 0.0840141
\(604\) −14.4867 + 25.0917i −0.589455 + 1.02097i
\(605\) −2.97870 5.15927i −0.121102 0.209754i
\(606\) 8.84420 + 15.3186i 0.359271 + 0.622275i
\(607\) −1.46758 + 2.54193i −0.0595674 + 0.103174i −0.894271 0.447525i \(-0.852305\pi\)
0.834704 + 0.550699i \(0.185639\pi\)
\(608\) 8.83113 0.358150
\(609\) 0.335211 2.10106i 0.0135834 0.0851392i
\(610\) 6.32139 0.255946
\(611\) 5.45711 9.45200i 0.220771 0.382387i
\(612\) −6.66405 11.5425i −0.269378 0.466577i
\(613\) −15.8695 27.4867i −0.640962 1.11018i −0.985218 0.171303i \(-0.945202\pi\)
0.344256 0.938876i \(-0.388131\pi\)
\(614\) 25.3485 43.9049i 1.02298 1.77186i
\(615\) −5.96408 −0.240495
\(616\) 0.250971 1.57305i 0.0101119 0.0633801i
\(617\) −41.7807 −1.68203 −0.841013 0.541015i \(-0.818040\pi\)
−0.841013 + 0.541015i \(0.818040\pi\)
\(618\) −10.7768 + 18.6660i −0.433506 + 0.750855i
\(619\) −13.6085 23.5706i −0.546972 0.947383i −0.998480 0.0551163i \(-0.982447\pi\)
0.451508 0.892267i \(-0.350886\pi\)
\(620\) 6.04820 + 10.4758i 0.242901 + 0.420718i
\(621\) 0.500000 0.866025i 0.0200643 0.0347524i
\(622\) −53.8512 −2.15924
\(623\) 19.5752 7.48882i 0.784263 0.300033i
\(624\) 6.28229 0.251493
\(625\) −9.78844 + 16.9541i −0.391538 + 0.678163i
\(626\) 24.9845 + 43.2743i 0.998580 + 1.72959i
\(627\) −0.599801 1.03889i −0.0239537 0.0414891i
\(628\) 5.17436 8.96225i 0.206479 0.357633i
\(629\) 53.6503 2.13918
\(630\) 2.58284 + 2.09639i 0.102903 + 0.0835220i
\(631\) 25.8728 1.02998 0.514990 0.857196i \(-0.327795\pi\)
0.514990 + 0.857196i \(0.327795\pi\)
\(632\) 4.14287 7.17566i 0.164795 0.285433i
\(633\) 1.41554 + 2.45179i 0.0562627 + 0.0974499i
\(634\) 3.72718 + 6.45567i 0.148025 + 0.256387i
\(635\) 2.40814 4.17103i 0.0955643 0.165522i
\(636\) −10.2130 −0.404973
\(637\) 2.65965 + 12.6533i 0.105379 + 0.501343i
\(638\) −1.83076 −0.0724805
\(639\) −2.15046 + 3.72471i −0.0850709 + 0.147347i
\(640\) 1.31844 + 2.28360i 0.0521158 + 0.0902672i
\(641\) 6.67953 + 11.5693i 0.263826 + 0.456959i 0.967255 0.253805i \(-0.0816823\pi\)
−0.703430 + 0.710765i \(0.748349\pi\)
\(642\) 8.33528 14.4371i 0.328967 0.569788i
\(643\) 43.4719 1.71436 0.857182 0.515014i \(-0.172213\pi\)
0.857182 + 0.515014i \(0.172213\pi\)
\(644\) 4.65178 + 3.77565i 0.183306 + 0.148782i
\(645\) 3.18716 0.125494
\(646\) 6.61287 11.4538i 0.260180 0.450645i
\(647\) 23.0757 + 39.9683i 0.907201 + 1.57132i 0.817936 + 0.575310i \(0.195118\pi\)
0.0892649 + 0.996008i \(0.471548\pi\)
\(648\) 0.273068 + 0.472967i 0.0107271 + 0.0185799i
\(649\) −4.07935 + 7.06565i −0.160129 + 0.277351i
\(650\) 17.6580 0.692605
\(651\) 21.6804 8.29420i 0.849721 0.325075i
\(652\) −49.2620 −1.92925
