Properties

Label 483.2.n.a.47.18
Level $483$
Weight $2$
Character 483.47
Analytic conductor $3.857$
Analytic rank $0$
Dimension $116$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(47,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(116\)
Relative dimension: \(58\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.18
Character \(\chi\) \(=\) 483.47
Dual form 483.2.n.a.185.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.07338 - 0.619715i) q^{2} +(-0.722709 - 1.57407i) q^{3} +(-0.231907 - 0.401675i) q^{4} +(-0.273772 + 0.474187i) q^{5} +(-0.199734 + 2.13744i) q^{6} +(2.55123 - 0.700882i) q^{7} +3.05372i q^{8} +(-1.95538 + 2.27519i) q^{9} +(0.587721 - 0.339321i) q^{10} +(-3.30069 + 1.90565i) q^{11} +(-0.464662 + 0.655331i) q^{12} +6.33716i q^{13} +(-3.17278 - 0.828723i) q^{14} +(0.944259 + 0.0882365i) q^{15} +(1.42862 - 2.47445i) q^{16} +(0.532689 + 0.922645i) q^{17} +(3.50883 - 1.23036i) q^{18} +(-3.98747 - 2.30217i) q^{19} +0.253958 q^{20} +(-2.94703 - 3.50927i) q^{21} +4.72385 q^{22} +(-0.866025 - 0.500000i) q^{23} +(4.80677 - 2.20695i) q^{24} +(2.35010 + 4.07049i) q^{25} +(3.92724 - 6.80217i) q^{26} +(4.99447 + 1.43361i) q^{27} +(-0.873174 - 0.862224i) q^{28} +4.33342i q^{29} +(-0.958865 - 0.679883i) q^{30} +(-2.78836 + 1.60986i) q^{31} +(2.22230 - 1.28304i) q^{32} +(5.38507 + 3.81828i) q^{33} -1.32046i q^{34} +(-0.366105 + 1.40164i) q^{35} +(1.36735 + 0.257796i) q^{36} +(1.00493 - 1.74058i) q^{37} +(2.85338 + 4.94219i) q^{38} +(9.97513 - 4.57993i) q^{39} +(-1.44803 - 0.836023i) q^{40} +7.04500 q^{41} +(0.988529 + 5.59310i) q^{42} -7.94253 q^{43} +(1.53091 + 0.883869i) q^{44} +(-0.543535 - 1.55010i) q^{45} +(0.619715 + 1.07338i) q^{46} +(-1.88739 + 3.26905i) q^{47} +(-4.92743 - 0.460445i) q^{48} +(6.01753 - 3.57622i) q^{49} -5.82556i q^{50} +(1.06733 - 1.50529i) q^{51} +(2.54548 - 1.46963i) q^{52} +(1.11654 - 0.644636i) q^{53} +(-4.47253 - 4.63395i) q^{54} -2.08686i q^{55} +(2.14030 + 7.79075i) q^{56} +(-0.741988 + 7.94035i) q^{57} +(2.68549 - 4.65140i) q^{58} +(-2.05599 - 3.56109i) q^{59} +(-0.183538 - 0.399748i) q^{60} +(4.33542 + 2.50306i) q^{61} +3.99062 q^{62} +(-3.39399 + 7.17501i) q^{63} -8.89499 q^{64} +(-3.00500 - 1.73494i) q^{65} +(-3.41397 - 7.43566i) q^{66} +(-4.39855 - 7.61852i) q^{67} +(0.247069 - 0.427935i) q^{68} +(-0.161150 + 1.72454i) q^{69} +(1.26159 - 1.27761i) q^{70} +10.0978i q^{71} +(-6.94779 - 5.97120i) q^{72} +(-9.71333 + 5.60799i) q^{73} +(-2.15733 + 1.24553i) q^{74} +(4.70879 - 6.64100i) q^{75} +2.13555i q^{76} +(-7.08517 + 7.17515i) q^{77} +(-13.5453 - 1.26575i) q^{78} +(0.987846 - 1.71100i) q^{79} +(0.782234 + 1.35487i) q^{80} +(-1.35295 - 8.89773i) q^{81} +(-7.56194 - 4.36589i) q^{82} +5.31573 q^{83} +(-0.726149 + 1.99757i) q^{84} -0.583341 q^{85} +(8.52534 + 4.92211i) q^{86} +(6.82110 - 3.13180i) q^{87} +(-5.81934 - 10.0794i) q^{88} +(-6.24674 + 10.8197i) q^{89} +(-0.377201 + 2.00068i) q^{90} +(4.44161 + 16.1676i) q^{91} +0.463814i q^{92} +(4.54921 + 3.22561i) q^{93} +(4.05176 - 2.33928i) q^{94} +(2.18331 - 1.26054i) q^{95} +(-3.62567 - 2.57078i) q^{96} +6.90019i q^{97} +(-8.67532 + 0.109483i) q^{98} +(2.11839 - 11.2360i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 116 q + 56 q^{4} - 10 q^{7} - 4 q^{9} - 12 q^{10} - 30 q^{12} + 20 q^{15} - 52 q^{16} - 10 q^{18} + 6 q^{19} - 6 q^{21} - 16 q^{22} - 66 q^{25} + 16 q^{28} - 32 q^{30} - 42 q^{31} - 30 q^{33} + 8 q^{36}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.07338 0.619715i −0.758993 0.438205i 0.0699413 0.997551i \(-0.477719\pi\)
−0.828934 + 0.559347i \(0.811052\pi\)
\(3\) −0.722709 1.57407i −0.417256 0.908789i
\(4\) −0.231907 0.401675i −0.115953 0.200837i
\(5\) −0.273772 + 0.474187i −0.122434 + 0.212063i −0.920727 0.390207i \(-0.872403\pi\)
0.798293 + 0.602270i \(0.205737\pi\)
\(6\) −0.199734 + 2.13744i −0.0815410 + 0.872608i
\(7\) 2.55123 0.700882i 0.964274 0.264909i
\(8\) 3.05372i 1.07965i
\(9\) −1.95538 + 2.27519i −0.651794 + 0.758396i
\(10\) 0.587721 0.339321i 0.185854 0.107303i
\(11\) −3.30069 + 1.90565i −0.995196 + 0.574576i −0.906823 0.421511i \(-0.861500\pi\)
−0.0883723 + 0.996088i \(0.528167\pi\)
\(12\) −0.464662 + 0.655331i −0.134136 + 0.189178i
\(13\) 6.33716i 1.75761i 0.477178 + 0.878807i \(0.341660\pi\)
−0.477178 + 0.878807i \(0.658340\pi\)
\(14\) −3.17278 0.828723i −0.847961 0.221485i
\(15\) 0.944259 + 0.0882365i 0.243807 + 0.0227826i
\(16\) 1.42862 2.47445i 0.357156 0.618613i
\(17\) 0.532689 + 0.922645i 0.129196 + 0.223774i 0.923365 0.383922i \(-0.125427\pi\)
−0.794169 + 0.607697i \(0.792094\pi\)
\(18\) 3.50883 1.23036i 0.827040 0.289998i
\(19\) −3.98747 2.30217i −0.914789 0.528154i −0.0328199 0.999461i \(-0.510449\pi\)
−0.881969 + 0.471308i \(0.843782\pi\)
\(20\) 0.253958 0.0567868
\(21\) −2.94703 3.50927i −0.643095 0.765786i
\(22\) 4.72385 1.00713
\(23\) −0.866025 0.500000i −0.180579 0.104257i
\(24\) 4.80677 2.20695i 0.981178 0.450493i
\(25\) 2.35010 + 4.07049i 0.470020 + 0.814098i
\(26\) 3.92724 6.80217i 0.770194 1.33402i
\(27\) 4.99447 + 1.43361i 0.961187 + 0.275898i
\(28\) −0.873174 0.862224i −0.165014 0.162945i
\(29\) 4.33342i 0.804696i 0.915487 + 0.402348i \(0.131806\pi\)
−0.915487 + 0.402348i \(0.868194\pi\)
\(30\) −0.958865 0.679883i −0.175064 0.124129i
\(31\) −2.78836 + 1.60986i −0.500804 + 0.289140i −0.729046 0.684465i \(-0.760036\pi\)
0.228241 + 0.973605i \(0.426703\pi\)
\(32\) 2.22230 1.28304i 0.392850 0.226812i
\(33\) 5.38507 + 3.81828i 0.937420 + 0.664677i
\(34\) 1.32046i 0.226457i
\(35\) −0.366105 + 1.40164i −0.0618831 + 0.236920i
\(36\) 1.36735 + 0.257796i 0.227892 + 0.0429660i
\(37\) 1.00493 1.74058i 0.165209 0.286150i −0.771521 0.636204i \(-0.780504\pi\)
0.936729 + 0.350054i \(0.113837\pi\)
\(38\) 2.85338 + 4.94219i 0.462879 + 0.801729i
\(39\) 9.97513 4.57993i 1.59730 0.733375i
\(40\) −1.44803 0.836023i −0.228954 0.132187i
\(41\) 7.04500 1.10024 0.550122 0.835084i \(-0.314581\pi\)
0.550122 + 0.835084i \(0.314581\pi\)
\(42\) 0.988529 + 5.59310i 0.152533 + 0.863033i
\(43\) −7.94253 −1.21122 −0.605612 0.795760i \(-0.707072\pi\)
−0.605612 + 0.795760i \(0.707072\pi\)
\(44\) 1.53091 + 0.883869i 0.230793 + 0.133248i
\(45\) −0.543535 1.55010i −0.0810253 0.231075i
\(46\) 0.619715 + 1.07338i 0.0913720 + 0.158261i
\(47\) −1.88739 + 3.26905i −0.275304 + 0.476840i −0.970212 0.242259i \(-0.922112\pi\)
0.694908 + 0.719099i \(0.255445\pi\)
\(48\) −4.92743 0.460445i −0.711214 0.0664595i
\(49\) 6.01753 3.57622i 0.859647 0.510889i
\(50\) 5.82556i 0.823859i
\(51\) 1.06733 1.50529i 0.149456 0.210783i
\(52\) 2.54548 1.46963i 0.352994 0.203801i
\(53\) 1.11654 0.644636i 0.153369 0.0885476i −0.421352 0.906897i \(-0.638444\pi\)
0.574720 + 0.818350i \(0.305111\pi\)
\(54\) −4.47253 4.63395i −0.608634 0.630601i
\(55\) 2.08686i 0.281392i
\(56\) 2.14030 + 7.79075i 0.286010 + 1.04108i
\(57\) −0.741988 + 7.94035i −0.0982787 + 1.05173i
\(58\) 2.68549 4.65140i 0.352622 0.610759i
\(59\) −2.05599 3.56109i −0.267668 0.463614i 0.700591 0.713563i \(-0.252920\pi\)
−0.968259 + 0.249949i \(0.919586\pi\)
\(60\) −0.183538 0.399748i −0.0236946 0.0516072i
\(61\) 4.33542 + 2.50306i 0.555094 + 0.320484i 0.751174 0.660104i \(-0.229488\pi\)
−0.196080 + 0.980588i \(0.562821\pi\)
\(62\) 3.99062 0.506809
\(63\) −3.39399 + 7.17501i −0.427603 + 0.903967i
\(64\) −8.89499 −1.11187
\(65\) −3.00500 1.73494i −0.372724 0.215192i
\(66\) −3.41397 7.43566i −0.420231 0.915267i
\(67\) −4.39855 7.61852i −0.537369 0.930750i −0.999045 0.0437015i \(-0.986085\pi\)
0.461676 0.887049i \(-0.347248\pi\)
