Properties

Label 483.3.b.a.323.16
Level $483$
Weight $3$
Character 483.323
Analytic conductor $13.161$
Analytic rank $0$
Dimension $88$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,3,Mod(323,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.323");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 483.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1607967686\)
Analytic rank: \(0\)
Dimension: \(88\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.16
Character \(\chi\) \(=\) 483.323
Dual form 483.3.b.a.323.73

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.84584i q^{2} +(-0.677666 + 2.92246i) q^{3} -4.09879 q^{4} -7.26917i q^{5} +(8.31684 + 1.92853i) q^{6} +2.64575 q^{7} +0.281139i q^{8} +(-8.08154 - 3.96090i) q^{9} -20.6869 q^{10} -5.51617i q^{11} +(2.77761 - 11.9785i) q^{12} +17.3116 q^{13} -7.52938i q^{14} +(21.2438 + 4.92607i) q^{15} -15.5951 q^{16} +6.88093i q^{17} +(-11.2721 + 22.9987i) q^{18} -3.01757 q^{19} +29.7948i q^{20} +(-1.79294 + 7.73210i) q^{21} -15.6981 q^{22} +4.79583i q^{23} +(-0.821618 - 0.190519i) q^{24} -27.8408 q^{25} -49.2661i q^{26} +(17.0522 - 20.9338i) q^{27} -10.8444 q^{28} -56.0064i q^{29} +(14.0188 - 60.4565i) q^{30} -56.7937 q^{31} +45.5056i q^{32} +(16.1208 + 3.73812i) q^{33} +19.5820 q^{34} -19.2324i q^{35} +(33.1245 + 16.2349i) q^{36} -20.7015 q^{37} +8.58751i q^{38} +(-11.7315 + 50.5925i) q^{39} +2.04365 q^{40} -25.4386i q^{41} +(22.0043 + 5.10241i) q^{42} -60.2734 q^{43} +22.6096i q^{44} +(-28.7925 + 58.7460i) q^{45} +13.6482 q^{46} +70.4723i q^{47} +(10.5683 - 45.5760i) q^{48} +7.00000 q^{49} +79.2304i q^{50} +(-20.1092 - 4.66298i) q^{51} -70.9567 q^{52} -12.5579i q^{53} +(-59.5742 - 48.5277i) q^{54} -40.0980 q^{55} +0.743825i q^{56} +(2.04491 - 8.81873i) q^{57} -159.385 q^{58} -113.353i q^{59} +(-87.0741 - 20.1909i) q^{60} +10.7676 q^{61} +161.626i q^{62} +(-21.3817 - 10.4796i) q^{63} +67.1213 q^{64} -125.841i q^{65} +(10.6381 - 45.8771i) q^{66} -17.2382 q^{67} -28.2035i q^{68} +(-14.0156 - 3.24997i) q^{69} -54.7323 q^{70} +118.800i q^{71} +(1.11357 - 2.27204i) q^{72} +6.64155 q^{73} +58.9131i q^{74} +(18.8668 - 81.3636i) q^{75} +12.3684 q^{76} -14.5944i q^{77} +(143.978 + 33.3860i) q^{78} +104.213 q^{79} +113.363i q^{80} +(49.6225 + 64.0204i) q^{81} -72.3940 q^{82} -54.8590i q^{83} +(7.34887 - 31.6923i) q^{84} +50.0187 q^{85} +171.528i q^{86} +(163.676 + 37.9536i) q^{87} +1.55081 q^{88} -119.578i q^{89} +(167.182 + 81.9387i) q^{90} +45.8023 q^{91} -19.6571i q^{92} +(38.4872 - 165.977i) q^{93} +200.553 q^{94} +21.9352i q^{95} +(-132.988 - 30.8376i) q^{96} +92.4684 q^{97} -19.9209i q^{98} +(-21.8490 + 44.5791i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 8 q^{3} - 176 q^{4} - 22 q^{6} + 20 q^{9} - 16 q^{10} - 18 q^{12} + 64 q^{13} + 20 q^{15} + 272 q^{16} - 38 q^{18} - 48 q^{19} - 28 q^{21} + 208 q^{22} + 228 q^{24} - 568 q^{25} - 88 q^{27} - 8 q^{30}+ \cdots - 248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.84584i 1.42292i −0.702727 0.711459i \(-0.748035\pi\)
0.702727 0.711459i \(-0.251965\pi\)
\(3\) −0.677666 + 2.92246i −0.225889 + 0.974153i
\(4\) −4.09879 −1.02470
\(5\) 7.26917i 1.45383i −0.686726 0.726917i \(-0.740953\pi\)
0.686726 0.726917i \(-0.259047\pi\)
\(6\) 8.31684 + 1.92853i 1.38614 + 0.321421i
\(7\) 2.64575 0.377964
\(8\) 0.281139i 0.0351424i
\(9\) −8.08154 3.96090i −0.897949 0.440101i
\(10\) −20.6869 −2.06869
\(11\) 5.51617i 0.501470i −0.968056 0.250735i \(-0.919328\pi\)
0.968056 0.250735i \(-0.0806723\pi\)
\(12\) 2.77761 11.9785i 0.231468 0.998212i
\(13\) 17.3116 1.33166 0.665832 0.746102i \(-0.268077\pi\)
0.665832 + 0.746102i \(0.268077\pi\)
\(14\) 7.52938i 0.537813i
\(15\) 21.2438 + 4.92607i 1.41626 + 0.328405i
\(16\) −15.5951 −0.974693
\(17\) 6.88093i 0.404761i 0.979307 + 0.202380i \(0.0648677\pi\)
−0.979307 + 0.202380i \(0.935132\pi\)
\(18\) −11.2721 + 22.9987i −0.626227 + 1.27771i
\(19\) −3.01757 −0.158819 −0.0794097 0.996842i \(-0.525304\pi\)
−0.0794097 + 0.996842i \(0.525304\pi\)
\(20\) 29.7948i 1.48974i
\(21\) −1.79294 + 7.73210i −0.0853779 + 0.368195i
\(22\) −15.6981 −0.713551
\(23\) 4.79583i 0.208514i
\(24\) −0.821618 0.190519i −0.0342341 0.00793828i
\(25\) −27.8408 −1.11363
\(26\) 49.2661i 1.89485i
\(27\) 17.0522 20.9338i 0.631562 0.775326i
\(28\) −10.8444 −0.387299
\(29\) 56.0064i 1.93125i −0.259931 0.965627i \(-0.583700\pi\)