\(653\) 16.7983 29.0955i 0.657367 1.13859i −0.323928 0.946082i \(-0.605003\pi\)
0.981295 0.192511i \(-0.0616633\pi\)
\(654\) −3.93562 6.81669i −0.153895 0.266554i
\(655\) 0.144818 + 0.250832i 0.00565849 + 0.00980080i
\(656\) −16.6580 + 28.8526i −0.650387 + 1.12650i
\(657\) −1.15613 −0.0451051
\(658\) 5.08629 31.8802i 0.198284 1.24282i
\(659\) 10.2122 0.397809 0.198905 0.980019i \(-0.436262\pi\)
0.198905 + 0.980019i \(0.436262\pi\)
\(660\) 0.759977 1.31632i 0.0295820 0.0512376i
\(661\) −9.00998 15.6057i −0.350448 0.606993i 0.635880 0.771788i \(-0.280637\pi\)
−0.986328 + 0.164795i \(0.947304\pi\)
\(662\) 8.50189 + 14.7257i 0.330435 + 0.572331i
\(663\) 5.43585 9.41517i 0.211111 0.365655i
\(664\) 5.85436 0.227193
\(665\) −0.276165 + 1.73097i −0.0107092 + 0.0671240i
\(666\) −18.8236 −0.729399
\(667\) 0.402085 0.696431i 0.0155688 0.0269659i
\(668\) 4.44221 + 7.69413i 0.171874 + 0.297695i
\(669\) 2.39390 + 4.14635i 0.0925534 + 0.160307i
\(670\) −1.29696 + 2.24640i −0.0501058 + 0.0867858i
\(671\) −5.54268 −0.213973
\(672\) 20.0549 7.67234i 0.773634 0.295967i
\(673\) −40.5777 −1.56415 −0.782077 0.623181i \(-0.785840\pi\)
−0.782077 + 0.623181i \(0.785840\pi\)
\(674\) 27.0383 46.8318i 1.04148 1.80389i
\(675\) −2.31465 4.00909i −0.0890909 0.154310i
\(676\) 10.8560 + 18.8032i 0.417539 + 0.723199i
\(677\) −12.9712 + 22.4667i −0.498522 + 0.863466i −0.999999 0.00170564i \(-0.999457\pi\)
0.501476 + 0.865171i \(0.332790\pi\)
\(678\) 18.3672 0.705388
\(679\) −35.0555 28.4531i −1.34531 1.09193i
\(680\) 1.95711 0.0750518
\(681\) 9.64756 16.7101i 0.369695 0.640331i
\(682\) −9.98694 17.2979i −0.382420 0.662370i
\(683\) 12.9083 + 22.3579i 0.493924 + 0.855502i 0.999975 0.00700177i \(-0.00222875\pi\)
−0.506051 + 0.862503i \(0.668895\pi\)
\(684\) −1.23203 + 2.13394i −0.0471078 + 0.0815931i
\(685\) 5.03705 0.192456
\(686\) 20.7210 + 32.1458i 0.791132 + 1.22733i
\(687\) −8.12954 −0.310161
\(688\) 8.90193 15.4186i 0.339383 0.587829i
\(689\) −4.16538 7.21465i −0.158688 0.274856i
\(690\) 0.628658 + 1.08887i 0.0239326 + 0.0414525i
\(691\) 7.80100 13.5117i 0.296764 0.514010i −0.678630 0.734480i \(-0.737426\pi\)
0.975394 + 0.220470i \(0.0707592\pi\)
\(692\) −54.3859 −2.06744
\(693\) −2.26467 1.83814i −0.0860278 0.0698252i
\(694\) 12.2403 0.464636
\(695\) −0.755561 + 1.30867i −0.0286600 + 0.0496407i
\(696\) 0.219593 + 0.380346i 0.00832364 + 0.0144170i
\(697\) 28.8272 + 49.9303i 1.09191 + 1.89124i
\(698\) 30.5958 52.9935i 1.15807 2.00583i
\(699\) −7.94940 −0.300674
\(700\) 25.9042 9.91008i 0.979086 0.374566i
\(701\) 38.6350 1.45922 0.729612 0.683861i \(-0.239701\pi\)
0.729612 + 0.683861i \(0.239701\pi\)
\(702\) −1.90720 + 3.30337i −0.0719828 + 0.124678i