\(68\) 0.247069 0.427935i 0.0299615 0.0518948i
\(69\) −0.161150 + 1.72454i −0.0194002 + 0.207610i
\(70\) 1.26159 1.27761i 0.150788 0.152703i
\(71\) 10.0978i 1.19838i 0.800606 + 0.599192i \(0.204511\pi\)
−0.800606 + 0.599192i \(0.795489\pi\)
\(72\) −6.94779 5.97120i −0.818805 0.703713i
\(73\) −9.71333 + 5.60799i −1.13686 + 0.656366i −0.945651 0.325183i \(-0.894574\pi\)
−0.191208 + 0.981549i \(0.561241\pi\)
\(74\) −2.15733 + 1.24553i −0.250785 + 0.144791i
\(75\) 4.70879 6.64100i 0.543724 0.766836i
\(76\) 2.13555i 0.244965i
\(77\) −7.08517 + 7.17515i −0.807431 + 0.817685i
\(78\) −13.5453 1.26575i −1.53371 0.143318i
\(79\) 0.987846 1.71100i 0.111141 0.192502i −0.805089 0.593154i \(-0.797883\pi\)
0.916231 + 0.400651i \(0.131216\pi\)
\(80\) 0.782234 + 1.35487i 0.0874564 + 0.151479i
\(81\) −1.35295 8.89773i −0.150328 0.988636i
\(82\) −7.56194 4.36589i −0.835077 0.482132i
\(83\) 5.31573 0.583477 0.291738 0.956498i \(-0.405766\pi\)
0.291738 + 0.956498i \(0.405766\pi\)
\(84\) −0.726149 + 1.99757i −0.0792293 + 0.217953i
\(85\) −0.583341 −0.0632722
\(86\) 8.52534 + 4.92211i 0.919311 + 0.530764i
\(87\) 6.82110 3.13180i 0.731299 0.335765i
\(88\) −5.81934 10.0794i −0.620344 1.07447i
\(89\) −6.24674 + 10.8197i −0.662153 + 1.14688i 0.317896 + 0.948126i \(0.397024\pi\)
−0.980049 + 0.198757i \(0.936310\pi\)
\(90\) −0.377201 + 2.00068i −0.0397605 + 0.210890i
\(91\) 4.44161 + 16.1676i 0.465607 + 1.69482i
\(92\) 0.463814i 0.0483559i
\(93\) 4.54921 + 3.22561i 0.471731 + 0.334480i
\(94\) 4.05176 2.33928i 0.417907 0.241279i
\(95\) 2.18331 1.26054i 0.224003 0.129328i
\(96\) −3.62567 2.57078i −0.370044 0.262379i
\(97\) 6.90019i 0.700608i 0.936636 + 0.350304i \(0.113922\pi\)
−0.936636 + 0.350304i \(0.886078\pi\)
\(98\) −8.67532 + 0.109483i −0.876339 + 0.0110594i
\(99\) 2.11839 11.2360i 0.212907 1.12926i
\(100\) 1.09001 1.88795i 0.109001 0.188795i
\(101\) 1.87785 + 3.25253i 0.186853 + 0.323639i 0.944199 0.329375i \(-0.106838\pi\)
−0.757346 + 0.653013i \(0.773505\pi\)
\(102\) −2.07850 + 0.954310i −0.205802 + 0.0944908i
\(103\) 15.7418 + 9.08853i 1.55109 + 0.895520i 0.998054 + 0.0623598i \(0.0198626\pi\)
0.553032 + 0.833160i \(0.313471\pi\)
\(104\) −19.3520 −1.89762
\(105\) 2.47086 0.436703i 0.241132 0.0426179i
\(106\) −1.59796 −0.155208
\(107\) −12.6008 7.27509i −1.21817 0.703309i −0.253641 0.967298i \(-0.581628\pi\)
−0.964526 + 0.263989i \(0.914962\pi\)
\(108\) −0.582409 2.33862i −0.0560423 0.225033i
\(109\) −4.10001 7.10143i −0.392710 0.680194i 0.600096 0.799928i \(-0.295129\pi\)
−0.992806 + 0.119734i \(0.961796\pi\)
\(110\) −1.29326 + 2.23999i −0.123307 + 0.213574i
\(111\) −3.46607 0.323887i −0.328984 0.0307420i
\(112\) 1.91045 7.31418i 0.180520 0.691125i
\(113\) 9.47546i 0.891377i −0.895188 0.445688i \(-0.852959\pi\)
0.895188 0.445688i \(-0.147041\pi\)
\(114\) 5.71719 8.06317i 0.535464 0.755186i
\(115\) 0.474187 0.273772i 0.0442181 0.0255293i
\(116\) 1.74063 1.00495i 0.161613 0.0933073i
\(117\) −14.4182 12.3916i −1.33297 1.14560i
\(118\) 5.09652i 0.469173i
\(119\) 2.00568 + 1.98053i 0.183860 + 0.181554i
\(120\) −0.269450 + 2.88351i −0.0245973 + 0.263227i
\(121\) 1.76304 3.05367i 0.160276 0.277606i
\(122\) −3.10236 5.37345i −0.280875 0.486490i
\(123\) −5.09149 11.0893i −0.459084 0.999889i
\(124\) 1.29328 + 0.746676i 0.116140 + 0.0670535i
\(125\) −5.31128 −0.475055
\(126\) 8.08950 5.59819i 0.720670 0.498727i
\(127\) −12.8702 −1.14204 −0.571022 0.820935i \(-0.693453\pi\)
−0.571022 + 0.820935i \(0.693453\pi\)
\(128\) 5.10308 + 2.94627i 0.451053 + 0.260416i
\(129\) 5.74014 + 12.5021i 0.505391 + 1.10075i
\(130\) 2.15033 + 3.72448i 0.188597 + 0.326659i
\(131\) −7.77280 + 13.4629i −0.679112 + 1.17626i 0.296136 + 0.955146i \(0.404302\pi\)
−0.975249 + 0.221111i \(0.929032\pi\)
\(132\) 0.284870 3.04853i 0.0247948 0.265340i
\(133\) −11.7865 3.07861i −1.02202 0.266949i
\(134\) 10.9034i 0.941910i
\(135\) −2.04714 + 1.97583i −0.176190 + 0.170052i
\(136\) −2.81750 + 1.62669i −0.241599 + 0.139487i
\(137\) 4.10733 2.37137i 0.350913 0.202600i −0.314174 0.949365i \(-0.601728\pi\)
0.665087 + 0.746766i \(0.268394\pi\)
\(138\) 1.24170 1.75121i 0.105700 0.149073i
\(139\) 3.82666i 0.324573i 0.986744 + 0.162287i \(0.0518869\pi\)
−0.986744 + 0.162287i \(0.948113\pi\)
\(140\) 0.647905 0.177995i 0.0547580 0.0150433i
\(141\) 6.50974 + 0.608304i 0.548219 + 0.0512284i
\(142\) 6.25773 10.8387i 0.525137 0.909564i
\(143\) −12.0764 20.9170i −1.00988 1.74917i
\(144\) 2.83633 + 8.08889i 0.236361 + 0.674074i
\(145\) −2.05485 1.18637i −0.170646 0.0985225i
\(146\) 13.9014 1.15049
\(147\) −9.97814 6.88744i −0.822983 0.568066i
\(148\) −0.932197 −0.0766261
\(149\) 12.5343 + 7.23670i 1.02685 + 0.592853i 0.916081 0.400993i \(-0.131335\pi\)
0.110771 + 0.993846i \(0.464668\pi\)
\(150\) −9.16984 + 4.21019i −0.748714 + 0.343760i
\(151\) 3.37078 + 5.83836i 0.274310 + 0.475119i 0.969961 0.243261i \(-0.0782173\pi\)
−0.695651 + 0.718380i \(0.744884\pi\)
\(152\) 7.03019 12.1766i 0.570223 0.987656i
\(153\) −3.14080 0.592156i −0.253919 0.0478730i
\(154\) 12.0516 3.31086i 0.971147 0.266797i
\(155\) 1.76294i 0.141603i
\(156\) −4.15294 2.94464i −0.332501 0.235760i
\(157\) −14.4516 + 8.34364i −1.15336 + 0.665895i −0.949705 0.313147i \(-0.898617\pi\)
−0.203659 + 0.979042i \(0.565283\pi\)
\(158\) −2.12066 + 1.22437i −0.168711 + 0.0974053i
\(159\) −1.82164 1.29163i −0.144465 0.102433i
\(160\) 1.40504i 0.111079i
\(161\) −2.55987 0.668632i −0.201746 0.0526956i
\(162\) −4.06182 + 10.3891i −0.319127 + 0.816242i
\(163\) 3.54867 6.14648i 0.277954 0.481430i −0.692922 0.721012i \(-0.743677\pi\)
0.970876 + 0.239582i \(0.0770105\pi\)
\(164\) −1.63378 2.82980i −0.127577 0.220970i
\(165\) −3.28486 + 1.50819i −0.255726 + 0.117412i
\(166\) −5.70578 3.29423i −0.442854 0.255682i
\(167\) 16.7797 1.29845 0.649227 0.760594i \(-0.275092\pi\)
0.649227 + 0.760594i \(0.275092\pi\)
\(168\) 10.7164 8.99942i 0.826785 0.694321i
\(169\) −27.1597 −2.08920
\(170\) 0.626145 + 0.361505i 0.0480232 + 0.0277262i
\(171\) 13.0349 4.57062i 0.996803 0.349524i
\(172\) 1.84193 + 3.19031i 0.140446 + 0.243259i
\(173\) 5.79102 10.0303i 0.440283 0.762593i −0.557427 0.830226i \(-0.688211\pi\)
0.997710 + 0.0676328i \(0.0215446\pi\)
\(174\) −9.26245 0.865531i −0.702184 0.0656157i
\(175\) 8.84857 + 8.73760i 0.668889 + 0.660501i
\(176\) 10.8899i 0.820854i
\(177\) −4.11951 + 5.80991i −0.309641 + 0.436699i
\(178\) 13.4102 7.74239i 1.00514 0.580317i
\(179\) −7.52422 + 4.34411i −0.562387 + 0.324694i −0.754103 0.656756i \(-0.771928\pi\)
0.191716 + 0.981450i \(0.438595\pi\)
\(180\) −0.496586 + 0.577802i −0.0370133 + 0.0430668i
\(181\) 9.53741i 0.708910i 0.935073 + 0.354455i \(0.115334\pi\)
−0.935073 + 0.354455i \(0.884666\pi\)
\(182\) 5.25175 20.1064i 0.389286 1.49039i
\(183\) 0.806734 8.63324i 0.0596355 0.638187i
\(184\) 1.52686 2.64460i 0.112562 0.194963i
\(185\) 0.550241 + 0.953045i 0.0404545 + 0.0700692i
\(186\) −2.88406 6.28151i −0.211469 0.460583i
\(187\) −3.51648 2.03024i −0.257151 0.148466i
\(188\) 1.75079 0.127690
\(189\) 13.7468 + 0.156924i 0.999935 + 0.0114145i
\(190\) −3.12469 −0.226689
\(191\) 21.0141 + 12.1325i 1.52053 + 0.877876i 0.999707 + 0.0242079i \(0.00770638\pi\)
0.520818 + 0.853668i \(0.325627\pi\)
\(192\) 6.42849 + 14.0013i 0.463936 + 1.01046i
\(193\) 3.06634 + 5.31106i 0.220720 + 0.382299i 0.955027 0.296519i \(-0.0958259\pi\)
−0.734307 + 0.678818i \(0.762493\pi\)
\(194\) 4.27615 7.40651i 0.307010 0.531757i
\(195\) −0.559169 + 5.98393i −0.0400429 + 0.428518i
\(196\) −2.83198 1.58774i −0.202284 0.113410i
