Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [483,2,Mod(137,483)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 4, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("483.137");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.m (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.85677441763\) |
Analytic rank: | \(0\) |
Dimension: | \(120\) |
Relative dimension: | \(60\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
137.1 | −2.35341 | + | 1.35874i | 1.22585 | + | 1.22364i | 2.69235 | − | 4.66329i | −1.88300 | − | 3.26145i | −4.54753 | − | 1.21410i | −0.393331 | − | 2.61635i | 9.19786i | 0.00542953 | + | 3.00000i | 8.86291 | + | 5.11701i | ||
137.2 | −2.35341 | + | 1.35874i | 1.22585 | + | 1.22364i | 2.69235 | − | 4.66329i | 1.88300 | + | 3.26145i | −4.54753 | − | 1.21410i | 0.393331 | + | 2.61635i | 9.19786i | 0.00542953 | + | 3.00000i | −8.86291 | − | 5.11701i | ||
137.3 | −2.20025 | + | 1.27031i | −1.66604 | − | 0.473602i | 2.22739 | − | 3.85796i | −0.823724 | − | 1.42673i | 4.26733 | − | 1.07436i | −2.24449 | + | 1.40082i | 6.23669i | 2.55140 | + | 1.57808i | 3.62479 | + | 2.09277i | ||
137.4 | −2.20025 | + | 1.27031i | −1.66604 | − | 0.473602i | 2.22739 | − | 3.85796i | 0.823724 | + | 1.42673i | 4.26733 | − | 1.07436i | 2.24449 | − | 1.40082i | 6.23669i | 2.55140 | + | 1.57808i | −3.62479 | − | 2.09277i | ||
137.5 | −2.14419 | + | 1.23795i | −0.991594 | + | 1.42012i | 2.06503 | − | 3.57673i | −0.969003 | − | 1.67836i | 0.368129 | − | 4.27255i | 0.562535 | + | 2.58526i | 5.27380i | −1.03348 | − | 2.81637i | 4.15545 | + | 2.39915i | ||
137.6 | −2.14419 | + | 1.23795i | −0.991594 | + | 1.42012i | 2.06503 | − | 3.57673i | 0.969003 | + | 1.67836i | 0.368129 | − | 4.27255i | −0.562535 | − | 2.58526i | 5.27380i | −1.03348 | − | 2.81637i | −4.15545 | − | 2.39915i | ||
137.7 | −2.05926 | + | 1.18892i | 1.51759 | − | 0.834823i | 1.82704 | − | 3.16453i | −0.178457 | − | 0.309097i | −2.13257 | + | 3.52340i | 2.62376 | + | 0.340385i | 3.93312i | 1.60614 | − | 2.53383i | 0.734981 | + | 0.424342i | ||
137.8 | −2.05926 | + | 1.18892i | 1.51759 | − | 0.834823i | 1.82704 | − | 3.16453i | 0.178457 | + | 0.309097i | −2.13257 | + | 3.52340i | −2.62376 | − | 0.340385i | 3.93312i | 1.60614 | − | 2.53383i | −0.734981 | − | 0.424342i | ||
137.9 | −1.78161 | + | 1.02861i | 0.0211372 | − | 1.73192i | 1.11608 | − | 1.93311i | −1.27213 | − | 2.20340i | 1.74382 | + | 3.10735i | −0.668238 | − | 2.55997i | 0.477615i | −2.99911 | − | 0.0732160i | 4.53288 | + | 2.61706i | ||
137.10 | −1.78161 | + | 1.02861i | 0.0211372 | − | 1.73192i | 1.11608 | − | 1.93311i | 1.27213 | + | 2.20340i | 1.74382 | + | 3.10735i | 0.668238 | + | 2.55997i | 0.477615i | −2.99911 | − | 0.0732160i | −4.53288 | − | 2.61706i | ||
137.11 | −1.55658 | + | 0.898694i | 0.279659 | + | 1.70932i | 0.615303 | − | 1.06574i | −0.620314 | − | 1.07442i | −1.97147 | − | 2.40938i | −2.49407 | + | 0.882968i | − | 1.38290i | −2.84358 | + | 0.956058i | 1.93114 | + | 1.11495i | |
137.12 | −1.55658 | + | 0.898694i | 0.279659 | + | 1.70932i | 0.615303 | − | 1.06574i | 0.620314 | + | 1.07442i | −1.97147 | − | 2.40938i | 2.49407 | − | 0.882968i | − | 1.38290i | −2.84358 | + | 0.956058i | −1.93114 | − | 1.11495i | |