\(703\) −4.95935 8.58985i −0.187046 0.323972i
\(704\) −5.48865 9.50662i −0.206861 0.358294i
\(705\) 1.79879 3.11560i 0.0677464 0.117340i
\(706\) 29.4039 1.10663
\(707\) −3.57048 + 22.3793i −0.134282 + 0.841661i
\(708\) 16.7585 0.629823
\(709\) 21.6716 37.5363i 0.813894 1.40971i −0.0962250 0.995360i \(-0.530677\pi\)
0.910119 0.414346i \(-0.135990\pi\)
\(710\) −2.70381 4.68313i −0.101472 0.175755i
\(711\) −7.58579 13.1390i −0.284490 0.492750i
\(712\) −2.16315 + 3.74669i −0.0810675 + 0.140413i
\(713\) 8.77360 0.328574
\(714\) 5.06647 31.7560i 0.189608 1.18844i
\(715\) 1.23982 0.0463667
\(716\) −22.8360 + 39.5531i −0.853422 + 1.47817i
\(717\) 7.88945 + 13.6649i 0.294637 + 0.510326i
\(718\) 2.87280 + 4.97584i 0.107212 + 0.185697i
\(719\) 14.7243 25.5032i 0.549122 0.951107i −0.449213 0.893425i \(-0.648296\pi\)
0.998335 0.0576826i \(-0.0183711\pi\)
\(720\) 2.07079 0.0771737
\(721\) −25.7915 + 9.86697i −0.960525 + 0.367465i
\(722\) 36.7910 1.36922
\(723\) −5.63279 + 9.75628i −0.209486 + 0.362840i
\(724\) −18.9181 32.7671i −0.703086 1.21778i
\(725\) −1.86137 3.22399i −0.0691295 0.119736i
\(726\) 10.1029 17.4988i 0.374955 0.649441i
\(727\) −50.1254 −1.85905 −0.929524 0.368763i \(-0.879782\pi\)
−0.929524 + 0.368763i \(0.879782\pi\)
\(728\) −2.07228 1.68198i −0.0768039 0.0623385i
\(729\) 1.00000 0.0370370
\(730\) 0.726814 1.25888i 0.0269006 0.0465932i
\(731\) −15.4051 26.6824i −0.569777 0.986883i
\(732\) 5.69251 + 9.85971i 0.210401 + 0.364425i
\(733\) 10.4880 18.1657i 0.387383 0.670967i −0.604714 0.796443i \(-0.706712\pi\)
0.992097 + 0.125476i \(0.0400458\pi\)
\(734\) 13.7625 0.507984
\(735\) 0.876683 + 4.17083i 0.0323369 + 0.153843i
\(736\) 8.11580 0.299152
\(737\) 1.13719 1.96967i 0.0418889 0.0725537i
\(738\) −10.1142 17.5184i −0.372310 0.644860i
\(739\) −5.79259 10.0331i −0.213084 0.369072i 0.739594 0.673053i \(-0.235017\pi\)
−0.952678 + 0.303981i \(0.901684\pi\)
\(740\) 6.28374 10.8838i 0.230995 0.400095i
\(741\) −2.00993 −0.0738365
\(742\) −19.1327 15.5292i −0.702382 0.570094i
\(743\) −44.7847 −1.64299 −0.821495 0.570216i \(-0.806860\pi\)
−0.821495 + 0.570216i \(0.806860\pi\)
\(744\) −2.39579 + 4.14963i −0.0878338 + 0.152133i
\(745\) 6.26986 + 10.8597i 0.229710 + 0.397869i
\(746\) −19.7031 34.1268i −0.721382 1.24947i
\(747\) 5.35981 9.28346i 0.196105 0.339664i
\(748\) −14.6933 −0.537241
\(749\) 19.9483 7.63158i 0.728896 0.278852i
\(750\) 12.1071 0.442088
\(751\) 11.1443 19.3025i 0.406662 0.704360i −0.587851 0.808969i \(-0.700026\pi\)
0.994513 + 0.104609i \(0.0333592\pi\)
\(752\) −10.0483 17.4041i −0.366423 0.634663i
\(753\) −1.13627 1.96808i −0.0414081 0.0717209i
\(754\) −1.53371 + 2.65647i −0.0558546 + 0.0967430i