\(197\) 1.59205i 0.113429i 0.998390 + 0.0567144i \(0.0180624\pi\)
−0.998390 + 0.0567144i \(0.981938\pi\)
\(198\) −9.23694 + 10.7476i −0.656440 + 0.763802i
\(199\) 14.2021 8.19959i 1.00676 0.581253i 0.0965188 0.995331i \(-0.469229\pi\)
0.910241 + 0.414078i \(0.135896\pi\)
\(200\) −12.4302 + 7.17655i −0.878944 + 0.507459i
\(201\) −8.81320 + 12.4296i −0.621635 + 0.876716i
\(202\) 4.65492i 0.327519i
\(203\) 3.03722 + 11.0556i 0.213171 + 0.775947i
\(204\) −0.852158 0.0796301i −0.0596630 0.00557522i
\(205\) −1.92872 + 3.34064i −0.134708 + 0.233321i
\(206\) −11.2646 19.5109i −0.784842 1.35939i
\(207\) 2.83101 0.992678i 0.196768 0.0689959i
\(208\) 15.6810 + 9.05343i 1.08728 + 0.627742i
\(209\) 17.5485 1.21386
\(210\) −2.92280 1.06248i −0.201692 0.0733184i
\(211\) 19.1386 1.31756 0.658778 0.752338i \(-0.271074\pi\)
0.658778 + 0.752338i \(0.271074\pi\)
\(212\) −0.517868 0.298991i −0.0355673 0.0205348i
\(213\) 15.8946 7.29774i 1.08908 0.500033i
\(214\) 9.01696 + 15.6178i 0.616387 + 1.06761i
\(215\) 2.17444 3.76624i 0.148296 0.256856i
\(216\) −4.37784 + 15.2517i −0.297875 + 1.03775i
\(217\) −5.98542 + 6.06143i −0.406317 + 0.411477i
\(218\) 10.1634i 0.688349i
\(219\) 15.8473 + 11.2365i 1.07086 + 0.759292i
\(220\) −0.838237 + 0.483957i −0.0565139 + 0.0326283i
\(221\) −5.84695 + 3.37574i −0.393309 + 0.227077i
\(222\) 3.51968 + 2.49563i 0.236225 + 0.167495i
\(223\) 18.5980i 1.24541i 0.782455 + 0.622707i \(0.213967\pi\)
−0.782455 + 0.622707i \(0.786033\pi\)
\(224\) 4.77033 4.83091i 0.318731 0.322779i
\(225\) −13.8565 2.61245i −0.923765 0.174163i
\(226\) −5.87209 + 10.1708i −0.390605 + 0.676548i
\(227\) −12.3781 21.4395i −0.821565 1.42299i −0.904516 0.426439i \(-0.859768\pi\)
0.0829509 0.996554i \(-0.473566\pi\)
\(228\) 3.36151 1.54338i 0.222621 0.102213i
\(229\) 20.0583 + 11.5807i 1.32549 + 0.765273i 0.984599 0.174829i \(-0.0559373\pi\)
0.340893 + 0.940102i \(0.389271\pi\)
\(230\) −0.678642 −0.0447483
\(231\) 16.4147 + 5.96700i 1.08001 + 0.392600i
\(232\) −13.2331 −0.868794
\(233\) −23.8163 13.7503i −1.56026 0.900814i −0.997230 0.0743752i \(-0.976304\pi\)
−0.563026 0.826439i \(-0.690363\pi\)
\(234\) 7.79696 + 22.2360i 0.509704 + 1.45362i
\(235\) −1.03343 1.78995i −0.0674133 0.116763i
\(236\) −0.953599 + 1.65168i −0.0620740 + 0.107515i
\(237\) −3.40715 0.318382i −0.221318 0.0206811i
\(238\) −0.925488 3.36880i −0.0599905 0.218367i
\(239\) 22.9298i 1.48320i −0.670841 0.741602i \(-0.734067\pi\)
0.670841 0.741602i \(-0.265933\pi\)
\(240\) 1.56733 2.21047i 0.101171 0.142685i
\(241\) −1.35185 + 0.780489i −0.0870800 + 0.0502757i −0.542908 0.839792i \(-0.682677\pi\)
0.455828 + 0.890068i \(0.349343\pi\)
\(242\) −3.78481 + 2.18516i −0.243297 + 0.140467i
\(243\) −13.0278 + 8.56011i −0.835736 + 0.549131i
\(244\) 2.32191i 0.148645i
\(245\) 0.0483661 + 3.83250i 0.00309000 + 0.244849i
\(246\) −1.40712 + 15.0583i −0.0897150 + 0.960081i
\(247\) 14.5892 25.2693i 0.928290 1.60784i
\(248\) −4.91607 8.51489i −0.312171 0.540696i
\(249\) −3.84172 8.36732i −0.243459 0.530257i
\(250\) 5.70101 + 3.29148i 0.360563 + 0.208171i
\(251\) −9.88617 −0.624010 −0.312005 0.950081i \(-0.601000\pi\)
−0.312005 + 0.950081i \(0.601000\pi\)
\(252\) 3.66911 0.300656i 0.231132 0.0189395i
\(253\) 3.81131 0.239615
\(254\) 13.8146 + 7.97585i 0.866804 + 0.500449i
\(255\) 0.421586 + 0.918219i 0.0264007 + 0.0575011i
\(256\) 5.24329 + 9.08165i 0.327706 + 0.567603i
\(257\) −13.6017 + 23.5589i −0.848454 + 1.46956i 0.0341342 + 0.999417i \(0.489133\pi\)
−0.882588 + 0.470148i \(0.844201\pi\)
\(258\) 1.58639 16.9767i 0.0987645 1.05692i
\(259\) 1.34385 5.14496i 0.0835029 0.319692i
\(260\) 1.60937i 0.0998092i
\(261\) −9.85935 8.47350i −0.610278 0.524497i
\(262\) 16.6863 9.63384i 1.03088 0.595180i
\(263\) 0.722249 0.416991i 0.0445358 0.0257128i −0.477567 0.878595i \(-0.658481\pi\)
0.522103 + 0.852883i \(0.325148\pi\)
\(264\) −11.6600 + 16.4445i −0.717622 + 1.01209i
\(265\) 0.705932i 0.0433651i
\(266\) 10.7435 + 10.6088i 0.658727 + 0.650466i
\(267\) 21.5455 + 2.01332i 1.31856 + 0.123213i
\(268\) −2.04011 + 3.53357i −0.124620 + 0.215847i
\(269\) 10.5551 + 18.2820i 0.643556 + 1.11467i 0.984633 + 0.174636i \(0.0558750\pi\)
−0.341077 + 0.940035i \(0.610792\pi\)
\(270\) 3.42181 0.852167i 0.208245 0.0518613i
\(271\) −3.36816 1.94461i −0.204601 0.118127i 0.394199 0.919025i \(-0.371022\pi\)
−0.598800 + 0.800899i \(0.704356\pi\)
\(272\) 3.04405 0.184573
\(273\) 22.2388 18.6758i 1.34596 1.13031i
\(274\) −5.87829 −0.355121
\(275\) −15.5139 8.95695i −0.935523 0.540124i
\(276\) 0.730075 0.335202i 0.0439453 0.0201768i
\(277\) −7.35738 12.7434i −0.442062 0.765674i 0.555780 0.831329i \(-0.312420\pi\)
−0.997842 + 0.0656553i \(0.979086\pi\)
\(278\) 2.37144 4.10746i 0.142230 0.246349i
\(279\) 1.78958 9.49194i 0.107139 0.568267i
\(280\) −4.28022 1.11798i −0.255792 0.0668123i
\(281\) 26.9261i 1.60628i −0.595793 0.803138i \(-0.703162\pi\)
0.595793 0.803138i \(-0.296838\pi\)
\(282\) −6.61043 4.68712i −0.393645 0.279114i
\(283\) 8.82803 5.09686i 0.524772 0.302977i −0.214113 0.976809i \(-0.568686\pi\)
0.738885 + 0.673832i \(0.235353\pi\)
\(284\) 4.05601 2.34174i 0.240680 0.138957i
\(285\) −3.56207 2.52568i −0.210999 0.149609i
\(286\) 29.9358i 1.77014i
\(287\) 17.9734 4.93771i 1.06094 0.291464i
\(288\) −1.42628 + 7.56499i −0.0840442 + 0.445771i
\(289\) 7.93248 13.7395i 0.466617 0.808204i
\(290\) 1.47042 + 2.54684i 0.0863461 + 0.149556i
\(291\) 10.8614 4.98683i 0.636705 0.292333i
\(292\) 4.50518 + 2.60106i 0.263646 + 0.152216i
\(293\) −10.6250 −0.620719 −0.310359 0.950619i \(-0.600449\pi\)
−0.310359 + 0.950619i \(0.600449\pi\)
\(294\) 6.44206 + 13.5764i 0.375709 + 0.791793i
\(295\) 2.25149 0.131087
\(296\) 5.31526 + 3.06877i 0.308943 + 0.178368i
\(297\) −19.2172 + 4.78584i −1.11509 + 0.277703i
\(298\) −8.96938 15.5354i −0.519582 0.899943i
\(299\) 3.16858 5.48815i 0.183244 0.317388i
\(300\) −3.75952 0.351309i −0.217056 0.0202828i
\(301\) −20.2632 + 5.56678i −1.16795 + 0.320864i
\(302\) 8.35568i 0.480815i
\(303\) 3.76257 5.30650i 0.216154 0.304850i
\(304\) −11.3932 + 6.57787i −0.653445 + 0.377267i
\(305\) −2.37383 + 1.37053i −0.135925 + 0.0784765i
\(306\) 3.00430 + 2.58201i 0.171744 + 0.147604i
\(307\) 0.198539i 0.0113312i 0.999984 + 0.00566562i \(0.00180343\pi\)
−0.999984 + 0.00566562i \(0.998197\pi\)
\(308\) 4.52518 + 1.18197i 0.257846 + 0.0673488i
\(309\) 2.92923 31.3470i 0.166638 1.78327i
\(310\) −1.09252 + 1.89230i −0.0620509 + 0.107475i
\(311\) 3.24806 + 5.62580i 0.184180 + 0.319010i 0.943300 0.331941i \(-0.107704\pi\)
−0.759120 + 0.650951i \(0.774370\pi\)
\(312\) 13.9858 + 30.4613i 0.791792 + 1.72453i
\(313\) 25.3654 + 14.6447i 1.43374 + 0.827768i 0.997403 0.0720180i \(-0.0229439\pi\)
0.436332 + 0.899786i \(0.356277\pi\)
\(314\) 20.6827 1.16719
\(315\) −2.47312 3.57370i −0.139344 0.201355i
\(316\) −0.916353 −0.0515489
\(317\) −9.67058 5.58331i −0.543154 0.313590i 0.203202 0.979137i \(-0.434865\pi\)
−0.746356 + 0.665547i \(0.768198\pi\)
\(318\) 1.15486 + 2.51530i 0.0647614 + 0.141051i
\(319\) −8.25801 14.3033i −0.462360 0.800830i
\(320\) 2.43520 4.21788i 0.136132 0.235787i
\(321\) −2.34476 + 25.0923i −0.130872 + 1.40052i
\(322\) 2.33335 + 2.30408i 0.130032 + 0.128402i
\(323\) 4.90536i 0.272942i
\(324\) −3.26023 + 2.60689i −0.181124 + 0.144827i
\(325\) −25.7954 + 14.8930i −1.43087 + 0.826113i
\(326\) −7.61813 + 4.39833i −0.421929 + 0.243601i
\(327\) −8.21502 + 11.5860i −0.454292 + 0.640705i
\(328\) 21.5135i 1.18788i
\(329\) −2.52393 + 9.66292i −0.139149 + 0.532734i