137.13 | −1.44748 | + | 0.835704i | 1.59432 | + | 0.676852i | 0.396802 | − | 0.687281i | −1.25144 | − | 2.16756i | −2.87340 | + | 0.352653i | 2.40151 | + | 1.11029i | − | 2.01638i | 2.08374 | + | 2.15824i | 3.62287 | + | 2.09167i | |
137.14 | −1.44748 | + | 0.835704i | 1.59432 | + | 0.676852i | 0.396802 | − | 0.687281i | 1.25144 | + | 2.16756i | −2.87340 | + | 0.352653i | −2.40151 | − | 1.11029i | − | 2.01638i | 2.08374 | + | 2.15824i | −3.62287 | − | 2.09167i | |
137.15 | −1.28014 | + | 0.739089i | −1.73064 | + | 0.0699156i | 0.0925045 | − | 0.160222i | −0.974027 | − | 1.68706i | 2.16379 | − | 1.36860i | −2.08240 | − | 1.63205i | − | 2.68288i | 2.99022 | − | 0.241997i | 2.49378 | + | 1.43978i | |
137.16 | −1.28014 | + | 0.739089i | −1.73064 | + | 0.0699156i | 0.0925045 | − | 0.160222i | 0.974027 | + | 1.68706i | 2.16379 | − | 1.36860i | 2.08240 | + | 1.63205i | − | 2.68288i | 2.99022 | − | 0.241997i | −2.49378 | − | 1.43978i | |
137.17 | −1.19221 | + | 0.688323i | 1.08950 | − | 1.34647i | −0.0524225 | + | 0.0907985i | −2.03563 | − | 3.52582i | −0.372109 | + | 2.35521i | −1.00571 | + | 2.44715i | − | 2.89763i | −0.625968 | − | 2.93397i | 4.85381 | + | 2.80235i | |
137.18 | −1.19221 | + | 0.688323i | 1.08950 | − | 1.34647i | −0.0524225 | + | 0.0907985i | 2.03563 | + | 3.52582i | −0.372109 | + | 2.35521i | 1.00571 | − | 2.44715i | − | 2.89763i | −0.625968 | − | 2.93397i | −4.85381 | − | 2.80235i | |
137.19 | −0.935072 | + | 0.539864i | −0.991443 | − | 1.42023i | −0.417093 | + | 0.722427i | −0.281343 | − | 0.487300i | 1.69380 | + | 0.792769i | −1.64560 | + | 2.07172i | − | 3.06015i | −1.03408 | + | 2.81615i | 0.526152 | + | 0.303774i | |
137.20 | −0.935072 | + | 0.539864i | −0.991443 | − | 1.42023i | −0.417093 | + | 0.722427i | 0.281343 | + | 0.487300i | 1.69380 | + | 0.792769i | 1.64560 | − | 2.07172i | − | 3.06015i | −1.03408 | + | 2.81615i | −0.526152 | − | 0.303774i | |
See next 80 embeddings (of 120 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
21.h | odd | 6 | 1 | inner |
23.b | odd | 2 | 1 | inner |
69.c | even | 2 | 1 | inner |
161.f | odd | 6 | 1 | inner |
483.m | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 483.2.m.a | ✓ | 120 |
3.b | odd | 2 | 1 | inner | 483.2.m.a | ✓ | 120 |
7.c | even | 3 | 1 | inner | 483.2.m.a | ✓ | 120 |
21.h | odd | 6 | 1 | inner | 483.2.m.a | ✓ | 120 |
23.b | odd | 2 | 1 | inner | 483.2.m.a | ✓ | 120 |
69.c | even | 2 | 1 | inner | 483.2.m.a | ✓ | 120 |
161.f | odd | 6 | 1 | inner | 483.2.m.a | ✓ | 120 |
483.m | even | 6 | 1 | inner | 483.2.m.a | ✓ | 120 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.2.m.a | ✓ | 120 | 1.a | even | 1 | 1 | trivial |
483.2.m.a | ✓ | 120 | 3.b | odd | 2 | 1 | inner |
483.2.m.a | ✓ | 120 | 7.c | even | 3 | 1 | inner |
483.2.m.a | ✓ | 120 | 21.h | odd | 6 | 1 | inner |
483.2.m.a | ✓ | 120 | 23.b | odd | 2 | 1 | inner |
483.2.m.a | ✓ | 120 | 69.c | even | 2 | 1 | inner |
483.2.m.a | ✓ | 120 | 161.f | odd | 6 | 1 | inner |
483.2.m.a | ✓ | 120 | 483.m | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(483, [\chi])\).