\(755\) −7.79015 −0.283513
\(756\) −0.943923 + 5.91639i −0.0343301 + 0.215177i
\(757\) −34.3724 −1.24929 −0.624643 0.780910i \(-0.714756\pi\)
−0.624643 + 0.780910i \(0.714756\pi\)
\(758\) 13.6946 23.7197i 0.497410 0.861539i
\(759\) −0.551216 0.954735i −0.0200079 0.0346547i
\(760\) −0.180912 0.313349i −0.00656238 0.0113664i
\(761\) −21.8603 + 37.8632i −0.792435 + 1.37254i 0.132020 + 0.991247i \(0.457854\pi\)
−0.924455 + 0.381291i \(0.875480\pi\)
\(762\) 16.3355 0.591773
\(763\) 1.58884 9.95867i 0.0575200 0.360528i
\(764\) 7.94731 0.287524
\(765\) 1.79178 3.10346i 0.0647820 0.112206i
\(766\) −3.21738 5.57266i −0.116249 0.201349i
\(767\) 6.83493 + 11.8384i 0.246795 + 0.427462i
\(768\) 5.48557 9.50129i 0.197944 0.342848i
\(769\) −2.96450 −0.106903 −0.0534513 0.998570i \(-0.517022\pi\)
−0.0534513 + 0.998570i \(0.517022\pi\)
\(770\) 3.42520 1.31037i 0.123436 0.0472224i
\(771\) 0.871285 0.0313785
\(772\) 15.4461 26.7535i 0.555919 0.962879i
\(773\) −11.1019 19.2290i −0.399307 0.691621i 0.594333 0.804219i \(-0.297416\pi\)
−0.993641 + 0.112598i \(0.964083\pi\)
\(774\) 5.40497 + 9.36169i 0.194278 + 0.336499i
\(775\) 20.3078 35.1742i 0.729478 1.26349i
\(776\) 9.31971 0.334558
\(777\) −18.7251 15.1984i −0.671758 0.545238i
\(778\) 20.6177 0.739181
\(779\) 5.32949 9.23095i 0.190949 0.330733i
\(780\) −1.27334 2.20548i −0.0455927 0.0789690i
\(781\) 2.37074 + 4.10624i 0.0848316 + 0.146933i
\(782\) 6.07722 10.5260i 0.217321 0.376411i
\(783\) 0.804169 0.0287387
\(784\) 22.6260 + 7.40824i 0.808070 + 0.264580i
\(785\) 2.78249 0.0993112
\(786\) −0.491181 + 0.850750i −0.0175198 + 0.0303452i
\(787\) 17.3258 + 30.0091i 0.617596 + 1.06971i 0.989923 + 0.141607i \(0.0452268\pi\)
−0.372327 + 0.928102i \(0.621440\pi\)
\(788\) 15.2456 + 26.4062i 0.543103 + 0.940682i
\(789\) −2.66738 + 4.62004i −0.0949613 + 0.164478i
\(790\) 19.0755 0.678676
\(791\) 18.2711 + 14.8299i 0.649645 + 0.527289i
\(792\) 0.602078 0.0213939
\(793\) −4.64337 + 8.04255i −0.164891 + 0.285599i
\(794\) 5.82805 + 10.0945i 0.206830 + 0.358240i
\(795\) −1.37300 2.37811i −0.0486955 0.0843430i
\(796\) −16.1880 + 28.0385i −0.573770 + 0.993798i
\(797\) −22.4200 −0.794158 −0.397079 0.917784i \(-0.629976\pi\)
−0.397079 + 0.917784i \(0.629976\pi\)
\(798\) −5.55273 + 2.12429i −0.196564 + 0.0751991i
\(799\) −34.7777 −1.23035
\(800\) 18.7852 32.5370i 0.664158 1.15036i
\(801\) 3.96083 + 6.86036i 0.139949 + 0.242399i
\(802\) 39.8166 + 68.9644i 1.40597 + 2.43522i
\(803\) −0.637280 + 1.10380i −0.0224891 + 0.0389523i
\(804\) −4.67171 −0.164759
\(805\) −0.253795 + 1.59076i −0.00894511 + 0.0560668i
\(806\) −33.4661 −1.17879
\(807\) 11.3694 19.6923i 0.400221 0.693203i