\(330\) 4.46054 + 0.416816i 0.245545 + 0.0229450i
\(331\) −0.290175 + 0.502598i −0.0159495 + 0.0276253i −0.873890 0.486124i \(-0.838410\pi\)
0.857941 + 0.513749i \(0.171744\pi\)
\(332\) −1.23275 2.13519i −0.0676561 0.117184i
\(333\) 1.99514 + 5.68990i 0.109333 + 0.311805i
\(334\) −18.0110 10.3987i −0.985518 0.568989i
\(335\) 4.81680 0.263170
\(336\) −12.8937 + 2.27885i −0.703410 + 0.124321i
\(337\) 14.4437 0.786798 0.393399 0.919368i \(-0.371299\pi\)
0.393399 + 0.919368i \(0.371299\pi\)
\(338\) 29.1526 + 16.8312i 1.58569 + 0.915499i
\(339\) −14.9150 + 6.84800i −0.810073 + 0.371933i
\(340\) 0.135281 + 0.234313i 0.00733663 + 0.0127074i
\(341\) 6.13568 10.6273i 0.332266 0.575501i
\(342\) −16.8239 3.17191i −0.909730 0.171517i
\(343\) 12.8456 13.3413i 0.693596 0.720364i
\(344\) 24.2543i 1.30770i
\(345\) −0.773634 0.548545i −0.0416511 0.0295327i
\(346\) −12.4319 + 7.17757i −0.668344 + 0.385868i
\(347\) −16.9273 + 9.77295i −0.908703 + 0.524640i −0.880013 0.474949i \(-0.842467\pi\)
−0.0286890 + 0.999588i \(0.509133\pi\)
\(348\) −2.83983 2.01358i −0.152231 0.107939i
\(349\) 25.1362i 1.34551i −0.739865 0.672755i \(-0.765111\pi\)
0.739865 0.672755i \(-0.234889\pi\)
\(350\) −4.08303 14.8623i −0.218247 0.794425i
\(351\) −9.08501 + 31.6508i −0.484922 + 1.68939i
\(352\) −4.89008 + 8.46986i −0.260642 + 0.451445i
\(353\) 4.51404 + 7.81855i 0.240258 + 0.416140i 0.960788 0.277285i \(-0.0894345\pi\)
−0.720529 + 0.693424i \(0.756101\pi\)
\(354\) 8.02227 3.68330i 0.426379 0.195765i
\(355\) −4.78822 2.76448i −0.254132 0.146723i
\(356\) 5.79465 0.307116
\(357\) 1.66796 4.58842i 0.0882779 0.242845i
\(358\) 10.7684 0.569130
\(359\) −19.1553 11.0593i −1.01098 0.583689i −0.0995006 0.995038i \(-0.531725\pi\)
−0.911478 + 0.411349i \(0.865058\pi\)
\(360\) 4.73357 1.65980i 0.249481 0.0874794i
\(361\) 1.09995 + 1.90517i 0.0578923 + 0.100272i
\(362\) 5.91048 10.2372i 0.310648 0.538058i
\(363\) −6.08085 0.568226i −0.319162 0.0298241i
\(364\) 5.46405 5.53345i 0.286394 0.290031i
\(365\) 6.14124i 0.321447i
\(366\) −6.21608 + 8.76678i −0.324919 + 0.458247i
\(367\) 2.23888 1.29262i 0.116868 0.0674740i −0.440426 0.897789i \(-0.645173\pi\)
0.557295 + 0.830315i \(0.311839\pi\)
\(368\) −2.47445 + 1.42862i −0.128990 + 0.0744722i
\(369\) −13.7757 + 16.0287i −0.717133 + 0.834420i
\(370\) 1.36397i 0.0709094i
\(371\) 2.39674 2.42718i 0.124433 0.126013i
\(372\) 0.240653 2.57534i 0.0124773 0.133525i
\(373\) 1.23274 2.13517i 0.0638291 0.110555i −0.832345 0.554258i \(-0.813002\pi\)
0.896174 + 0.443703i \(0.146335\pi\)
\(374\) 2.51634 + 4.35844i 0.130117 + 0.225369i
\(375\) 3.83851 + 8.36032i 0.198220 + 0.431725i
\(376\) −9.98277 5.76356i −0.514822 0.297233i
\(377\) −27.4616 −1.41435
\(378\) −14.6583 8.68756i −0.753941 0.446840i
\(379\) 15.7553 0.809298 0.404649 0.914472i \(-0.367394\pi\)
0.404649 + 0.914472i \(0.367394\pi\)
\(380\) −1.01265 0.584654i −0.0519479 0.0299921i
\(381\) 9.30140 + 20.2586i 0.476525 + 1.03788i
\(382\) −15.0374 26.0455i −0.769378 1.33260i
\(383\) 17.6955 30.6495i 0.904198 1.56612i 0.0822080 0.996615i \(-0.473803\pi\)
0.821990 0.569502i \(-0.192864\pi\)
\(384\) 0.949580 10.1619i 0.0484581 0.518572i
\(385\) −1.46264 5.32405i −0.0745431 0.271339i
\(386\) 7.60104i 0.386883i
\(387\) 15.5307 18.0707i 0.789470 0.918588i
\(388\) 2.77163 1.60020i 0.140708 0.0812379i
\(389\) −28.4609 + 16.4319i −1.44302 + 0.833129i −0.998050 0.0624150i \(-0.980120\pi\)
−0.444972 + 0.895544i \(0.646786\pi\)
\(390\) 4.30853 6.07649i 0.218171 0.307695i
\(391\) 1.06538i 0.0538785i
\(392\) 10.9208 + 18.3759i 0.551583 + 0.928122i
\(393\) 26.8090 + 2.50517i 1.35233 + 0.126369i
\(394\) 0.986617 1.70887i 0.0497050 0.0860916i
\(395\) 0.540888 + 0.936846i 0.0272150 + 0.0471378i
\(396\) −5.00447 + 1.75479i −0.251484 + 0.0881818i
\(397\) −21.6571 12.5037i −1.08694 0.627544i −0.154179 0.988043i \(-0.549273\pi\)
−0.932760 + 0.360499i \(0.882607\pi\)
\(398\) −20.3256 −1.01883
\(399\) 3.67227 + 20.7777i 0.183843 + 1.04019i
\(400\) 13.4296 0.671482
\(401\) 12.7549 + 7.36405i 0.636950 + 0.367743i 0.783439 0.621469i \(-0.213464\pi\)
−0.146489 + 0.989212i \(0.546797\pi\)
\(402\) 17.1627 7.87999i 0.855997 0.393018i
\(403\) −10.2020 17.6703i −0.508196 0.880221i
\(404\) 0.870972 1.50857i 0.0433325 0.0750541i
\(405\) 4.58958 + 1.79439i 0.228058 + 0.0891641i
\(406\) 3.59121 13.7490i 0.178229 0.682351i
\(407\) 7.66017i 0.379700i
\(408\) 4.59675 + 3.25932i 0.227573 + 0.161360i
\(409\) 7.90852 4.56599i 0.391051 0.225773i −0.291564 0.956551i \(-0.594176\pi\)
0.682615 + 0.730778i \(0.260842\pi\)
\(410\) 4.14049 2.39051i 0.204484 0.118059i
\(411\) −6.70110 4.75141i −0.330541 0.234370i
\(412\) 8.43077i 0.415354i
\(413\) −7.74121 7.64413i −0.380920 0.376143i
\(414\) −3.65392 0.688897i −0.179580 0.0338574i
\(415\) −1.45530 + 2.52065i −0.0714376 + 0.123734i
\(416\) 8.13086 + 14.0831i 0.398648 + 0.690479i
\(417\) 6.02343 2.76556i 0.294969 0.135430i
\(418\) −18.8362 10.8751i −0.921309 0.531918i
\(419\) 0.194362 0.00949520 0.00474760 0.999989i \(-0.498489\pi\)
0.00474760 + 0.999989i \(0.498489\pi\)
\(420\) −0.748423 0.891209i −0.0365193 0.0434865i
\(421\) −33.4270 −1.62913 −0.814567 0.580070i \(-0.803025\pi\)
−0.814567 + 0.580070i \(0.803025\pi\)
\(422\) −20.5429 11.8605i −1.00001 0.577359i
\(423\) −3.74713 10.6864i −0.182192 0.519590i
\(424\) 1.96854 + 3.40961i 0.0956008 + 0.165585i
\(425\) −2.50374 + 4.33661i −0.121449 + 0.210357i
\(426\) −21.5834 2.01686i −1.04572 0.0977174i
\(427\) 12.8150 + 3.34725i 0.620161 + 0.161985i
\(428\) 6.74857i 0.326204i
\(429\) −24.1971 + 34.1261i −1.16825 + 1.64762i
\(430\) −4.66799 + 2.69507i −0.225111 + 0.129968i
\(431\) −10.1276 + 5.84719i −0.487831 + 0.281649i −0.723674 0.690142i \(-0.757548\pi\)
0.235843 + 0.971791i \(0.424215\pi\)
\(432\) 10.6826 10.3105i 0.513968 0.496064i
\(433\) 24.0346i 1.15503i −0.816381 0.577514i \(-0.804023\pi\)
0.816381 0.577514i \(-0.195977\pi\)
\(434\) 10.1810 2.79695i 0.488703 0.134258i
\(435\) −0.382366 + 4.09188i −0.0183330 + 0.196190i
\(436\) −1.90164 + 3.29374i −0.0910721 + 0.157742i
\(437\) 2.30217 + 3.98747i 0.110128 + 0.190747i
\(438\) −10.0467 21.8818i −0.480049 1.04555i
\(439\) −10.2684 5.92844i −0.490082 0.282949i 0.234527 0.972110i \(-0.424646\pi\)
−0.724608 + 0.689161i \(0.757979\pi\)
\(440\) 6.37269 0.303806
\(441\) −3.63000 + 20.6839i −0.172857 + 0.984947i
\(442\) 8.36799 0.398025
\(443\) −14.0631 8.11936i −0.668160 0.385762i 0.127219 0.991875i \(-0.459395\pi\)
−0.795379 + 0.606112i \(0.792728\pi\)
\(444\) 0.673707 + 1.46734i 0.0319727 + 0.0696370i
\(445\) −3.42036 5.92424i −0.162141 0.280836i
\(446\) 11.5255 19.9627i 0.545746 0.945260i
\(447\) 2.33238 24.9599i 0.110318 1.18056i
\(448\) −22.6931 + 6.23434i −1.07215 + 0.294545i
\(449\) 42.1940i 1.99126i −0.0934083 0.995628i \(-0.529776\pi\)
0.0934083 0.995628i \(-0.470224\pi\)
\(450\) 13.2542 + 11.3912i 0.624811 + 0.536987i
\(451\) −23.2534 + 13.4253i −1.09496 + 0.632174i
\(452\) −3.80605 + 2.19743i −0.179022 + 0.103358i
\(453\) 6.75388 9.52527i 0.317325 0.447536i
\(454\) 30.6836i 1.44005i
\(455\) −8.88242 2.32007i −0.416414 0.108767i
\(456\) −24.2476 2.26583i −1.13550 0.106107i
\(457\) 14.3031 24.7737i 0.669071 1.15887i −0.309093 0.951032i \(-0.600025\pi\)
0.978164 0.207834i \(-0.0666413\pi\)
\(458\) −14.3534 24.8609i −0.670692 1.16167i
\(459\) 1.33779 + 5.37179i 0.0624428 + 0.250734i
\(460\) −0.219934 0.126979i −0.0102545 0.00592043i
\(461\) 11.7607 0.547749 0.273874 0.961765i \(-0.411695\pi\)
0.273874 + 0.961765i \(0.411695\pi\)