0.259931 0.965627i \(-0.416300\pi\)
\(30\) 14.0188 60.4565i 0.467293 2.01522i
\(31\) −56.7937 −1.83206 −0.916028 0.401115i \(-0.868623\pi\)
−0.916028 + 0.401115i \(0.868623\pi\)
\(32\) 45.5056i 1.42205i
\(33\) 16.1208 + 3.73812i 0.488508 + 0.113276i
\(34\) 19.5820 0.575942
\(35\) 19.2324i 0.549497i
\(36\) 33.1245 + 16.2349i 0.920126 + 0.450970i
\(37\) −20.7015 −0.559500 −0.279750 0.960073i \(-0.590252\pi\)
−0.279750 + 0.960073i \(0.590252\pi\)
\(38\) 8.58751i 0.225987i
\(39\) −11.7315 + 50.5925i −0.300808 + 1.29724i
\(40\) 2.04365 0.0510912
\(41\) 25.4386i 0.620453i −0.950663 0.310226i \(-0.899595\pi\)
0.950663 0.310226i \(-0.100405\pi\)
\(42\) 22.0043 + 5.10241i 0.523912 + 0.121486i
\(43\) −60.2734 −1.40171 −0.700854 0.713305i \(-0.747197\pi\)
−0.700854 + 0.713305i \(0.747197\pi\)
\(44\) 22.6096i 0.513855i
\(45\) −28.7925 + 58.7460i −0.639833 + 1.30547i
\(46\) 13.6482 0.296699
\(47\) 70.4723i 1.49941i 0.661771 + 0.749706i \(0.269805\pi\)
−0.661771 + 0.749706i \(0.730195\pi\)
\(48\) 10.5683 45.5760i 0.220172 0.949500i
\(49\) 7.00000 0.142857
\(50\) 79.2304i 1.58461i
\(51\) −20.1092 4.66298i −0.394299 0.0914309i
\(52\) −70.9567 −1.36455
\(53\) 12.5579i 0.236942i −0.992957 0.118471i \(-0.962201\pi\)
0.992957 0.118471i \(-0.0377993\pi\)
\(54\) −59.5742 48.5277i −1.10323 0.898661i
\(55\) −40.0980 −0.729054
\(56\) 0.743825i 0.0132826i
\(57\) 2.04491 8.81873i 0.0358755 0.154715i
\(58\) −159.385 −2.74802
\(59\) 113.353i 1.92123i −0.277876 0.960617i \(-0.589630\pi\)
0.277876 0.960617i \(-0.410370\pi\)
\(60\) −87.0741 20.1909i −1.45123 0.336515i
\(61\) 10.7676 0.176518 0.0882589 0.996098i \(-0.471870\pi\)
0.0882589 + 0.996098i \(0.471870\pi\)
\(62\) 161.626i 2.60687i
\(63\) −21.3817 10.4796i −0.339393 0.166342i
\(64\) 67.1213 1.04877
\(65\) 125.841i 1.93602i
\(66\) 10.6381 45.8771i 0.161183 0.695108i
\(67\) −17.2382 −0.257286 −0.128643 0.991691i \(-0.541062\pi\)
−0.128643 + 0.991691i \(0.541062\pi\)
\(68\) 28.2035i 0.414757i
\(69\) −14.0156 3.24997i −0.203125 0.0471011i
\(70\) −54.7323 −0.781890
\(71\) 118.800i 1.67324i 0.547785 + 0.836619i \(0.315471\pi\)
−0.547785 + 0.836619i \(0.684529\pi\)
\(72\) 1.11357 2.27204i 0.0154662 0.0315561i
\(73\) 6.64155 0.0909801 0.0454901 0.998965i \(-0.485515\pi\)
0.0454901 + 0.998965i \(0.485515\pi\)
\(74\) 58.9131i 0.796122i
\(75\) 18.8668 81.3636i 0.251557 1.08485i
\(76\) 12.3684 0.162742
\(77\) 14.5944i 0.189538i
\(78\) 143.978 + 33.3860i 1.84587 + 0.428025i
\(79\) 104.213 1.31915 0.659574 0.751640i \(-0.270737\pi\)
0.659574 + 0.751640i \(0.270737\pi\)
\(80\) 113.363i 1.41704i
\(81\) 49.6225 + 64.0204i 0.612623 + 0.790375i
\(82\) −72.3940 −0.882854
\(83\) 54.8590i 0.660952i −0.943814 0.330476i \(-0.892791\pi\)
0.943814 0.330476i \(-0.107209\pi\)
\(84\) 7.34887 31.6923i 0.0874865 0.377289i
\(85\) 50.0187 0.588455
\(86\) 171.528i 1.99452i
\(87\) 163.676 + 37.9536i 1.88134 + 0.436249i
\(88\) 1.55081 0.0176229
\(89\) 119.578i 1.34357i −0.740745 0.671786i \(-0.765527\pi\)
0.740745 0.671786i \(-0.234473\pi\)
\(90\) 167.182 + 81.9387i 1.85757 + 0.910430i
\(91\) 45.8023 0.503322
\(92\) 19.6571i 0.213664i
\(93\) 38.4872 165.977i 0.413841 1.78470i
\(94\) 200.553 2.13354
\(95\) 21.9352i 0.230897i
\(96\) −132.988 30.8376i −1.38530 0.321225i
\(97\) 92.4684 0.953282 0.476641 0.879098i \(-0.341854\pi\)
0.476641 + 0.879098i \(0.341854\pi\)
\(98\) 19.9209i 0.203274i
\(99\) −21.8490 + 44.5791i −0.220697 + 0.450294i
\(100\) 114.114 1.14114
\(101\) 21.3996i 0.211878i −0.994373 0.105939i \(-0.966215\pi\)
0.994373 0.105939i \(-0.0337848\pi\)
\(102\) −13.2701 + 57.2276i −0.130099 + 0.561055i
\(103\) 57.7628 0.560804 0.280402 0.959883i \(-0.409532\pi\)
0.280402 + 0.959883i \(0.409532\pi\)
\(104\) 4.86698i 0.0467979i
\(105\) 56.2059 + 13.0332i 0.535295 + 0.124125i
\(106\) −35.7379 −0.337150
\(107\) 59.9692i 0.560460i 0.959933 + 0.280230i \(0.0904107\pi\)
−0.959933 + 0.280230i \(0.909589\pi\)
\(108\) −69.8932 + 85.8032i −0.647160 + 0.794474i
\(109\) −69.0522 −0.633506 −0.316753 0.948508i \(-0.602593\pi\)
−0.316753 + 0.948508i \(0.602593\pi\)
\(110\) 114.112i 1.03738i
\(111\) 14.0287 60.4992i 0.126385 0.545038i
\(112\) −41.2607 −0.368399
\(113\) 186.025i 1.64624i 0.567866 + 0.823121i \(0.307769\pi\)
−0.567866 + 0.823121i \(0.692231\pi\)
\(114\) −25.0967 5.81947i −0.220146 0.0510480i