\(808\) −2.33898 4.05123i −0.0822850 0.142522i
\(809\) −13.0122 22.5378i −0.457485 0.792387i 0.541342 0.840802i \(-0.317916\pi\)
−0.998827 + 0.0484149i \(0.984583\pi\)
\(810\) −0.628658 + 1.08887i −0.0220888 + 0.0382589i
\(811\) −45.2644 −1.58945 −0.794724 0.606970i \(-0.792385\pi\)
−0.794724 + 0.606970i \(0.792385\pi\)
\(812\) −0.759074 + 4.75777i −0.0266383 + 0.166965i
\(813\) 6.42151 0.225212
\(814\) −10.3759 + 17.9715i −0.363674 + 0.629902i
\(815\) −6.62261 11.4707i −0.231980 0.401801i
\(816\) −10.0091 17.3363i −0.350389 0.606892i
\(817\) −2.84804 + 4.93295i −0.0996404 + 0.172582i
\(818\) 76.0088 2.65759
\(819\) −4.56440 + 1.74619i −0.159493 + 0.0610168i
\(820\) 13.5054 0.471630
\(821\) −3.64364 + 6.31098i −0.127164 + 0.220255i −0.922577 0.385814i \(-0.873921\pi\)
0.795413 + 0.606068i \(0.207254\pi\)
\(822\) 8.54213 + 14.7954i 0.297941 + 0.516049i
\(823\) −1.64934 2.85675i −0.0574925 0.0995800i 0.835847 0.548963i \(-0.184977\pi\)
−0.893339 + 0.449383i \(0.851644\pi\)
\(824\) 2.85008 4.93649i 0.0992874 0.171971i
\(825\) −5.10349 −0.177681
\(826\) 31.3946 + 25.4817i 1.09236 + 0.886621i
\(827\) −48.8022 −1.69702 −0.848510 0.529179i \(-0.822500\pi\)
−0.848510 + 0.529179i \(0.822500\pi\)
\(828\) −1.13223 + 1.96108i −0.0393478 + 0.0681524i
\(829\) −12.3989 21.4755i −0.430631 0.745875i 0.566296 0.824202i \(-0.308376\pi\)
−0.996928 + 0.0783263i \(0.975042\pi\)
\(830\) 6.73898 + 11.6723i 0.233913 + 0.405150i
\(831\) 7.01764 12.1549i 0.243439 0.421649i
\(832\) −18.3924 −0.637642
\(833\) 30.6801 27.4991i 1.06300 0.952786i
\(834\) −5.12530 −0.177475
\(835\) −1.19439 + 2.06874i −0.0413335 + 0.0715918i
\(836\) 1.35823 + 2.35252i 0.0469753 + 0.0813636i
\(837\) 4.38680 + 7.59816i 0.151630 + 0.262631i
\(838\) −6.66383 + 11.5421i −0.230198 + 0.398715i
\(839\) −6.27230 −0.216544 −0.108272 0.994121i \(-0.534532\pi\)
−0.108272 + 0.994121i \(0.534532\pi\)
\(840\) −0.683072 0.554421i −0.0235682 0.0191293i
\(841\) −28.3533 −0.977700
\(842\) 30.9022 53.5242i 1.06496 1.84457i
\(843\) 12.2639 + 21.2417i 0.422391 + 0.731603i
\(844\) −3.20544 5.55199i −0.110336 0.191107i
\(845\) −2.91889 + 5.05566i −0.100413 + 0.173920i
\(846\) 12.2020 0.419513
\(847\) 24.1788 9.25000i 0.830792 0.317834i
\(848\) −15.3395 −0.526762
\(849\) −2.19970 + 3.81000i −0.0754936 + 0.130759i
\(850\) −28.1332 48.7282i −0.964963 1.67136i
\(851\) −4.55764 7.89406i −0.156234 0.270605i
\(852\) 4.86964 8.43446i 0.166831 0.288960i
\(853\) −1.75188 −0.0599834 −0.0299917 0.999550i \(-0.509548\pi\)
−0.0299917 + 0.999550i \(0.509548\pi\)
\(854\) −4.32784 + 27.1263i −0.148096 + 0.928244i
\(855\) −0.662518 −0.0226576