\(462\) −13.9213 16.5773i −0.647679 0.771245i
\(463\) −24.2008 −1.12471 −0.562354 0.826896i \(-0.690104\pi\)
−0.562354 + 0.826896i \(0.690104\pi\)
\(464\) 10.7228 + 6.19083i 0.497795 + 0.287402i
\(465\) −2.77498 + 1.27409i −0.128687 + 0.0590846i
\(466\) 17.0426 + 29.5186i 0.789482 + 1.36742i
\(467\) −17.7761 + 30.7892i −0.822581 + 1.42475i 0.0811727 + 0.996700i \(0.474133\pi\)
−0.903754 + 0.428052i \(0.859200\pi\)
\(468\) −1.63370 + 8.66513i −0.0755176 + 0.400546i
\(469\) −16.5614 16.3537i −0.764734 0.755144i
\(470\) 2.56172i 0.118163i
\(471\) 23.5778 + 16.7178i 1.08641 + 0.770315i
\(472\) 10.8746 6.27844i 0.500543 0.288989i
\(473\) 26.2158 15.1357i 1.20541 0.695941i
\(474\) 3.45986 + 2.45321i 0.158917 + 0.112680i
\(475\) 21.6413i 0.992970i
\(476\) 0.330396 1.26493i 0.0151437 0.0579778i
\(477\) −0.716600 + 3.80085i −0.0328109 + 0.174029i
\(478\) −14.2099 + 24.6123i −0.649946 + 1.12574i
\(479\) 10.5126 + 18.2084i 0.480335 + 0.831964i 0.999745 0.0225604i \(-0.00718181\pi\)
−0.519411 + 0.854525i \(0.673848\pi\)
\(480\) 2.21164 1.01544i 0.100947 0.0463482i
\(481\) 11.0304 + 6.36838i 0.502941 + 0.290373i
\(482\) 1.93472 0.0881241
\(483\) 0.797568 + 4.51264i 0.0362906 + 0.205332i
\(484\) −1.63544 −0.0743383
\(485\) −3.27198 1.88908i −0.148573 0.0857786i
\(486\) 19.2886 1.11469i 0.874949 0.0505632i
\(487\) 14.1314 + 24.4763i 0.640355 + 1.10913i 0.985353 + 0.170524i \(0.0545461\pi\)
−0.344998 + 0.938603i \(0.612121\pi\)
\(488\) −7.64365 + 13.2392i −0.346012 + 0.599310i
\(489\) −12.2396 1.14374i −0.553496 0.0517215i
\(490\) 2.32314 4.14369i 0.104949 0.187193i
\(491\) 10.3880i 0.468802i 0.972140 + 0.234401i \(0.0753129\pi\)
−0.972140 + 0.234401i \(0.924687\pi\)
\(492\) −3.27354 + 4.61681i −0.147583 + 0.208142i
\(493\) −3.99821 + 2.30837i −0.180070 + 0.103964i
\(494\) −31.3195 + 18.0823i −1.40913 + 0.813562i
\(495\) 4.74799 + 4.08060i 0.213406 + 0.183410i
\(496\) 9.19955i 0.413072i
\(497\) 7.07734 + 25.7617i 0.317462 + 1.15557i
\(498\) −1.06173 + 11.3621i −0.0475773 + 0.509146i
\(499\) 14.6851 25.4353i 0.657394 1.13864i −0.323894 0.946093i \(-0.604992\pi\)
0.981288 0.192547i \(-0.0616747\pi\)
\(500\) 1.23172 + 2.13341i 0.0550843 + 0.0954088i
\(501\) −12.1269 26.4125i −0.541789 1.18002i
\(502\) 10.6116 + 6.12661i 0.473619 + 0.273444i
\(503\) 9.43320 0.420606 0.210303 0.977636i \(-0.432555\pi\)
0.210303 + 0.977636i \(0.432555\pi\)
\(504\) −21.9105 10.3643i −0.975972 0.461663i
\(505\) −2.05641 −0.0915090
\(506\) −4.09097 2.36192i −0.181866 0.105000i
\(507\) 19.6285 + 42.7512i 0.871734 + 1.89865i
\(508\) 2.98469 + 5.16963i 0.132424 + 0.229365i
\(509\) 16.4669 28.5215i 0.729882 1.26419i −0.227051 0.973883i \(-0.572908\pi\)
0.956933 0.290310i \(-0.0937583\pi\)
\(510\) 0.116513 1.24686i 0.00515928 0.0552118i
\(511\) −20.8504 + 21.1152i −0.922366 + 0.934080i
\(512\) 24.7825i 1.09524i
\(513\) −16.6149 17.2146i −0.733566 0.760043i
\(514\) 29.1996 16.8584i 1.28794 0.743593i
\(515\) −8.61932 + 4.97637i −0.379813 + 0.219285i
\(516\) 3.69059 5.20499i 0.162469 0.229137i
\(517\) 14.3868i 0.632732i
\(518\) −4.63087 + 4.68968i −0.203469 + 0.206053i
\(519\) −19.9737 1.86644i −0.876747 0.0819278i
\(520\) 5.29802 9.17644i 0.232333 0.402413i
\(521\) 9.56796 + 16.5722i 0.419180 + 0.726041i 0.995857 0.0909312i \(-0.0289843\pi\)
−0.576677 + 0.816972i \(0.695651\pi\)
\(522\) 5.33165 + 15.2053i 0.233360 + 0.665516i
\(523\) −20.2581 11.6960i −0.885824 0.511430i −0.0132494 0.999912i \(-0.504218\pi\)
−0.872574 + 0.488482i \(0.837551\pi\)
\(524\) 7.21026 0.314982
\(525\) 7.35865 20.2430i 0.321158 0.883477i
\(526\) −1.03366 −0.0450698
\(527\) −2.97066 1.71511i −0.129404 0.0747114i
\(528\) 17.1414 7.87020i 0.745983 0.342507i
\(529\) 0.500000 + 0.866025i 0.0217391 + 0.0376533i
\(530\) 0.437477 0.757732i 0.0190028 0.0329138i
\(531\) 12.1224 + 2.28552i 0.526067 + 0.0991830i
\(532\) 1.49677 + 5.44829i 0.0648933 + 0.236213i
\(533\) 44.6453i 1.93380i
\(534\) −21.8787 15.5131i −0.946786 0.671318i
\(535\) 6.89949 3.98343i 0.298291 0.172218i
\(536\) 23.2649 13.4320i 1.00489 0.580173i
\(537\) 12.2758 + 8.70411i 0.529738 + 0.375610i
\(538\) 26.1646i 1.12804i
\(539\) −13.0470 + 23.2713i −0.561972 + 1.00237i
\(540\) 1.26839 + 0.364076i 0.0545827 + 0.0156674i
\(541\) −17.3442 + 30.0410i −0.745685 + 1.29156i 0.204189 + 0.978932i \(0.434544\pi\)
−0.949874 + 0.312633i \(0.898789\pi\)
\(542\) 2.41021 + 4.17460i 0.103527 + 0.179315i
\(543\) 15.0125 6.89277i 0.644250 0.295797i
\(544\) 2.36759 + 1.36693i 0.101510 + 0.0586066i
\(545\) 4.48987 0.192325
\(546\) −35.4444 + 6.26447i −1.51688 + 0.268095i
\(547\) 42.1534 1.80235 0.901174 0.433458i \(-0.142707\pi\)
0.901174 + 0.433458i \(0.142707\pi\)
\(548\) −1.90504 1.09987i −0.0813792 0.0469843i
\(549\) −14.1723 + 4.96946i −0.604861 + 0.212092i
\(550\) 11.1015 + 19.2284i 0.473370 + 0.819901i
\(551\) 9.97627 17.2794i 0.425003 0.736127i
\(552\) −5.26626 0.492107i −0.224147 0.0209455i
\(553\) 1.32101 5.05751i 0.0561751 0.215067i
\(554\) 18.2379i 0.774854i
\(555\) 1.10249 1.55489i 0.0467982 0.0660014i
\(556\) 1.53707 0.887430i 0.0651864 0.0376354i
\(557\) 32.4461 18.7327i 1.37478 0.793732i 0.383258 0.923641i \(-0.374802\pi\)
0.991526 + 0.129910i \(0.0414688\pi\)
\(558\) −7.80319 + 9.07941i −0.330335 + 0.384362i
\(559\) 50.3331i 2.12886i
\(560\) 2.94526 + 2.90833i 0.124460 + 0.122899i
\(561\) −0.654347 + 7.00246i −0.0276265 + 0.295644i
\(562\) −16.6865 + 28.9019i −0.703878 + 1.21915i
\(563\) −0.550026 0.952674i −0.0231808 0.0401504i 0.854202 0.519941i \(-0.174046\pi\)
−0.877383 + 0.479790i \(0.840713\pi\)
\(564\) −1.26531 2.75587i −0.0532793 0.116043i
\(565\) 4.49314 + 2.59411i 0.189028 + 0.109135i
\(566\) −12.6344 −0.531064
\(567\) −9.68795 21.7519i −0.406856 0.913492i
\(568\) −30.8358 −1.29384
\(569\) 13.1710 + 7.60428i 0.552157 + 0.318788i 0.749991 0.661448i \(-0.230058\pi\)
−0.197835 + 0.980235i \(0.563391\pi\)
\(570\) 2.25824 + 4.91848i 0.0945875 + 0.206013i
\(571\) 22.1498 + 38.3646i 0.926941 + 1.60551i 0.788409 + 0.615151i \(0.210905\pi\)
0.138532 + 0.990358i \(0.455762\pi\)
\(572\) −5.60122 + 9.70160i −0.234199 + 0.405644i
\(573\) 3.91029 41.8458i 0.163355 1.74814i
\(574\) −22.3522 5.83835i −0.932964 0.243688i
\(575\) 4.70020i 0.196012i
\(576\) 17.3931 20.2378i 0.724713 0.843240i
\(577\) −15.0823 + 8.70776i −0.627884 + 0.362509i −0.779932 0.625864i \(-0.784746\pi\)
0.152048 + 0.988373i \(0.451413\pi\)
\(578\) −17.0291 + 9.83176i −0.708317 + 0.408947i
\(579\) 6.14390 8.66499i 0.255332 0.360105i
\(580\) 1.10051i 0.0456961i
\(581\) 13.5616 3.72570i 0.562631 0.154568i
\(582\) −14.7488 1.37820i −0.611356 0.0571283i
\(583\) −2.45691 + 4.25549i −0.101755 + 0.176244i
\(584\) −17.1253 29.6618i −0.708649 1.22742i
\(585\) 9.82323 3.44447i 0.406140 0.142411i
\(586\) 11.4046 + 6.58447i 0.471121 + 0.272002i
\(587\) 45.7535 1.88845 0.944226 0.329300i \(-0.106813\pi\)
0.944226 + 0.329300i \(0.106813\pi\)
\(588\) −0.452508 + 5.60521i −0.0186611 + 0.231155i
\(589\) 14.8247 0.610840
\(590\) −2.41670 1.39528i −0.0994940 0.0574429i
\(591\) 2.50599 1.15059i 0.103083 0.0473289i
\(592\) −2.87132 4.97328i −0.118011 0.204400i
\(593\) 7.66023 13.2679i 0.314568 0.544848i −0.664778 0.747041i \(-0.731474\pi\)
0.979346 + 0.202194i \(0.0648070\pi\)
\(594\) 23.5931 + 6.77215i 0.968038 + 0.277865i
\(595\) −1.48824 + 0.408853i −0.0610117 + 0.0167614i
\(596\) 6.71296i 0.274973i
\(597\) −23.1707 16.4292i −0.948314 0.672401i
\(598\) −6.80217 + 3.92724i −0.278161 + 0.160597i
\(599\) −22.1487 + 12.7876i −0.904972 + 0.522486i −0.878810 0.477172i \(-0.841662\pi\)