\(115\) 34.8617 0.303145
\(116\) 229.558i 1.97895i
\(117\) −139.905 68.5697i −1.19577 0.586066i
\(118\) −322.584 −2.73376
\(119\) 18.2052i 0.152985i
\(120\) −1.38491 + 5.97248i −0.0115409 + 0.0497707i
\(121\) 90.5719 0.748528
\(122\) 30.6428i 0.251171i
\(123\) 74.3432 + 17.2389i 0.604416 + 0.140153i
\(124\) 232.785 1.87730
\(125\) 20.6503i 0.165202i
\(126\) −29.8231 + 60.8489i −0.236692 + 0.482928i
\(127\) 64.0779 0.504550 0.252275 0.967656i \(-0.418821\pi\)
0.252275 + 0.967656i \(0.418821\pi\)
\(128\) 8.99372i 0.0702634i
\(129\) 40.8453 176.147i 0.316630 1.36548i
\(130\) −358.123 −2.75480
\(131\) 43.2540i 0.330183i 0.986278 + 0.165092i \(0.0527920\pi\)
−0.986278 + 0.165092i \(0.947208\pi\)
\(132\) −66.0757 15.3218i −0.500573 0.116074i
\(133\) −7.98374 −0.0600281
\(134\) 49.0570i 0.366097i
\(135\) −152.171 123.955i −1.12719 0.918186i
\(136\) −1.93450 −0.0142243
\(137\) 183.776i 1.34143i −0.741716 0.670714i \(-0.765988\pi\)
0.741716 0.670714i \(-0.234012\pi\)
\(138\) −9.24890 + 39.8862i −0.0670210 + 0.289030i
\(139\) 81.4323 0.585844 0.292922 0.956136i \(-0.405372\pi\)
0.292922 + 0.956136i \(0.405372\pi\)
\(140\) 78.8296i 0.563069i
\(141\) −205.953 47.7567i −1.46066 0.338700i
\(142\) 338.085 2.38088
\(143\) 95.4939i 0.667789i
\(144\) 126.032 + 61.7706i 0.875224 + 0.428963i
\(145\) −407.120 −2.80772
\(146\) 18.9008i 0.129457i
\(147\) −4.74366 + 20.4572i −0.0322698 + 0.139165i
\(148\) 84.8510 0.573318
\(149\) 223.941i 1.50296i −0.659755 0.751481i \(-0.729340\pi\)
0.659755 0.751481i \(-0.270660\pi\)
\(150\) −231.548 53.6918i −1.54365 0.357945i
\(151\) 107.497 0.711900 0.355950 0.934505i \(-0.384157\pi\)
0.355950 + 0.934505i \(0.384157\pi\)
\(152\) 0.848358i 0.00558130i
\(153\) 27.2547 55.6085i 0.178135 0.363454i
\(154\) −41.5333 −0.269697
\(155\) 412.843i 2.66350i
\(156\) 48.0850 207.368i 0.308237 1.32928i
\(157\) 130.700 0.832486 0.416243 0.909253i \(-0.363346\pi\)
0.416243 + 0.909253i \(0.363346\pi\)
\(158\) 296.572i 1.87704i
\(159\) 36.7001 + 8.51010i 0.230818 + 0.0535226i
\(160\) 330.788 2.06743
\(161\) 12.6886i 0.0788110i
\(162\) 182.192 141.217i 1.12464 0.871713i
\(163\) 96.1763 0.590039 0.295019 0.955491i \(-0.404674\pi\)
0.295019 + 0.955491i \(0.404674\pi\)
\(164\) 104.267i 0.635776i
\(165\) 27.1730 117.185i 0.164685 0.710210i
\(166\) −156.120 −0.940481
\(167\) 172.512i 1.03301i −0.856285 0.516503i \(-0.827233\pi\)
0.856285 0.516503i \(-0.172767\pi\)
\(168\) −2.17380 0.504065i −0.0129393 0.00300039i
\(169\) 130.693 0.773329
\(170\) 142.345i 0.837323i
\(171\) 24.3866 + 11.9523i 0.142612 + 0.0698965i
\(172\) 247.048 1.43633
\(173\) 185.842i 1.07423i −0.843508 0.537116i \(-0.819514\pi\)
0.843508 0.537116i \(-0.180486\pi\)
\(174\) 108.010 465.796i 0.620746 2.67699i
\(175\) −73.6598 −0.420913
\(176\) 86.0251i 0.488779i
\(177\) 331.269 + 76.8154i 1.87158 + 0.433985i
\(178\) −340.299 −1.91179
\(179\) 208.522i 1.16493i 0.812857 + 0.582463i \(0.197911\pi\)
−0.812857 + 0.582463i \(0.802089\pi\)
\(180\) 118.014 240.788i 0.655635 1.33771i
\(181\) −239.472 −1.32305 −0.661525 0.749923i \(-0.730090\pi\)
−0.661525 + 0.749923i \(0.730090\pi\)
\(182\) 130.346i 0.716186i
\(183\) −7.29683 + 31.4678i −0.0398734 + 0.171955i
\(184\) −1.34830 −0.00732770
\(185\) 150.483i 0.813419i
\(186\) −472.344 109.528i −2.53949 0.588862i
\(187\) 37.9564 0.202975
\(188\) 288.851i 1.53644i
\(189\) 45.1158 55.3856i 0.238708 0.293046i
\(190\) 62.4241 0.328548
\(191\) 7.48693i 0.0391986i −0.999808 0.0195993i \(-0.993761\pi\)
0.999808 0.0195993i \(-0.00623905\pi\)
\(192\) −45.4858 + 196.159i −0.236905 + 1.02166i
\(193\) 278.704 1.44406 0.722030 0.691862i \(-0.243209\pi\)
0.722030 + 0.691862i \(0.243209\pi\)
\(194\) 263.150i 1.35644i
\(195\) 367.766 + 85.2783i 1.88598 + 0.437325i
\(196\) −28.6915 −0.146385
\(197\) 41.0263i 0.208255i −0.994564 0.104128i \(-0.966795\pi\)
0.994564 0.104128i \(-0.0332051\pi\)
\(198\) 126.865 + 62.1787i 0.640732 + 0.314034i
\(199\) −161.972 −0.813930 −0.406965 0.913444i \(-0.633413\pi\)
−0.406965 + 0.913444i \(0.633413\pi\)
\(200\) 7.82715i 0.0391357i
\(201\) 11.6817 50.3778i 0.0581180 0.250636i
\(202\) −60.8999 −0.301485
\(203\) 148.179i 0.729945i
\(204\) 82.4236 + 19.1126i 0.404037 + 0.0936890i
\(205\) −184.917 −0.902035
\(206\) 164.383i 0.797978i
\(207\) 18.9958 38.7577i 0.0917673 0.187235i
\(208\) −269.976 −1.29796
