Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [483,2,Mod(229,483)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 5, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("483.229");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.j (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.85677441763\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
229.1 | −1.34482 | + | 2.32929i | −0.866025 | + | 0.500000i | −2.61707 | − | 4.53290i | −0.428287 | + | 0.741815i | − | 2.68964i | −2.40961 | + | 1.09260i | 8.69868 | 0.500000 | − | 0.866025i | −1.15194 | − | 1.99521i | |||
229.2 | −1.34482 | + | 2.32929i | −0.866025 | + | 0.500000i | −2.61707 | − | 4.53290i | 0.428287 | − | 0.741815i | − | 2.68964i | 2.40961 | − | 1.09260i | 8.69868 | 0.500000 | − | 0.866025i | 1.15194 | + | 1.99521i | |||
229.3 | −1.20973 | + | 2.09532i | 0.866025 | − | 0.500000i | −1.92691 | − | 3.33751i | −1.20224 | + | 2.08234i | 2.41947i | 0.190002 | − | 2.63892i | 4.48526 | 0.500000 | − | 0.866025i | −2.90878 | − | 5.03816i | ||||
229.4 | −1.20973 | + | 2.09532i | 0.866025 | − | 0.500000i | −1.92691 | − | 3.33751i | 1.20224 | − | 2.08234i | 2.41947i | −0.190002 | + | 2.63892i | 4.48526 | 0.500000 | − | 0.866025i | 2.90878 | + | 5.03816i | ||||
229.5 | −0.987485 | + | 1.71037i | 0.866025 | − | 0.500000i | −0.950252 | − | 1.64589i | −0.274706 | + | 0.475805i | 1.97497i | 2.33704 | − | 1.24025i | −0.196501 | 0.500000 | − | 0.866025i | −0.542536 | − | 0.939701i | ||||
229.6 | −0.987485 | + | 1.71037i | 0.866025 | − | 0.500000i | −0.950252 | − | 1.64589i | 0.274706 | − | 0.475805i | 1.97497i | −2.33704 | + | 1.24025i | −0.196501 | 0.500000 | − | 0.866025i | 0.542536 | + | 0.939701i | ||||
229.7 | −0.708878 | + | 1.22781i | −0.866025 | + | 0.500000i | −0.00501609 | − | 0.00868813i | −1.44242 | + | 2.49834i | − | 1.41776i | −0.0745936 | − | 2.64470i | −2.82129 | 0.500000 | − | 0.866025i | −2.04500 | − | 3.54204i | |||
229.8 | −0.708878 | + | 1.22781i | −0.866025 | + | 0.500000i | −0.00501609 | − | 0.00868813i | 1.44242 | − | 2.49834i | − | 1.41776i | 0.0745936 | + | 2.64470i | −2.82129 | 0.500000 | − | 0.866025i | 2.04500 | + | 3.54204i | |||
229.9 | −0.676219 | + | 1.17124i | −0.866025 | + | 0.500000i | 0.0854570 | + | 0.148016i | −1.08513 | + | 1.87949i | − | 1.35244i | −2.39455 | + | 1.12522i | −2.93602 | 0.500000 | − | 0.866025i | −1.46757 | − | 2.54190i | |||
229.10 | −0.676219 | + | 1.17124i | −0.866025 | + | 0.500000i | 0.0854570 | + | 0.148016i | 1.08513 | − | 1.87949i | − | 1.35244i | 2.39455 | − | 1.12522i | −2.93602 | 0.500000 | − | 0.866025i | 1.46757 | + | 2.54190i | |||
229.11 | −0.585633 | + | 1.01435i | 0.866025 | − | 0.500000i | 0.314069 | + | 0.543983i | −1.31255 | + | 2.27340i | 1.17127i | 1.98677 | + | 1.74721i | −3.07825 | 0.500000 | − | 0.866025i | −1.53734 | − | 2.66275i | ||||
229.12 | −0.585633 | + | 1.01435i | 0.866025 | − | 0.500000i | 0.314069 | + | 0.543983i | 1.31255 | − | 2.27340i | 1.17127i | −1.98677 | − | 1.74721i | −3.07825 | 0.500000 | − | 0.866025i | 1.53734 | + | 2.66275i | ||||
229.13 | −0.123216 | + | 0.213416i | 0.866025 | − | 0.500000i | 0.969636 | + | 1.67946i | −1.99266 | + | 3.45140i | 0.246432i | −1.63265 | − | 2.08193i | −0.970763 | 0.500000 | − | 0.866025i | −0.491056 | − | 0.850535i | ||||
229.14 | −0.123216 | + | 0.213416i | 0.866025 | − | 0.500000i | 0.969636 | + | 1.67946i | 1.99266 | − | 3.45140i | 0.246432i | 1.63265 | + | 2.08193i | −0.970763 | 0.500000 | − | 0.866025i | 0.491056 | + | 0.850535i | ||||
229.15 | −0.0934478 | + | 0.161856i | −0.866025 | + | 0.500000i | 0.982535 | + | 1.70180i | −0.724626 | + | 1.25509i | − | 0.186896i | 2.60010 | − | 0.489382i | −0.741054 | 0.500000 | − | 0.866025i | −0.135429 | − | 0.234571i | |||
229.16 | −0.0934478 | + | 0.161856i | −0.866025 | + | 0.500000i | 0.982535 | + | 1.70180i | 0.724626 | − | 1.25509i | − | 0.186896i | −2.60010 | + | 0.489382i | −0.741054 | 0.500000 | − | 0.866025i | 0.135429 | + | 0.234571i | |||
229.17 | 0.208136 | − | 0.360502i | −0.866025 | + | 0.500000i | 0.913359 | + | 1.58198i | −0.648045 | + | 1.12245i | 0.416272i | 0.918903 | + | 2.48105i | 1.59295 | 0.500000 | − | 0.866025i | 0.269763 | + | 0.467243i | ||||
229.18 | 0.208136 | − | 0.360502i | −0.866025 | + | 0.500000i | 0.913359 | + | 1.58198i | 0.648045 | − | 1.12245i | 0.416272i | −0.918903 | − | 2.48105i | 1.59295 | 0.500000 | − | 0.866025i | −0.269763 | − | 0.467243i | ||||
229.19 | 0.287128 | − | 0.497320i | 0.866025 | − | 0.500000i | 0.835115 | + | 1.44646i | −0.504635 | + | 0.874053i | − | 0.574256i | −1.18416 | + | 2.36596i | 2.10765 | 0.500000 | − | 0.866025i | 0.289790 | + | 0.501930i | |||
229.20 | 0.287128 | − | 0.497320i | 0.866025 | − | 0.500000i | 0.835115 | + | 1.44646i | 0.504635 | − | 0.874053i | − | 0.574256i | 1.18416 | − | 2.36596i | 2.10765 | 0.500000 | − | 0.866025i | −0.289790 | − | 0.501930i | |||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
23.b | odd | 2 | 1 | inner |
161.g | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 483.2.j.a | ✓ | 64 |
7.d | odd | 6 | 1 | inner | 483.2.j.a | ✓ | 64 |
23.b | odd | 2 | 1 | inner | 483.2.j.a | ✓ | 64 |
161.g | even | 6 | 1 | inner | 483.2.j.a | ✓ | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.2.j.a | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
483.2.j.a | ✓ | 64 | 7.d | odd | 6 | 1 | inner |
483.2.j.a | ✓ | 64 | 23.b | odd | 2 | 1 | inner |
483.2.j.a | ✓ | 64 | 161.g | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(483, [\chi])\).