−0.0261618 + 0.999658i \(0.508329\pi\)
\(600\) 20.2798 + 14.3794i 0.827918 + 0.587035i
\(601\) 29.0013i 1.18299i −0.806309 0.591495i \(-0.798538\pi\)
0.806309 0.591495i \(-0.201462\pi\)
\(602\) 25.1999 + 6.58216i 1.02707 + 0.268269i
\(603\) 25.9344 + 4.88959i 1.05613 + 0.199119i
\(604\) 1.56341 2.70791i 0.0636143 0.110183i
\(605\) 0.965339 + 1.67202i 0.0392466 + 0.0679772i
\(606\) −7.32717 + 3.36416i −0.297646 + 0.136660i
\(607\) 7.91183 + 4.56790i 0.321131 + 0.185405i 0.651897 0.758308i \(-0.273974\pi\)
−0.330765 + 0.943713i \(0.607307\pi\)
\(608\) −11.8151 −0.479167
\(609\) 15.2072 12.7707i 0.616226 0.517496i
\(610\) 3.39736 0.137555
\(611\) −20.7165 11.9607i −0.838100 0.483877i
\(612\) 0.490519 + 1.39891i 0.0198281 + 0.0565474i
\(613\) −12.4459 21.5568i −0.502683 0.870673i −0.999995 0.00310109i \(-0.999013\pi\)
0.497312 0.867572i \(-0.334320\pi\)
\(614\) 0.123038 0.213108i 0.00496540 0.00860033i
\(615\) 6.65231 + 0.621626i 0.268247 + 0.0250664i
\(616\) −21.9109 21.6362i −0.882817 0.871746i
\(617\) 26.4642i 1.06541i 0.846301 + 0.532704i \(0.178824\pi\)
−0.846301 + 0.532704i \(0.821176\pi\)
\(618\) −22.5704 + 31.8319i −0.907915 + 1.28047i
\(619\) −2.28633 + 1.32001i −0.0918953 + 0.0530558i −0.545243 0.838278i \(-0.683563\pi\)
0.453348 + 0.891334i \(0.350229\pi\)
\(620\) −0.708127 + 0.408837i −0.0284391 + 0.0164193i
\(621\) −3.60854 3.73878i −0.144806 0.150032i
\(622\) 8.05148i 0.322835i
\(623\) −8.35354 + 31.9817i −0.334678 + 1.28132i
\(624\) 2.91792 31.2260i 0.116810 1.25004i
\(625\) −10.2964 + 17.8339i −0.411857 + 0.713356i
\(626\) −18.1511 31.4386i −0.725463 1.25654i
\(627\) −12.6825 27.6226i −0.506490 1.10314i
\(628\) 6.70286 + 3.86990i 0.267473 + 0.154426i
\(629\) 2.14125 0.0853774
\(630\) 0.439913 + 5.36856i 0.0175266 + 0.213888i
\(631\) 41.6250 1.65706 0.828532 0.559941i \(-0.189176\pi\)
0.828532 + 0.559941i \(0.189176\pi\)
\(632\) 5.22492 + 3.01661i 0.207836 + 0.119994i
\(633\) −13.8316 30.1255i −0.549758 1.19738i
\(634\) 6.92012 + 11.9860i 0.274833 + 0.476025i
\(635\) 3.52349 6.10287i 0.139826 0.242185i
\(636\) −0.0963647 + 1.03124i −0.00382111 + 0.0408914i
\(637\) 22.6631 + 38.1341i 0.897945 + 1.51093i
\(638\) 20.4704i 0.810432i
\(639\) −22.9743 19.7450i −0.908849 0.781100i
\(640\) −2.79416 + 1.61321i −0.110449 + 0.0637677i
\(641\) 2.90920 1.67963i 0.114907 0.0663413i −0.441445 0.897288i \(-0.645534\pi\)
0.556352 + 0.830947i \(0.312201\pi\)
\(642\) 18.0669 25.4805i 0.713043 1.00563i
\(643\) 32.8061i 1.29375i 0.762597 + 0.646873i \(0.223924\pi\)
−0.762597 + 0.646873i \(0.776076\pi\)
\(644\) 0.325079 + 1.18329i 0.0128099 + 0.0466283i
\(645\) −7.49981 0.700821i −0.295305 0.0275948i
\(646\) −3.03993 + 5.26530i −0.119604 + 0.207161i
\(647\) −20.0214 34.6781i −0.787124 1.36334i −0.927722 0.373272i \(-0.878236\pi\)
0.140598 0.990067i \(-0.455098\pi\)
\(648\) 27.1712 4.13155i 1.06739 0.162303i
\(649\) 13.5724 + 7.83603i 0.532763 + 0.307591i
\(650\) 36.9176 1.44803
\(651\) 13.8668 + 5.04081i 0.543484 + 0.197565i
\(652\) −3.29185 −0.128919
\(653\) 25.2259 + 14.5642i 0.987167 + 0.569941i 0.904426 0.426630i \(-0.140299\pi\)
0.0827410 + 0.996571i \(0.473633\pi\)
\(654\) 15.9978 7.34515i 0.625564 0.287218i
\(655\) −4.25594 7.37151i −0.166293 0.288029i
\(656\) 10.0647 17.4325i 0.392959 0.680625i
\(657\) 6.23405 33.0654i 0.243213 1.29001i
\(658\) 8.69739 8.80785i 0.339060 0.343366i
\(659\) 27.9586i 1.08911i 0.838725 + 0.544556i \(0.183302\pi\)
−0.838725 + 0.544556i \(0.816698\pi\)
\(660\) 1.36758 + 0.969683i 0.0532331 + 0.0377449i
\(661\) 15.2715 8.81703i 0.593994 0.342943i −0.172681 0.984978i \(-0.555243\pi\)
0.766675 + 0.642035i \(0.221910\pi\)
\(662\) 0.622934 0.359651i 0.0242110 0.0139782i
\(663\) 9.53929 + 6.76383i 0.370475 + 0.262685i
\(664\) 16.2328i 0.629953i
\(665\) 4.68664 4.74616i 0.181740 0.184048i
\(666\) 1.38458 7.34383i 0.0536514 0.284568i
\(667\) 2.16671 3.75285i 0.0838954 0.145311i
\(668\) −3.89134 6.73999i −0.150560 0.260778i
\(669\) 29.2745 13.4409i 1.13182 0.519657i
\(670\) −5.17024 2.98504i −0.199744 0.115322i
\(671\) −19.0799 −0.736570
\(672\) −11.0517 4.01748i −0.426330 0.154978i
\(673\) 15.3086 0.590104 0.295052 0.955481i \(-0.404663\pi\)
0.295052 + 0.955481i \(0.404663\pi\)
\(674\) −15.5035 8.95098i −0.597174 0.344779i
\(675\) 5.90202 + 23.6991i 0.227169 + 0.912178i
\(676\) 6.29851 + 10.9093i 0.242250 + 0.419590i
\(677\) −25.8457 + 44.7660i −0.993330 + 1.72050i −0.396805 + 0.917903i \(0.629881\pi\)
−0.596525 + 0.802595i \(0.703452\pi\)
\(678\) 20.2533 + 1.89257i 0.777822 + 0.0726837i
\(679\) 4.83622 + 17.6040i 0.185597 + 0.675578i
\(680\) 1.78136i 0.0683121i
\(681\) −24.8015 + 34.9786i −0.950397 + 1.34038i
\(682\) −13.1718 + 7.60474i −0.504374 + 0.291201i
\(683\) −40.0443 + 23.1196i −1.53225 + 0.884647i −0.532995 + 0.846118i \(0.678934\pi\)
−0.999258 + 0.0385283i \(0.987733\pi\)
\(684\) −4.85879 4.17583i −0.185780 0.159667i
\(685\) 2.59686i 0.0992207i
\(686\) −22.0560 + 6.35969i −0.842101 + 0.242814i
\(687\) 3.73245 39.9427i 0.142402 1.52391i
\(688\) −11.3469 + 19.6534i −0.432596 + 0.749279i
\(689\) 4.08517 + 7.07571i 0.155632 + 0.269563i
\(690\) 0.490460 + 1.06823i 0.0186715 + 0.0406668i
\(691\) 7.50502 + 4.33303i 0.285505 + 0.164836i 0.635913 0.771761i \(-0.280624\pi\)
−0.350408 + 0.936597i \(0.613957\pi\)
\(692\) −5.37191 −0.204210
\(693\) −2.47059 30.1503i −0.0938499 1.14531i
\(694\) 24.2258 0.919598
\(695\) −1.81455 1.04763i −0.0688299 0.0397390i
\(696\) 9.56367 + 20.8298i 0.362510 + 0.789550i
\(697\) 3.75280 + 6.50003i 0.142147 + 0.246206i
\(698\) −15.5773 + 26.9806i −0.589609 + 1.02123i
\(699\) −4.43173 + 47.4259i −0.167623 + 1.79381i
\(700\) 1.45763 5.58056i 0.0550932 0.210925i
\(701\) 20.7724i 0.784562i 0.919845 + 0.392281i \(0.128314\pi\)
−0.919845 + 0.392281i \(0.871686\pi\)
\(702\) 29.3661 28.3431i 1.10835 1.06974i
\(703\) −8.01423 + 4.62702i −0.302262 + 0.174511i
\(704\) 29.3596 16.9508i 1.10653 0.638856i
\(705\) −2.07063 + 2.92029i −0.0779845 + 0.109985i
\(706\) 11.1897i 0.421129i
\(707\) 7.07046 + 6.98180i 0.265912 + 0.262577i
\(708\) 3.28903 + 0.307344i 0.123609 + 0.0115507i
\(709\) 3.87341 6.70895i 0.145469 0.251960i −0.784079 0.620661i \(-0.786864\pi\)
0.929548 + 0.368702i \(0.120198\pi\)
\(710\) 3.42638 + 5.93466i 0.128590 + 0.222724i
\(711\) 1.96123 + 5.59319i 0.0735517 + 0.209761i
\(712\) −33.0403 19.0758i −1.23824 0.714896i
\(713\) 3.21972 0.120580
\(714\) −4.63386 + 3.89144i −0.173418 + 0.145634i
\(715\) 13.2248 0.494578
\(716\) 3.48984 + 2.01486i 0.130421 + 0.0752988i
\(717\) −36.0930 + 16.5716i −1.34792 + 0.618876i
\(718\) 13.7073 + 23.7417i 0.511550 + 0.886031i
\(719\) −4.79846 + 8.31118i −0.178952 + 0.309955i −0.941522 0.336952i \(-0.890604\pi\)
0.762570 + 0.646906i \(0.223937\pi\)
\(720\) −4.61215 0.869559i −0.171885 0.0324066i
\(721\) 46.5309 + 12.1538i 1.73290 + 0.452630i
\(722\) 2.72663i 0.101475i
\(723\) 2.20553 + 1.56383i 0.0820247 + 0.0581595i
\(724\) 3.83094 2.21179i 0.142376 0.0822006i
\(725\) −17.6392 + 10.1840i −0.655102 + 0.378223i
\(726\) 6.17491 + 4.37831i 0.229172 + 0.162494i
\(727\) 16.8710i 0.625711i −0.949801 0.312855i \(-0.898715\pi\)
0.949801 0.312855i \(-0.101285\pi\)
\(728\) −49.3712 + 13.5634i −1.82982 + 0.502694i
\(729\) 22.8895 + 14.3202i 0.847761 + 0.530379i
\(730\) −3.80582 + 6.59187i −0.140860 + 0.243976i
\(731\) −4.23090 7.32814i −0.156486 0.271041i
\(732\) −3.65484 + 1.67806i −0.135087 + 0.0620230i
\(733\) −2.45955 1.42002i −0.0908454 0.0524496i 0.453889 0.891058i \(-0.350036\pi\)