\(209\) 16.6454i 0.0796432i
\(210\) 37.0902 159.953i 0.176620 0.761681i
\(211\) −54.1378 −0.256577 −0.128289 0.991737i \(-0.540948\pi\)
−0.128289 + 0.991737i \(0.540948\pi\)
\(212\) 51.4724i 0.242794i
\(213\) −347.188 80.5067i −1.62999 0.377966i
\(214\) 170.662 0.797488
\(215\) 438.138i 2.03785i
\(216\) 5.88531 + 4.79404i 0.0272468 + 0.0221946i
\(217\) −150.262 −0.692452
\(218\) 196.511i 0.901428i
\(219\) −4.50076 + 19.4097i −0.0205514 + 0.0886286i
\(220\) 164.353 0.747059
\(221\) 119.120i 0.539005i
\(222\) −172.171 39.9234i −0.775545 0.179835i
\(223\) 29.8726 0.133958 0.0669790 0.997754i \(-0.478664\pi\)
0.0669790 + 0.997754i \(0.478664\pi\)
\(224\) 120.397i 0.537485i
\(225\) 224.996 + 110.275i 0.999984 + 0.490110i
\(226\) 529.398 2.34247
\(227\) 320.197i 1.41056i −0.708930 0.705279i \(-0.750822\pi\)
0.708930 0.705279i \(-0.249178\pi\)
\(228\) −8.38164 + 36.1461i −0.0367616 + 0.158536i
\(229\) 365.242 1.59494 0.797471 0.603357i \(-0.206170\pi\)
0.797471 + 0.603357i \(0.206170\pi\)
\(230\) 99.2107i 0.431351i
\(231\) 42.6516 + 9.89014i 0.184639 + 0.0428145i
\(232\) 15.7456 0.0678690
\(233\) 126.020i 0.540859i −0.962740 0.270429i \(-0.912834\pi\)
0.962740 0.270429i \(-0.0871657\pi\)
\(234\) −195.138 + 398.146i −0.833924 + 1.70148i
\(235\) 512.275 2.17990
\(236\) 464.609i 1.96868i
\(237\) −70.6214 + 304.557i −0.297981 + 1.28505i
\(238\) 51.8091 0.217685
\(239\) 102.250i 0.427826i 0.976853 + 0.213913i \(0.0686209\pi\)
−0.976853 + 0.213913i \(0.931379\pi\)
\(240\) −331.300 76.8225i −1.38041 0.320094i
\(241\) −302.768 −1.25630 −0.628149 0.778093i \(-0.716187\pi\)
−0.628149 + 0.778093i \(0.716187\pi\)
\(242\) 257.753i 1.06509i
\(243\) −220.724 + 101.635i −0.908331 + 0.418252i
\(244\) −44.1341 −0.180877
\(245\) 50.8842i 0.207691i
\(246\) 49.0590 211.569i 0.199427 0.860035i
\(247\) −52.2391 −0.211494
\(248\) 15.9669i 0.0643829i
\(249\) 160.323 + 37.1761i 0.643868 + 0.149302i
\(250\) 58.7674 0.235069
\(251\) 152.888i 0.609115i −0.952494 0.304558i \(-0.901491\pi\)
0.952494 0.304558i \(-0.0985086\pi\)
\(252\) 87.6392 + 42.9535i 0.347775 + 0.170451i
\(253\) 26.4546 0.104564
\(254\) 182.355i 0.717934i
\(255\) −33.8960 + 146.177i −0.132925 + 0.573245i
\(256\) 242.890 0.948791
\(257\) 279.820i 1.08879i 0.838828 + 0.544397i \(0.183241\pi\)
−0.838828 + 0.544397i \(0.816759\pi\)
\(258\) −501.285 116.239i −1.94296 0.450539i
\(259\) −54.7710 −0.211471
\(260\) 515.796i 1.98383i
\(261\) −221.836 + 452.618i −0.849946 + 1.73417i
\(262\) 123.094 0.469824
\(263\) 248.447i 0.944665i 0.881420 + 0.472333i \(0.156588\pi\)
−0.881420 + 0.472333i \(0.843412\pi\)
\(264\) −1.05093 + 4.53219i −0.00398081 + 0.0171674i
\(265\) −91.2858 −0.344475
\(266\) 22.7204i 0.0854151i
\(267\) 349.462 + 81.0339i 1.30885 + 0.303498i
\(268\) 70.6556 0.263640
\(269\) 140.499i 0.522299i −0.965298 0.261150i \(-0.915898\pi\)
0.965298 0.261150i \(-0.0841016\pi\)
\(270\) −352.756 + 433.055i −1.30650 + 1.60391i
\(271\) −17.7583 −0.0655289 −0.0327644 0.999463i \(-0.510431\pi\)
−0.0327644 + 0.999463i \(0.510431\pi\)
\(272\) 107.309i 0.394517i
\(273\) −31.0387 + 133.855i −0.113695 + 0.490312i
\(274\) −522.995 −1.90874
\(275\) 153.575i 0.558453i
\(276\) 57.4471 + 13.3210i 0.208142 + 0.0482643i
\(277\) 134.723 0.486365 0.243183 0.969981i \(-0.421809\pi\)
0.243183 + 0.969981i \(0.421809\pi\)
\(278\) 231.743i 0.833608i
\(279\) 458.980 + 224.954i 1.64509 + 0.806288i
\(280\) 5.40699 0.0193107
\(281\) 187.477i 0.667178i 0.942719 + 0.333589i \(0.108260\pi\)
−0.942719 + 0.333589i \(0.891740\pi\)
\(282\) −135.908 + 586.107i −0.481943 + 2.07840i
\(283\) 462.915 1.63574 0.817871 0.575401i \(-0.195154\pi\)
0.817871 + 0.575401i \(0.195154\pi\)
\(284\) 486.936i 1.71456i
\(285\) −64.1048 14.8648i −0.224929 0.0521571i
\(286\) −271.760 −0.950210
\(287\) 67.3041i 0.234509i
\(288\) 180.243 367.755i 0.625845 1.27693i
\(289\) 241.653 0.836169
\(290\) 1158.60i 3.99516i
\(291\) −62.6627 + 270.235i −0.215336 + 0.928643i
\(292\) −27.2223 −0.0932271
\(293\) 506.281i 1.72792i −0.503561 0.863960i \(-0.667977\pi\)
0.503561 0.863960i \(-0.332023\pi\)
\(294\) 58.2179 + 13.4997i 0.198020 + 0.0459173i
\(295\) −823.981 −2.79315
\(296\) 5.82000i 0.0196622i
\(297\) −115.474 94.0626i −0.388802 0.316709i
\(298\) −637.300 −2.13859
\(299\) 83.0237i 0.277671i
\(300\) −77.3309 + 333.492i −0.257770 + 1.11164i