\(856\) −2.20439 + 3.81811i −0.0753444 + 0.130500i
\(857\) 7.54775 + 13.0731i 0.257826 + 0.446568i 0.965659 0.259812i \(-0.0836604\pi\)
−0.707833 + 0.706380i \(0.750327\pi\)
\(858\) 2.10256 + 3.64175i 0.0717804 + 0.124327i
\(859\) −4.79401 + 8.30346i −0.163569 + 0.283310i −0.936146 0.351611i \(-0.885634\pi\)
0.772577 + 0.634921i \(0.218967\pi\)
\(860\) −7.21721 −0.246105
\(861\) 4.08321 25.5930i 0.139155 0.872208i
\(862\) −16.0009 −0.544992
\(863\) −17.1667 + 29.7336i −0.584362 + 1.01215i 0.410592 + 0.911819i \(0.365322\pi\)
−0.994955 + 0.100326i \(0.968011\pi\)
\(864\) 4.05790 + 7.02849i 0.138053 + 0.239114i
\(865\) −7.31144 12.6638i −0.248596 0.430582i
\(866\) 5.34536 9.25844i 0.181643 0.314614i
\(867\) −17.6422 −0.599159
\(868\) −49.0945 + 18.7819i −1.66637 + 0.637500i
\(869\) −16.7257 −0.567379
\(870\) −0.505548 + 0.875634i −0.0171397 + 0.0296868i
\(871\) −1.90535 3.30017i −0.0645605 0.111822i
\(872\) 1.04083 + 1.80277i 0.0352470 + 0.0610497i
\(873\) 8.53242 14.7786i 0.288779 0.500179i
\(874\) −2.24707 −0.0760084
\(875\) 12.0437 + 9.77538i 0.407152 + 0.330468i
\(876\) 2.61803 0.0884549
\(877\) −8.80288 + 15.2470i −0.297252 + 0.514856i −0.975506 0.219971i \(-0.929404\pi\)
0.678254 + 0.734828i \(0.262737\pi\)
\(878\) −31.2774 54.1741i −1.05556 1.82829i
\(879\) 6.67065 + 11.5539i 0.224996 + 0.389704i
\(880\) 1.14145 1.97705i 0.0384783 0.0666464i
\(881\) 39.5494 1.33245 0.666227 0.745749i \(-0.267908\pi\)
0.666227 + 0.745749i \(0.267908\pi\)
\(882\) −10.7643 + 9.64823i −0.362453 + 0.324873i
\(883\) 0.340528 0.0114597 0.00572983 0.999984i \(-0.498176\pi\)
0.00572983 + 0.999984i \(0.498176\pi\)
\(884\) −12.3093 + 21.3203i −0.414006 + 0.717080i
\(885\) 2.25295 + 3.90223i 0.0757321 + 0.131172i
\(886\) 39.4448 + 68.3204i 1.32517 + 2.29527i
\(887\) −15.0481 + 26.0641i −0.505266 + 0.875146i 0.494716 + 0.869055i \(0.335272\pi\)
−0.999981 + 0.00609116i \(0.998061\pi\)
\(888\) 4.97818 0.167057
\(889\) 16.2500 + 13.1894i 0.545008 + 0.442360i
\(890\) −9.96004 −0.333861
\(891\) 0.551216 0.954735i 0.0184664 0.0319848i
\(892\) −5.42090 9.38927i −0.181505 0.314376i
\(893\) 3.21479 + 5.56819i 0.107579 + 0.186332i
\(894\) −21.2656 + 36.8331i −0.711228 + 1.23188i
\(895\) −12.2800 −0.410474
\(896\) −10.7020 + 4.09424i −0.357529 + 0.136779i
\(897\) −1.84712 −0.0616735
\(898\) 3.05182 5.28591i 0.101841 0.176393i
\(899\) 3.52773 + 6.11021i 0.117656 + 0.203787i
\(900\) 5.24144 + 9.07844i 0.174715 + 0.302615i
\(901\) −13.2728 + 22.9891i −0.442180 + 0.765879i
\(902\) −22.3005 −0.742526
\(903\) −2.18204 + 13.6767i −0.0726137 + 0.455133i
\(904\) −4.85748 −0.161557
\(905\) 5.08657 8.81019i 0.169083 0.292861i
\(906\) −13.2110 22.8821i −0.438906 0.760208i