−0.544735 + 0.838609i \(0.683370\pi\)
\(734\) −3.20421 −0.118270
\(735\) 5.99766 2.84591i 0.221227 0.104973i
\(736\) −2.56609 −0.0945873
\(737\) 29.0365 + 16.7642i 1.06957 + 0.617519i
\(738\) 24.7197 8.66785i 0.909945 0.319068i
\(739\) 20.9524 + 36.2906i 0.770746 + 1.33497i 0.937155 + 0.348914i \(0.113450\pi\)
−0.166409 + 0.986057i \(0.553217\pi\)
\(740\) 0.255209 0.442035i 0.00938167 0.0162495i
\(741\) −50.3193 4.70210i −1.84853 0.172736i
\(742\) −4.07677 + 1.11998i −0.149663 + 0.0411159i
\(743\) 20.2170i 0.741689i −0.928695 0.370844i \(-0.879068\pi\)
0.928695 0.370844i \(-0.120932\pi\)
\(744\) −9.85012 + 13.8920i −0.361123 + 0.509306i
\(745\) −6.86309 + 3.96241i −0.251444 + 0.145171i
\(746\) −2.64640 + 1.52790i −0.0968916 + 0.0559404i
\(747\) −10.3943 + 12.0943i −0.380307 + 0.442506i
\(748\) 1.88331i 0.0688606i
\(749\) −37.2465 9.72871i −1.36096 0.355479i
\(750\) 1.06084 11.3526i 0.0387365 0.414537i
\(751\) −10.5323 + 18.2424i −0.384328 + 0.665675i −0.991676 0.128761i \(-0.958900\pi\)
0.607348 + 0.794436i \(0.292233\pi\)
\(752\) 5.39273 + 9.34049i 0.196653 + 0.340612i
\(753\) 7.14483 + 15.5615i 0.260372 + 0.567093i
\(754\) 29.4767 + 17.0184i 1.07348 + 0.619773i
\(755\) −3.69129 −0.134340
\(756\) −3.12495 5.55814i −0.113653 0.202148i
\(757\) −4.82700 −0.175440 −0.0877202 0.996145i \(-0.527958\pi\)
−0.0877202 + 0.996145i \(0.527958\pi\)
\(758\) −16.9114 9.76383i −0.614251 0.354638i
\(759\) −2.75447 5.99926i −0.0999808 0.217759i
\(760\) 3.84933 + 6.66724i 0.139630 + 0.241846i
\(761\) 10.4988 18.1845i 0.380582 0.659187i −0.610564 0.791967i \(-0.709057\pi\)
0.991146 + 0.132780i \(0.0423904\pi\)
\(762\) 2.57061 27.5093i 0.0931235 0.996557i
\(763\) −15.4373 15.2437i −0.558869 0.551860i
\(764\) 11.2544i 0.407171i
\(765\) 1.14066 1.32721i 0.0412405 0.0479854i
\(766\) −37.9879 + 21.9323i −1.37256 + 0.792448i
\(767\) 22.5672 13.0292i 0.814854 0.470456i
\(768\) 10.5058 14.8167i 0.379094 0.534652i
\(769\) 18.9829i 0.684540i 0.939602 + 0.342270i \(0.111196\pi\)
−0.939602 + 0.342270i \(0.888804\pi\)
\(770\) −1.72943 + 6.62113i −0.0623242 + 0.238609i
\(771\) 46.9135 + 4.38384i 1.68955 + 0.157880i
\(772\) 1.42221 2.46334i 0.0511865 0.0886577i
\(773\) −6.40223 11.0890i −0.230272 0.398843i 0.727616 0.685985i \(-0.240628\pi\)
−0.957888 + 0.287141i \(0.907295\pi\)
\(774\) −27.8690 + 9.77214i −1.00173 + 0.351252i
\(775\) −13.1058 7.56666i −0.470776 0.271803i
\(776\) −21.0713 −0.756415
\(777\) −9.06973 + 1.60299i −0.325375 + 0.0575071i
\(778\) 40.7323 1.46032
\(779\) −28.0917 16.2188i −1.00649 0.581098i
\(780\) 2.53327 1.16311i 0.0907055 0.0416460i
\(781\) −19.2428 33.3296i −0.688563 1.19263i
\(782\) −0.660231 + 1.14355i −0.0236098 + 0.0408934i
\(783\) −6.21243 + 21.6432i −0.222014 + 0.773464i
\(784\) −0.252389 19.9992i −0.00901391 0.714255i
\(785\) 9.13701i 0.326114i
\(786\) −27.2237 19.3029i −0.971035 0.688512i
\(787\) −14.5438 + 8.39687i −0.518431 + 0.299316i −0.736292 0.676664i \(-0.763425\pi\)
0.217862 + 0.975980i \(0.430092\pi\)
\(788\) 0.639486 0.369207i 0.0227807 0.0131525i
\(789\) −1.17835 0.835507i −0.0419503 0.0297448i
\(790\) 1.34079i 0.0477030i
\(791\) −6.64118 24.1741i −0.236133 0.859531i
\(792\) 34.3116 + 6.46899i 1.21921 + 0.229865i
\(793\) −15.8623 + 27.4743i −0.563286 + 0.975641i
\(794\) 15.4975 + 26.8425i 0.549986 + 0.952603i
\(795\) 1.11119 0.510184i 0.0394097 0.0180944i
\(796\) −6.58713 3.80308i −0.233475 0.134797i
\(797\) 16.0474 0.568429 0.284215 0.958761i \(-0.408267\pi\)
0.284215 + 0.958761i \(0.408267\pi\)
\(798\) 8.93451 24.5781i 0.316278 0.870054i
\(799\) −4.02156 −0.142273
\(800\) 10.4452 + 6.03056i 0.369295 + 0.213212i
\(801\) −12.4020 35.3691i −0.438203 1.24971i
\(802\) −9.12723 15.8088i −0.322294 0.558229i
\(803\) 21.3738 37.0205i 0.754265 1.30643i
\(804\) 7.03649 + 0.657526i 0.248158 + 0.0231892i
\(805\) 1.01788 1.03080i 0.0358754 0.0363310i
\(806\) 25.2892i 0.890775i
\(807\) 21.1488 29.8270i 0.744473 1.04996i
\(808\) −9.93233 + 5.73443i −0.349418 + 0.201737i
\(809\) 17.5345 10.1235i 0.616479 0.355924i −0.159018 0.987276i \(-0.550833\pi\)
0.775497 + 0.631352i \(0.217499\pi\)
\(810\) −3.81434 4.77029i −0.134022 0.167611i
\(811\) 17.8989i 0.628517i 0.949337 + 0.314259i \(0.101756\pi\)
−0.949337 + 0.314259i \(0.898244\pi\)
\(812\) 3.73638 3.78383i 0.131121 0.132786i
\(813\) −0.626747 + 6.70711i −0.0219810 + 0.235229i
\(814\) 4.74712 8.22225i 0.166386 0.288190i
\(815\) 1.94305 + 3.36547i 0.0680622 + 0.117887i
\(816\) −2.19996 4.79155i −0.0770142 0.167738i
\(817\) 31.6706 + 18.2850i 1.10801 + 0.639713i
\(818\) −11.3184 −0.395740
\(819\) −45.4692 21.5083i −1.58882 0.751560i
\(820\) 1.78914 0.0624793
\(821\) 29.4993 + 17.0314i 1.02953 + 0.594401i 0.916851 0.399230i \(-0.130722\pi\)
0.112682 + 0.993631i \(0.464056\pi\)
\(822\) 4.24829 + 9.25283i 0.148176 + 0.322730i
\(823\) −4.67941 8.10498i −0.163114 0.282522i 0.772870 0.634564i \(-0.218821\pi\)
−0.935984 + 0.352043i \(0.885487\pi\)
\(824\) −27.7539 + 48.0711i −0.966852 + 1.67464i
\(825\) −2.88682 + 30.8932i −0.100506 + 1.07556i
\(826\) 3.57206 + 13.0024i 0.124288 + 0.452411i
\(827\) 34.5150i 1.20021i 0.799923 + 0.600103i \(0.204874\pi\)
−0.799923 + 0.600103i \(0.795126\pi\)
\(828\) −1.05526 0.906934i −0.0366729 0.0315181i
\(829\) 5.66067 3.26819i 0.196603 0.113509i −0.398467 0.917183i \(-0.630458\pi\)
0.595070 + 0.803674i \(0.297124\pi\)
\(830\) 3.12416 1.80374i 0.108441 0.0626086i
\(831\) −14.7417 + 20.7908i −0.511383 + 0.721223i
\(832\) 56.3690i 1.95424i
\(833\) 6.50505 + 3.64703i 0.225387 + 0.126362i
\(834\) −8.17928 0.764314i −0.283225 0.0264660i
\(835\) −4.59382 + 7.95672i −0.158976 + 0.275354i
\(836\) −4.06963 7.04880i −0.140751 0.243788i
\(837\) −16.2343 + 4.04299i −0.561140 + 0.139746i
\(838\) −0.208624 0.120449i −0.00720679 0.00416084i
\(839\) 13.9472 0.481512 0.240756 0.970586i \(-0.422605\pi\)
0.240756 + 0.970586i \(0.422605\pi\)
\(840\) 1.33357 + 7.54534i 0.0460126 + 0.260339i
\(841\) 10.2214 0.352464
\(842\) 35.8798 + 20.7152i 1.23650 + 0.713894i
\(843\) −42.3835 + 19.4597i −1.45977 + 0.670229i
\(844\) −4.43837 7.68749i −0.152775 0.264614i
\(845\) 7.43555 12.8787i 0.255791 0.443042i
\(846\) −2.60043 + 13.7927i −0.0894046 + 0.474203i
\(847\) 2.35765 9.02629i 0.0810097 0.310147i
\(848\) 3.68377i 0.126501i
\(849\) −14.4029 10.2124i −0.494306 0.350488i
\(850\) 5.37493 3.10322i 0.184358 0.106439i
\(851\) −1.74058 + 1.00493i −0.0596664 + 0.0344484i
\(852\) −6.61738 4.69204i −0.226708 0.160747i
\(853\) 22.4565i 0.768895i 0.923147 + 0.384447i \(0.125608\pi\)
−0.923147 + 0.384447i \(0.874392\pi\)
\(854\) −11.6810 11.5345i −0.399715 0.394703i
\(855\) −1.40126 + 7.43228i −0.0479220 + 0.254179i
\(856\) 22.2161 38.4794i 0.759331 1.31520i
\(857\) −11.1858 19.3744i −0.382100 0.661817i 0.609262 0.792969i \(-0.291466\pi\)
−0.991362 + 0.131152i \(0.958132\pi\)
\(858\) 47.1210 21.6349i 1.60869 0.738603i
\(859\) 21.8186 + 12.5970i 0.744441 + 0.429803i 0.823682 0.567053i \(-0.191916\pi\)
−0.0792411 + 0.996855i \(0.525250\pi\)
\(860\) −2.01707 −0.0687816
\(861\) −20.7618 24.7228i −0.707562 0.842552i
\(862\) 14.4944 0.493680
\(863\) 10.4439 + 6.02980i 0.355515 + 0.205257i 0.667112 0.744958i \(-0.267530\pi\)
−0.311597 + 0.950215i \(0.600864\pi\)
\(864\) 12.9386 3.22223i 0.440180 0.109622i
\(865\) 3.17084 + 5.49205i 0.107812 + 0.186735i
\(866\) −14.8946 + 25.7982i −0.506139 + 0.876658i
\(867\) −27.3597 2.55664i −0.929185 0.0868279i
\(868\) 3.82278 + 0.998503i 0.129754 + 0.0338914i
\(869\) 7.52997i 0.255437i