\(301\) −159.468 −0.529796
\(302\) 305.919i 1.01298i
\(303\) 62.5396 + 14.5018i 0.206401 + 0.0478608i
\(304\) 47.0593 0.154800
\(305\) 78.2714i 0.256628i
\(306\) −158.253 77.5625i −0.517166 0.253472i
\(307\) 114.144 0.371804 0.185902 0.982568i \(-0.440479\pi\)
0.185902 + 0.982568i \(0.440479\pi\)
\(308\) 59.8194i 0.194219i
\(309\) −39.1439 + 168.809i −0.126679 + 0.546309i
\(310\) 1174.88 3.78995
\(311\) 184.421i 0.592993i 0.955034 + 0.296497i \(0.0958184\pi\)
−0.955034 + 0.296497i \(0.904182\pi\)
\(312\) −14.2236 3.29819i −0.0455883 0.0105711i
\(313\) 231.901 0.740899 0.370449 0.928853i \(-0.379204\pi\)
0.370449 + 0.928853i \(0.379204\pi\)
\(314\) 371.952i 1.18456i
\(315\) −76.1777 + 155.427i −0.241834 + 0.493420i
\(316\) −427.146 −1.35173
\(317\) 466.836i 1.47267i 0.676617 + 0.736335i \(0.263445\pi\)
−0.676617 + 0.736335i \(0.736555\pi\)
\(318\) 24.2184 104.442i 0.0761583 0.328435i
\(319\) −308.941 −0.968466
\(320\) 487.916i 1.52474i
\(321\) −175.257 40.6391i −0.545973 0.126602i
\(322\) 36.1096 0.112142
\(323\) 20.7637i 0.0642839i
\(324\) −203.392 262.406i −0.627753 0.809895i
\(325\) −481.970 −1.48298
\(326\) 273.702i 0.839577i
\(327\) 46.7944 201.802i 0.143102 0.617132i
\(328\) 7.15178 0.0218042
\(329\) 186.452i 0.566724i
\(330\) −333.488 77.3300i −1.01057 0.234333i
\(331\) 205.183 0.619887 0.309943 0.950755i \(-0.399690\pi\)
0.309943 + 0.950755i \(0.399690\pi\)
\(332\) 224.856i 0.677276i
\(333\) 167.300 + 81.9966i 0.502402 + 0.246236i
\(334\) −490.941 −1.46988
\(335\) 125.307i 0.374051i
\(336\) 27.9610 120.583i 0.0832172 0.358877i
\(337\) 153.440 0.455311 0.227655 0.973742i \(-0.426894\pi\)
0.227655 + 0.973742i \(0.426894\pi\)
\(338\) 371.930i 1.10038i
\(339\) −543.652 126.063i −1.60369 0.371868i
\(340\) −205.016 −0.602988
\(341\) 313.284i 0.918720i
\(342\) 34.0143 69.4003i 0.0994571 0.202925i
\(343\) 18.5203 0.0539949
\(344\) 16.9452i 0.0492594i
\(345\) −23.6246 + 101.882i −0.0684771 + 0.295310i
\(346\) −528.876 −1.52854
\(347\) 58.2790i 0.167951i −0.996468 0.0839754i \(-0.973238\pi\)
0.996468 0.0839754i \(-0.0267617\pi\)
\(348\) −670.875 155.564i −1.92780 0.447023i
\(349\) −141.335 −0.404972 −0.202486 0.979285i \(-0.564902\pi\)
−0.202486 + 0.979285i \(0.564902\pi\)
\(350\) 209.624i 0.598926i
\(351\) 295.201 362.398i 0.841028 1.03247i
\(352\) 251.017 0.713116
\(353\) 360.384i 1.02092i 0.859902 + 0.510459i \(0.170525\pi\)
−0.859902 + 0.510459i \(0.829475\pi\)
\(354\) 218.604 942.738i 0.617526 2.66310i
\(355\) 863.576 2.43261
\(356\) 490.125i 1.37676i
\(357\) −53.2041 12.3371i −0.149031 0.0345576i
\(358\) 593.419 1.65760
\(359\) 480.536i 1.33854i −0.743019 0.669270i \(-0.766607\pi\)
0.743019 0.669270i \(-0.233393\pi\)
\(360\) −16.5158 8.09470i −0.0458773 0.0224853i
\(361\) −351.894 −0.974776
\(362\) 681.498i 1.88259i
\(363\) −61.3775 + 264.693i −0.169084 + 0.729181i
\(364\) −187.734 −0.515752
\(365\) 48.2785i 0.132270i
\(366\) 89.5524 + 20.7656i 0.244679 + 0.0567366i
\(367\) 644.449 1.75599 0.877996 0.478668i \(-0.158880\pi\)
0.877996 + 0.478668i \(0.158880\pi\)
\(368\) 74.7914i 0.203237i
\(369\) −100.760 + 205.583i −0.273062 + 0.557135i
\(370\) 428.249 1.15743
\(371\) 33.2252i 0.0895558i
\(372\) −157.751 + 680.306i −0.424062 + 1.82878i
\(373\) −235.497 −0.631359 −0.315679 0.948866i \(-0.602232\pi\)
−0.315679 + 0.948866i \(0.602232\pi\)
\(374\) 108.018i 0.288817i
\(375\) −60.3496 13.9940i −0.160932 0.0373173i
\(376\) −19.8126 −0.0526930
\(377\) 969.562i 2.57178i
\(378\) −157.618 128.392i −0.416980 0.339662i
\(379\) 189.548 0.500126 0.250063 0.968230i \(-0.419549\pi\)
0.250063 + 0.968230i \(0.419549\pi\)
\(380\) 89.9079i 0.236600i
\(381\) −43.4234 + 187.265i −0.113972 + 0.491509i
\(382\) −21.3066 −0.0557764
\(383\) 54.6498i 0.142689i 0.997452 + 0.0713444i \(0.0227289\pi\)
−0.997452 + 0.0713444i \(0.977271\pi\)
\(384\) 26.2838 + 6.09474i 0.0684473 + 0.0158717i
\(385\) −106.089 −0.275556
\(386\) 793.145i 2.05478i
\(387\) 487.102 + 238.737i 1.25866 + 0.616892i
\(388\) −379.008 −0.976826
\(389\) 310.164i 0.797337i 0.917095 + 0.398669i \(0.130528\pi\)
−0.917095 + 0.398669i \(0.869472\pi\)
\(390\) 242.688 1046.60i 0.622277 2.68359i
\(391\) −32.9998 −0.0843985
\(392\) 1.96798i 0.00502035i
\(393\) −126.408 29.3118i −0.321649 0.0745847i
\(394\) −116.754 −0.296331
\(395\) 757.539i 1.91782i