\(907\) −15.9426 27.6134i −0.529366 0.916889i −0.999413 0.0342480i \(-0.989096\pi\)
0.470047 0.882641i \(-0.344237\pi\)
\(908\) −21.8465 + 37.8393i −0.725003 + 1.25574i
\(909\) −8.56557 −0.284102
\(910\) 0.968079 6.06779i 0.0320915 0.201145i
\(911\) 36.7297 1.21691 0.608454 0.793589i \(-0.291790\pi\)
0.608454 + 0.793589i \(0.291790\pi\)
\(912\) −1.85045 + 3.20508i −0.0612746 + 0.106131i
\(913\) −5.90883 10.2344i −0.195554 0.338709i
\(914\) 18.2711 + 31.6464i 0.604353 + 1.04677i
\(915\) −1.53056 + 2.65101i −0.0505988 + 0.0876396i
\(916\) 18.4090 0.608252
\(917\) −1.17551 + 0.449713i −0.0388189 + 0.0148508i
\(918\) 12.1544 0.401156
\(919\) 14.6657 25.4018i 0.483778 0.837928i −0.516049 0.856559i \(-0.672598\pi\)
0.999826 + 0.0186315i \(0.00593094\pi\)
\(920\) −0.166258 0.287967i −0.00548137 0.00949401i
\(921\) 12.2750 + 21.2609i 0.404474 + 0.700569i
\(922\) −12.1267 + 21.0041i −0.399373 + 0.691734i
\(923\) 7.94431 0.261490
\(924\) 5.12827 + 4.16241i 0.168708 + 0.136933i
\(925\) −42.1973 −1.38744
\(926\) 27.9683 48.4425i 0.919095 1.59192i
\(927\) −5.21864 9.03895i −0.171403 0.296878i
\(928\) 3.26324 + 5.65209i 0.107121 + 0.185539i
\(929\) 0.653520 1.13193i 0.0214413 0.0371374i −0.855106 0.518454i \(-0.826508\pi\)
0.876547 + 0.481316i \(0.159841\pi\)
\(930\) −11.0312 −0.361727
\(931\) −7.23884 2.37016i −0.237243 0.0776787i
\(932\) 18.0011 0.589647
\(933\) 13.0387 22.5836i 0.426867 0.739355i
\(934\) 23.9051 + 41.4048i 0.782199 + 1.35481i
\(935\) −1.97532 3.42135i −0.0645998 0.111890i
\(936\) 0.504389 0.873627i 0.0164865 0.0285554i
\(937\) −4.77786 −0.156086 −0.0780430 0.996950i \(-0.524867\pi\)
−0.0780430 + 0.996950i \(0.524867\pi\)
\(938\) −8.75178 7.10345i −0.285756 0.231936i
\(939\) −24.1973 −0.789650
\(940\) −4.07330 + 7.05516i −0.132856 + 0.230114i
\(941\) 16.7002 + 28.9256i 0.544411 + 0.942947i 0.998644 + 0.0520640i \(0.0165800\pi\)
−0.454233 + 0.890883i \(0.650087\pi\)
\(942\) 4.71871 + 8.17304i 0.153744 + 0.266292i
\(943\) 4.89780 8.48323i 0.159494 0.276252i
\(944\) 25.1705 0.819231
\(945\) −1.50453 + 0.575585i −0.0489424 + 0.0187238i
\(946\) 11.9172 0.387463
\(947\) −17.9455 + 31.0826i −0.583152 + 1.01005i 0.411951 + 0.911206i \(0.364847\pi\)
−0.995103 + 0.0988427i \(0.968486\pi\)
\(948\) 17.1778 + 29.7528i 0.557908 + 0.966325i
\(949\) 1.06776 + 1.84941i 0.0346609 + 0.0600345i
\(950\) −5.20119 + 9.00872i −0.168749 + 0.292281i
\(951\) −3.60976 −0.117055
\(952\) −1.33990 + 8.39834i −0.0434265 + 0.272192i
\(953\) −42.4876 −1.37631 −0.688154 0.725564i \(-0.741579\pi\)
−0.688154 + 0.725564i \(0.741579\pi\)
\(954\) 4.65684 8.06589i 0.150771 0.261143i
\(955\) 1.06841 + 1.85054i 0.0345729 + 0.0598820i