\(870\) 2.94622 4.15517i 0.0998862 0.140873i
\(871\) 48.2798 27.8744i 1.63590 0.944487i
\(872\) 21.6858 12.5203i 0.734374 0.423991i
\(873\) −15.6992 13.4925i −0.531338 0.456652i
\(874\) 5.70675i 0.193034i
\(875\) −13.5503 + 3.72258i −0.458083 + 0.125846i
\(876\) 0.838322 8.97127i 0.0283243 0.303111i
\(877\) −13.4006 + 23.2105i −0.452505 + 0.783761i −0.998541 0.0540002i \(-0.982803\pi\)
0.546036 + 0.837762i \(0.316136\pi\)
\(878\) 7.34788 + 12.7269i 0.247979 + 0.429512i
\(879\) 7.67878 + 16.7245i 0.258999 + 0.564102i
\(880\) −5.16382 2.98134i −0.174072 0.100501i
\(881\) 33.2685 1.12084 0.560421 0.828208i \(-0.310639\pi\)
0.560421 + 0.828208i \(0.310639\pi\)
\(882\) 16.7145 19.9521i 0.562806 0.671821i
\(883\) 23.6137 0.794665 0.397332 0.917675i \(-0.369936\pi\)
0.397332 + 0.917675i \(0.369936\pi\)
\(884\) 2.71190 + 1.56571i 0.0912110 + 0.0526607i
\(885\) −1.62717 3.54400i −0.0546969 0.119130i
\(886\) 10.0634 + 17.4303i 0.338086 + 0.585582i
\(887\) 21.3836 37.0376i 0.717993 1.24360i −0.243801 0.969825i \(-0.578394\pi\)
0.961794 0.273774i \(-0.0882722\pi\)
\(888\) 0.989062 10.5844i 0.0331907 0.355189i
\(889\) −32.8348 + 9.02049i −1.10124 + 0.302537i
\(890\) 8.47859i 0.284203i
\(891\) 21.4217 + 26.7904i 0.717653 + 0.897511i
\(892\) 7.47034 4.31301i 0.250126 0.144410i
\(893\) 15.0518 8.69016i 0.503689 0.290805i
\(894\) −17.9716 + 25.3460i −0.601059 + 0.847697i
\(895\) 4.75718i 0.159015i
\(896\) 15.0841 + 3.93994i 0.503925 + 0.131624i
\(897\) −10.9287 1.02123i −0.364898 0.0340980i
\(898\) −26.1482 + 45.2900i −0.872577 + 1.51135i
\(899\) −6.97621 12.0831i −0.232670 0.402996i
\(900\) 2.16405 + 6.17164i 0.0721352 + 0.205721i
\(901\) 1.18954 + 0.686782i 0.0396293 + 0.0228800i
\(902\) 33.2795 1.10809
\(903\) 23.4069 + 27.8725i 0.778933 + 0.927539i
\(904\) 28.9355 0.962379
\(905\) −4.52251 2.61107i −0.150333 0.0867950i
\(906\) −13.1524 + 6.03873i −0.436960 + 0.200623i
\(907\) −27.7607 48.0829i −0.921779 1.59657i −0.796662 0.604426i \(-0.793403\pi\)
−0.125117 0.992142i \(-0.539931\pi\)
\(908\) −5.74115 + 9.94396i −0.190527 + 0.330002i
\(909\) −11.0720 2.08748i −0.367236 0.0692375i
\(910\) 8.09641 + 7.99488i 0.268393 + 0.265028i
\(911\) 13.5029i 0.447372i −0.974661 0.223686i \(-0.928191\pi\)
0.974661 0.223686i \(-0.0718090\pi\)
\(912\) 18.5880 + 13.1798i 0.615510 + 0.436427i
\(913\) −17.5456 + 10.1299i −0.580673 + 0.335252i
\(914\) −30.7053 + 17.7277i −1.01564 + 0.586380i
\(915\) 3.87290 + 2.74608i 0.128034 + 0.0907825i
\(916\) 10.7426i 0.354944i
\(917\) −10.3943 + 39.7947i −0.343250 + 1.31414i
\(918\) 1.89303 6.59501i 0.0624791 0.217668i
\(919\) −6.35325 + 11.0041i −0.209574 + 0.362993i −0.951580 0.307400i \(-0.900541\pi\)
0.742006 + 0.670393i \(0.233874\pi\)
\(920\) 0.836023 + 1.44803i 0.0275629 + 0.0477403i
\(921\) 0.312515 0.143486i 0.0102977 0.00472803i
\(922\) −12.6236 7.28826i −0.415737 0.240026i
\(923\) −63.9912 −2.10629
\(924\) −1.40989 7.97716i −0.0463820 0.262429i
\(925\) 9.44670 0.310605
\(926\) 25.9766 + 14.9976i 0.853646 + 0.492852i
\(927\) −51.4594 + 18.0440i −1.69015 + 0.592642i
\(928\) 5.55997 + 9.63016i 0.182515 + 0.316125i
\(929\) 1.72148 2.98169i 0.0564799 0.0978260i −0.836403 0.548115i \(-0.815346\pi\)
0.892883 + 0.450289i \(0.148679\pi\)
\(930\) 3.76818 + 0.352118i 0.123563 + 0.0115464i
\(931\) −32.2278 + 0.406715i −1.05622 + 0.0133295i
\(932\) 12.7552i 0.417810i
\(933\) 6.50799 9.17848i 0.213062 0.300490i
\(934\) 38.1610 22.0323i 1.24867 0.720918i
\(935\) 1.92543 1.11165i 0.0629682 0.0363547i
\(936\) 37.8405 44.0293i 1.23685 1.43914i
\(937\) 18.7536i 0.612654i 0.951926 + 0.306327i \(0.0991001\pi\)
−0.951926 + 0.306327i \(0.900900\pi\)
\(938\) 7.64200 + 27.8171i 0.249520 + 0.908259i
\(939\) 4.71998 50.5107i 0.154031 1.64835i
\(940\) −0.479317 + 0.830202i −0.0156336 + 0.0270782i
\(941\) −6.38634 11.0615i −0.208189 0.360593i 0.742955 0.669341i \(-0.233423\pi\)
−0.951144 + 0.308748i \(0.900090\pi\)
\(942\) −14.9476 32.5560i −0.487019 1.06073i
\(943\) −6.10115 3.52250i −0.198681 0.114708i
\(944\) −11.7490 −0.382397
\(945\) −3.83790 + 6.47560i −0.124847 + 0.210651i
\(946\) −37.5193 −1.21986
\(947\) 26.1686 + 15.1085i 0.850366 + 0.490959i 0.860774 0.508987i \(-0.169980\pi\)
−0.0104083 + 0.999946i \(0.503313\pi\)
\(948\) 0.662257 + 1.44240i 0.0215091 + 0.0468470i
\(949\) −35.5388 61.5550i −1.15364 1.99816i
\(950\) −13.4114 + 23.2293i −0.435124 + 0.753657i
\(951\) −1.79950 + 19.2573i −0.0583527 + 0.624459i
\(952\) −6.04798 + 6.12479i −0.196016 + 0.198505i
\(953\) 2.80134i 0.0907444i 0.998970 + 0.0453722i \(0.0144474\pi\)
−0.998970 + 0.0453722i \(0.985553\pi\)
\(954\) 3.12463 3.63566i 0.101164 0.117709i
\(955\) −11.5061 + 6.64306i −0.372329 + 0.214964i
\(956\) −9.21030 + 5.31757i −0.297882 + 0.171983i
\(957\) −16.5462 + 23.3358i −0.534863 + 0.754339i
\(958\) 26.0594i 0.841940i
\(959\) 8.81669 8.92866i 0.284706 0.288321i
\(960\) −8.39917 0.784862i −0.271082 0.0253313i
\(961\) −10.3167 + 17.8690i −0.332797 + 0.576421i
\(962\) −7.89316 13.6714i −0.254486 0.440782i
\(963\) 41.1916 14.4436i 1.32738 0.465440i
\(964\) 0.627005 + 0.362001i 0.0201945 + 0.0116593i
\(965\) −3.35791 −0.108095
\(966\) 1.94046 5.33803i 0.0624332 0.171748i
\(967\) −43.3260 −1.39327 −0.696636 0.717425i \(-0.745321\pi\)
−0.696636 + 0.717425i \(0.745321\pi\)
\(968\) 9.32507 + 5.38383i 0.299719 + 0.173043i
\(969\) −7.72137 + 3.54515i −0.248046 + 0.113887i
\(970\) 2.34138 + 4.05539i 0.0751771 + 0.130211i
\(971\) −0.0862921 + 0.149462i −0.00276925 + 0.00479648i −0.867407 0.497600i \(-0.834215\pi\)
0.864637 + 0.502396i \(0.167548\pi\)
\(972\) 6.45962 + 3.24780i 0.207193 + 0.104173i
\(973\) 2.68204 + 9.76269i 0.0859822 + 0.312977i
\(974\) 35.0298i 1.12243i
\(975\) 42.0851 + 29.8404i 1.34780 + 0.955657i
\(976\) 12.3874 7.15186i 0.396511 0.228925i
\(977\) 19.0647 11.0070i 0.609933 0.352145i −0.163006 0.986625i \(-0.552119\pi\)
0.772939 + 0.634480i \(0.218786\pi\)
\(978\) 12.4290 + 8.81275i 0.397435 + 0.281801i
\(979\) 47.6165i 1.52183i
\(980\) 1.52820 0.908210i 0.0488166 0.0290117i
\(981\) 24.1742 + 4.55772i 0.771822 + 0.145517i
\(982\) 6.43758 11.1502i 0.205431 0.355818i
\(983\) −12.1030 20.9630i −0.386026 0.668617i 0.605885 0.795552i \(-0.292819\pi\)
−0.991911 + 0.126935i \(0.959486\pi\)
\(984\) 33.8637 15.5480i 1.07954 0.495652i
\(985\) −0.754928 0.435858i −0.0240540 0.0138876i
\(986\) 5.72212 0.182229
\(987\) 17.0342 3.01064i 0.542204 0.0958296i
\(988\) −13.5334 −0.430554
\(989\) 6.87843 + 3.97127i 0.218722 + 0.126279i
\(990\) −2.56758 7.32243i −0.0816029 0.232722i
\(991\) 27.7487 + 48.0622i 0.881467 + 1.52675i 0.849710 + 0.527250i \(0.176777\pi\)
0.0317570 + 0.999496i \(0.489890\pi\)
\(992\) −4.13105 + 7.15518i −0.131161 + 0.227177i
\(993\) 1.00084 + 0.0935232i 0.0317605 + 0.00296787i
\(994\) 8.36824 32.0379i 0.265425 1.01618i
\(995\) 8.97926i 0.284662i
\(996\) −2.47002 + 3.48356i −0.0782654 + 0.110381i
\(997\) 17.8870 10.3271i 0.566488 0.327062i −0.189257 0.981927i \(-0.560608\pi\)
0.755745 + 0.654866i \(0.227275\pi\)
\(998\) −31.5253 + 18.2011i −0.997915 + 0.576146i
\(999\) 7.51439 7.25262i 0.237745 0.229463i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.n.a.47.18 116
3.2 odd 2 inner 483.2.n.a.47.41 yes 116
7.3 odd 6 inner 483.2.n.a.185.41 yes 116
21.17 even 6 inner 483.2.n.a.185.18 yes 116
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.n.a.47.18 116 1.1 even 1 trivial
483.2.n.a.47.41 yes 116 3.2 odd 2 inner
483.2.n.a.185.18 yes 116 21.17 even 6 inner
483.2.n.a.185.41 yes 116 7.3 odd 6 inner