\(396\) 89.5545 182.720i 0.226148 0.461415i
\(397\) −8.12560 −0.0204675 −0.0102338 0.999948i \(-0.503258\pi\)
−0.0102338 + 0.999948i \(0.503258\pi\)
\(398\) 460.946i 1.15816i
\(399\) 5.41031 23.3322i 0.0135597 0.0584766i
\(400\) 434.180 1.08545
\(401\) 383.406i 0.956123i −0.878326 0.478062i \(-0.841340\pi\)
0.878326 0.478062i \(-0.158660\pi\)
\(402\) −143.367 33.2443i −0.356635 0.0826972i
\(403\) −983.192 −2.43968
\(404\) 87.7126i 0.217111i
\(405\) 465.375 360.714i 1.14907 0.890652i
\(406\) −421.693 −1.03865
\(407\) 114.193i 0.280572i
\(408\) 1.31095 5.65350i 0.00321310 0.0138566i
\(409\) 66.9417 0.163672 0.0818358 0.996646i \(-0.473922\pi\)
0.0818358 + 0.996646i \(0.473922\pi\)
\(410\) 526.244i 1.28352i
\(411\) 537.077 + 124.539i 1.30676 + 0.303013i
\(412\) −236.757 −0.574654
\(413\) 299.903i 0.726158i
\(414\) −110.298 54.0590i −0.266420 0.130577i
\(415\) −398.779 −0.960914
\(416\) 787.777i 1.89369i
\(417\) −55.1839 + 237.983i −0.132336 + 0.570702i
\(418\) 47.3702 0.113326
\(419\) 420.328i 1.00317i 0.865109 + 0.501585i \(0.167249\pi\)
−0.865109 + 0.501585i \(0.832751\pi\)
\(420\) −230.376 53.4202i −0.548515 0.127191i
\(421\) −609.902 −1.44870 −0.724349 0.689433i \(-0.757860\pi\)
−0.724349 + 0.689433i \(0.757860\pi\)
\(422\) 154.067i 0.365088i
\(423\) 279.134 569.525i 0.659892 1.34639i
\(424\) 3.53053 0.00832673
\(425\) 191.571i 0.450755i
\(426\) −229.109 + 988.040i −0.537814 + 2.31934i
\(427\) 28.4884 0.0667175
\(428\) 245.801i 0.574301i
\(429\) 279.077 + 64.7130i 0.650529 + 0.150846i
\(430\) 1246.87 2.89969
\(431\) 175.224i 0.406552i −0.979122 0.203276i \(-0.934841\pi\)
0.979122 0.203276i \(-0.0651588\pi\)
\(432\) −265.930 + 326.464i −0.615579 + 0.755704i
\(433\) 345.608 0.798170 0.399085 0.916914i \(-0.369328\pi\)
0.399085 + 0.916914i \(0.369328\pi\)
\(434\) 427.621i 0.985303i
\(435\) 275.891 1189.79i 0.634233 2.73515i
\(436\) 283.030 0.649152
\(437\) 14.4718i 0.0331162i
\(438\) 55.2367 + 12.8084i 0.126111 + 0.0292430i
\(439\) 88.8618 0.202419 0.101209 0.994865i \(-0.467729\pi\)
0.101209 + 0.994865i \(0.467729\pi\)
\(440\) 11.2731i 0.0256207i
\(441\) −56.5708 27.7263i −0.128278 0.0628715i
\(442\) 338.997 0.766961
\(443\) 131.959i 0.297876i −0.988847 0.148938i \(-0.952415\pi\)
0.988847 0.148938i \(-0.0475855\pi\)
\(444\) −57.5007 + 247.974i −0.129506 + 0.558499i
\(445\) −869.232 −1.95333
\(446\) 85.0126i 0.190611i
\(447\) 654.459 + 151.757i 1.46411 + 0.339502i
\(448\) 177.586 0.396398
\(449\) 528.046i 1.17605i −0.808843 0.588025i \(-0.799906\pi\)
0.808843 0.588025i \(-0.200094\pi\)
\(450\) 313.824 640.303i 0.697387 1.42290i
\(451\) −140.323 −0.311138
\(452\) 762.479i 1.68690i
\(453\) −72.8470 + 314.155i −0.160810 + 0.693500i
\(454\) −911.228 −2.00711
\(455\) 332.944i 0.731746i
\(456\) 2.47929 + 0.574904i 0.00543704 + 0.00126075i
\(457\) −339.079 −0.741968 −0.370984 0.928639i \(-0.620979\pi\)
−0.370984 + 0.928639i \(0.620979\pi\)
\(458\) 1039.42i 2.26947i
\(459\) 144.044 + 117.335i 0.313821 + 0.255631i
\(460\) −142.891 −0.310632
\(461\) 111.834i 0.242589i 0.992617 + 0.121295i \(0.0387046\pi\)
−0.992617 + 0.121295i \(0.961295\pi\)
\(462\) 28.1457 121.379i 0.0609215 0.262726i
\(463\) −726.379 −1.56885 −0.784427 0.620221i \(-0.787043\pi\)
−0.784427 + 0.620221i \(0.787043\pi\)
\(464\) 873.424i 1.88238i
\(465\) −1206.52 279.770i −2.59466 0.601656i
\(466\) −358.633 −0.769598
\(467\) 203.969i 0.436764i 0.975863 + 0.218382i \(0.0700779\pi\)
−0.975863 + 0.218382i \(0.929922\pi\)
\(468\) 573.439 + 281.053i 1.22530 + 0.600540i
\(469\) −45.6079 −0.0972450
\(470\) 1457.85i 3.10181i
\(471\) −88.5712 + 381.967i −0.188049 + 0.810969i
\(472\) 31.8679 0.0675168
\(473\) 332.478i 0.702914i
\(474\) 866.720 + 200.977i 1.82852 + 0.424002i
\(475\) 84.0116 0.176867
\(476\) 74.6194i 0.156764i
\(477\) −49.7408 + 101.488i −0.104278 + 0.212762i
\(478\) 290.988 0.608761
\(479\) 496.057i 1.03561i −0.855499 0.517805i \(-0.826749\pi\)
0.855499 0.517805i \(-0.173251\pi\)
\(480\) −224.164 + 966.715i −0.467008 + 2.01399i
\(481\) −358.376 −0.745065
\(482\) 861.628i 1.78761i
\(483\) −37.0819 8.59862i −0.0767740 0.0178025i
\(484\) −371.235 −0.767015
\(485\) 672.168i 1.38591i
\(486\) 289.237 + 628.146i 0.595138 + 1.29248i
\(487\) −823.419 −1.69080 −0.845399 0.534135i \(-0.820637\pi\)
−0.845399 + 0.534135i \(0.820637\pi\)
\(488\) 3.02719i 0.00620327i