\(956\) −17.8654 30.9437i −0.577808 1.00079i
\(957\) 0.443271 0.767768i 0.0143289 0.0248184i
\(958\) −46.1903 −1.49234
\(959\) −3.44854 + 21.6150i −0.111359 + 0.697984i
\(960\) −6.06256 −0.195668
\(961\) −22.9880 + 39.8165i −0.741550 + 1.28440i
\(962\) 17.3847 + 30.1112i 0.560505 + 0.970823i
\(963\) 4.03634 + 6.99115i 0.130069 + 0.225287i
\(964\) 12.7553 22.0928i 0.410819 0.711560i
\(965\) 8.30609 0.267383
\(966\) −5.10295 + 1.95222i −0.164185 + 0.0628117i
\(967\) −50.9129 −1.63725 −0.818624 0.574330i \(-0.805263\pi\)
−0.818624 + 0.574330i \(0.805263\pi\)
\(968\) −2.67187 + 4.62781i −0.0858771 + 0.148744i
\(969\) 3.20227 + 5.54649i 0.102872 + 0.178179i
\(970\) 10.7280 + 18.5814i 0.344454 + 0.596612i
\(971\) 8.36861 14.4949i 0.268561 0.465162i −0.699929 0.714212i \(-0.746785\pi\)
0.968491 + 0.249050i \(0.0801184\pi\)
\(972\) −2.26446 −0.0726327
\(973\) −5.09847 4.13822i −0.163450 0.132665i
\(974\) −86.4272 −2.76931
\(975\) −4.27543 + 7.40527i −0.136923 + 0.237158i
\(976\) 8.54990 + 14.8089i 0.273676 + 0.474020i
\(977\) −23.6865 41.0261i −0.757797 1.31254i −0.943972 0.330026i \(-0.892943\pi\)
0.186175 0.982517i \(-0.440391\pi\)
\(978\) 22.4620 38.9053i 0.718256 1.24406i
\(979\) 8.73310 0.279111
\(980\) −1.98522 9.44470i −0.0634155 0.301700i
\(981\) 3.81163 0.121696
\(982\) 16.7949 29.0896i 0.535946 0.928285i
\(983\) −17.6304 30.5368i −0.562323 0.973972i −0.997293 0.0735275i \(-0.976574\pi\)
0.434970 0.900445i \(-0.356759\pi\)
\(984\) 2.67486 + 4.63299i 0.0852714 + 0.147694i
\(985\) −4.09914 + 7.09991i −0.130609 + 0.226222i
\(986\) 9.77422 0.311275
\(987\) 12.1381 + 9.85201i 0.386361 + 0.313593i
\(988\) 4.55141 0.144800
\(989\) −2.61735 + 4.53338i −0.0832268 + 0.144153i
\(990\) 0.693054 + 1.20040i 0.0220267 + 0.0381514i
\(991\) −8.45822 14.6501i −0.268684 0.465375i 0.699838 0.714302i \(-0.253256\pi\)
−0.968522 + 0.248927i \(0.919922\pi\)
\(992\) −35.6024 + 61.6652i −1.13038 + 1.95787i
\(993\) −8.23405 −0.261300
\(994\) 21.9474 8.39634i 0.696128 0.266316i
\(995\) −8.70504 −0.275968
\(996\) −12.1371 + 21.0221i −0.384579 + 0.666110i
\(997\) 26.1823 + 45.3491i 0.829203 + 1.43622i 0.898664 + 0.438637i \(0.144539\pi\)
−0.0694611 + 0.997585i \(0.522128\pi\)
\(998\) −20.4699 35.4549i −0.647963 1.12230i
\(999\) 4.55764 7.89406i 0.144197 0.249757i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.i.h.415.9 yes 20
7.2 even 3 3381.2.a.bi.1.2 10
7.4 even 3 inner 483.2.i.h.277.9 20
7.5 odd 6 3381.2.a.bj.1.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.i.h.277.9 20 7.4 even 3 inner
483.2.i.h.415.9 yes 20 1.1 even 1 trivial
3381.2.a.bi.1.2 10 7.2 even 3
3381.2.a.bj.1.2 10 7.5 odd 6