\(489\) −65.1754 + 281.071i −0.133283 + 0.574788i
\(490\) −144.808 −0.295527
\(491\) 828.069i 1.68649i −0.537526 0.843247i \(-0.680641\pi\)
0.537526 0.843247i \(-0.319359\pi\)
\(492\) −304.717 70.6585i −0.619344 0.143615i
\(493\) 385.376 0.781696
\(494\) 148.664i 0.300939i
\(495\) 324.053 + 158.824i 0.654653 + 0.320857i
\(496\) 885.703 1.78569
\(497\) 314.315i 0.632424i
\(498\) 105.797 456.254i 0.212444 0.916172i
\(499\) −164.156 −0.328970 −0.164485 0.986380i \(-0.552596\pi\)
−0.164485 + 0.986380i \(0.552596\pi\)
\(500\) 84.6412i 0.169282i
\(501\) 504.160 + 116.906i 1.00631 + 0.233345i
\(502\) −435.094 −0.866721
\(503\) 791.160i 1.57288i −0.617664 0.786442i \(-0.711921\pi\)
0.617664 0.786442i \(-0.288079\pi\)
\(504\) 2.94622 6.01125i 0.00584567 0.0119271i
\(505\) −155.558 −0.308035
\(506\) 75.2855i 0.148786i
\(507\) −88.5660 + 381.944i −0.174686 + 0.753341i
\(508\) −262.642 −0.517011
\(509\) 56.4471i 0.110898i 0.998462 + 0.0554490i \(0.0176590\pi\)
−0.998462 + 0.0554490i \(0.982341\pi\)
\(510\) 415.997 + 96.4624i 0.815681 + 0.189142i
\(511\) 17.5719 0.0343873
\(512\) 727.201i 1.42032i
\(513\) −51.4561 + 63.1692i −0.100304 + 0.123137i
\(514\) 796.322 1.54926
\(515\) 419.887i 0.815315i
\(516\) −167.416 + 721.988i −0.324450 + 1.39920i
\(517\) 388.737 0.751910
\(518\) 155.869i 0.300906i
\(519\) 543.116 + 125.939i 1.04647 + 0.242657i
\(520\) 35.3789 0.0680364
\(521\) 956.062i 1.83505i 0.397677 + 0.917525i \(0.369816\pi\)
−0.397677 + 0.917525i \(0.630184\pi\)
\(522\) 1288.08 + 631.309i 2.46758 + 1.20940i
\(523\) 134.025 0.256262 0.128131 0.991757i \(-0.459102\pi\)
0.128131 + 0.991757i \(0.459102\pi\)
\(524\) 177.289i 0.338338i
\(525\) 49.9168 215.268i 0.0950796 0.410034i
\(526\) 707.040 1.34418
\(527\) 390.794i 0.741544i
\(528\) −251.405 58.2963i −0.476146 0.110410i
\(529\) −23.0000 −0.0434783
\(530\) 259.785i 0.490160i
\(531\) −448.980 + 916.065i −0.845536 + 1.72517i
\(532\) 32.7237 0.0615107
\(533\) 440.383i 0.826235i
\(534\) 230.609 994.511i 0.431853 1.86238i
\(535\) 435.926 0.814815
\(536\) 4.84633i 0.00904165i
\(537\) −609.397 141.308i −1.13482 0.263144i
\(538\) −399.836 −0.743189
\(539\) 38.6132i 0.0716385i
\(540\) 623.718 + 508.066i 1.15503 + 0.940863i
\(541\) −31.9013 −0.0589672 −0.0294836 0.999565i \(-0.509386\pi\)
−0.0294836 + 0.999565i \(0.509386\pi\)
\(542\) 50.5373i 0.0932423i
\(543\) 162.282 699.847i 0.298862 1.28885i
\(544\) −313.121 −0.575590
\(545\) 501.952i 0.921013i
\(546\) 380.930 + 88.3310i 0.697675 + 0.161778i
\(547\) −425.710 −0.778263 −0.389131 0.921182i \(-0.627225\pi\)
−0.389131 + 0.921182i \(0.627225\pi\)
\(548\) 753.257i 1.37456i
\(549\) −87.0187 42.6494i −0.158504 0.0776856i
\(550\) 437.048 0.794633
\(551\) 169.003i 0.306721i
\(552\) 0.913696 3.94034i 0.00165525 0.00713830i
\(553\) 275.721 0.498591
\(554\) 383.400i 0.692058i
\(555\) −439.779 101.977i −0.792395 0.183742i
\(556\) −333.774 −0.600313
\(557\) 91.2622i 0.163846i −0.996639 0.0819230i \(-0.973894\pi\)
0.996639 0.0819230i \(-0.0261061\pi\)
\(558\) 640.184 1306.18i 1.14728 2.34083i
\(559\) −1043.43 −1.86660
\(560\) 299.931i 0.535591i
\(561\) −25.7218 + 110.926i −0.0458498 + 0.197729i
\(562\) 533.529 0.949340
\(563\) 972.604i 1.72754i −0.503888 0.863769i \(-0.668098\pi\)
0.503888 0.863769i \(-0.331902\pi\)
\(564\) 844.156 + 195.745i 1.49673 + 0.347065i
\(565\) 1352.25 2.39336
\(566\) 1317.38i 2.32753i
\(567\) 131.289 + 169.382i 0.231550 + 0.298734i
\(568\) −33.3993 −0.0588016
\(569\) 679.718i 1.19458i 0.802024 + 0.597291i \(0.203756\pi\)
−0.802024 + 0.597291i \(0.796244\pi\)
\(570\) −42.3027 + 182.432i −0.0742153 + 0.320056i
\(571\) 417.234 0.730707 0.365354 0.930869i \(-0.380948\pi\)
0.365354 + 0.930869i \(0.380948\pi\)
\(572\) 391.409i 0.684282i
\(573\) 21.8802 + 5.07364i 0.0381854 + 0.00885452i
\(574\) −191.537 −0.333687
\(575\) 133.520i 0.232208i
\(576\) −542.443 265.861i −0.941741 0.461564i
\(577\) −471.969 −0.817970 −0.408985 0.912541i \(-0.634117\pi\)
−0.408985 + 0.912541i \(0.634117\pi\)
\(578\) 687.704i 1.18980i
\(579\) −188.868 + 814.500i −0.326197 + 1.40674i
\(580\) 1668.70 2.87707
\(581\) 145.143i 0.249816i
\(582\) 769.045 + 178.328i 1.32138 + 0.306405i
\(583\) −69.2717 −0.118819
\(584\) 1.86720i 0.00319726i
\(585\) −498.445 + 1016.99i −0.852042 + 1.73844i
\(586\) −1440.79 −2.45869
\(587\) 412.629i 0.702946i 0.936198 + 0.351473i \(0.114319\pi\)
−0.936198 + 0.351473i \(0.885681\pi\)
\(588\) 19.4433 83.8498i 0.0330668 0.142602i
\(589\) 171.379 0.290966
\(590\) 2344.91i 3.97443i
\(591\) 119.898 + 27.8022i 0.202873 + 0.0470426i
\(592\) 322.841 0.545340
\(593\) 165.937i 0.279826i 0.990164 + 0.139913i \(0.0446822\pi\)
−0.990164 + 0.139913i \(0.955318\pi\)
\(594\) −267.687 + 328.621i −0.450651 + 0.553234i
\(595\) 132.337 0.222415
\(596\) 917.888i 1.54008i
\(597\) 109.763 473.357i 0.183858 0.792892i
\(598\) 236.272 0.395103
\(599\) 1115.97i 1.86305i 0.363671 + 0.931527i \(0.381523\pi\)
−0.363671 + 0.931527i \(0.618477\pi\)
\(600\) 22.8745 + 5.30419i 0.0381242 + 0.00884032i
\(601\) 733.764 1.22091 0.610453 0.792053i \(-0.290987\pi\)
0.610453 + 0.792053i \(0.290987\pi\)
\(602\) 453.821i 0.753856i
\(603\) 139.311 + 68.2787i 0.231030 + 0.113232i
\(604\) −440.607 −0.729482
\(605\) 658.382i 1.08824i
\(606\) 41.2698 177.977i 0.0681020 0.293692i
\(607\) −928.470 −1.52961 −0.764803 0.644265i \(-0.777164\pi\)
−0.764803 + 0.644265i \(0.777164\pi\)
\(608\) 137.316i 0.225849i
\(609\) 433.047 + 100.416i 0.711079 + 0.164886i
\(610\) −222.748 −0.365160
\(611\) 1219.99i 1.99671i
\(612\) −111.711 + 227.928i −0.182535 + 0.372431i
\(613\) −531.050 −0.866314 −0.433157 0.901319i \(-0.642600\pi\)
−0.433157 + 0.901319i \(0.642600\pi\)
\(614\) 324.835i 0.529047i
\(615\) 125.312 540.413i 0.203760 0.878720i
\(616\) 4.10306 0.00666082
\(617\) 1156.56i 1.87449i 0.348666 + 0.937247i \(0.386635\pi\)
−0.348666 + 0.937247i \(0.613365\pi\)
\(618\) 480.404 + 111.397i 0.777353 + 0.180254i
\(619\) −168.777 −0.272660 −0.136330 0.990663i \(-0.543531\pi\)
−0.136330 + 0.990663i \(0.543531\pi\)
\(620\) 1692.16i 2.72929i
\(621\) 100.395 + 81.7793i 0.161667 + 0.131690i
\(622\) 524.832 0.843781
\(623\) 316.373i 0.507823i
\(624\) 182.954 788.995i 0.293195 1.26441i
\(625\) −545.910 −0.873456
\(626\) 659.953i 1.05424i
\(627\) −48.6456 11.2800i −0.0775847 0.0179905i
\(628\) −535.713 −0.853047
\(629\) 142.446i 0.226463i
\(630\) 442.321 + 216.789i 0.702097 + 0.344110i
\(631\) 494.393 0.783507 0.391753 0.920070i \(-0.371869\pi\)
0.391753 + 0.920070i \(0.371869\pi\)
\(632\) 29.2983i 0.0463580i
\(633\) 36.6873 158.215i 0.0579579 0.249945i
\(634\) 1328.54 2.09549
\(635\) 465.793i 0.733532i
\(636\) −150.426 34.8811i −0.236519 0.0548445i
\(637\) 121.181 0.190238
\(638\) 879.195i 1.37805i
\(639\) 470.555 960.086i 0.736393 1.50248i
\(640\) −65.3768 −0.102151
\(641\) 247.425i 0.385998i −0.981199 0.192999i \(-0.938179\pi\)
0.981199 0.192999i \(-0.0618215\pi\)
\(642\) −115.652 + 498.754i −0.180144 + 0.776876i
\(643\) 90.7041 0.141064 0.0705320 0.997510i \(-0.477530\pi\)
0.0705320 + 0.997510i \(0.477530\pi\)
\(644\) 52.0078i 0.0807575i
\(645\) −1280.44 296.911i −1.98518 0.460327i
\(646\) −59.0901 −0.0914708
\(647\) 40.2237i 0.0621695i −0.999517 0.0310848i \(-0.990104\pi\)
0.999517 0.0310848i \(-0.00989618\pi\)
\(648\) −17.9987 + 13.9508i −0.0277757 + 0.0215291i
\(649\) −625.273 −0.963441
\(650\) 1371.61i 2.11017i
\(651\) 101.828 439.135i 0.156417 0.674554i
\(652\) −394.206 −0.604611
\(653\) 514.096i 0.787283i 0.919264 + 0.393641i \(0.128785\pi\)
−0.919264 + 0.393641i \(0.871215\pi\)
\(654\) −574.296 133.169i −0.878129 0.203623i
\(655\) 314.421 0.480031
\(656\) 396.717i 0.604751i
\(657\) −53.6739 26.3065i −0.0816955 0.0400404i
\(658\) 530.613 0.806403
\(659\) 685.333i 1.03996i 0.854179 + 0.519979i \(0.174060\pi\)
−0.854179 + 0.519979i \(0.825940\pi\)
\(660\) −111.377 + 480.315i −0.168752 + 0.727750i
\(661\) 265.124 0.401096 0.200548 0.979684i \(-0.435728\pi\)
0.200548 + 0.979684i \(0.435728\pi\)
\(662\) 583.916i 0.882049i
\(663\) −348.124 80.7237i −0.525074 0.121755i
\(664\) 15.4230 0.0232274
\(665\) 58.0352i 0.0872709i
\(666\) 233.349 476.108i 0.350374 0.714877i
\(667\) 268.597 0.402694
\(668\) 707.091i 1.05852i
\(669\) −20.2437 + 87.3015i −0.0302596 + 0.130496i
\(670\) 356.604 0.532244
\(671\) 59.3958i 0.0885184i
\(672\) −351.854 81.5887i −0.523592 0.121412i
\(673\) 1051.70 1.56270 0.781351 0.624092i \(-0.214531\pi\)
0.781351 + 0.624092i \(0.214531\pi\)
\(674\) 436.664i 0.647870i
\(675\) −474.746 + 582.814i −0.703328 + 0.863427i
\(676\) −535.681 −0.792428
\(677\) 767.206i 1.13324i −0.823978 0.566622i \(-0.808250\pi\)
0.823978 0.566622i \(-0.191750\pi\)
\(678\) −358.755 + 1547.14i −0.529138 + 2.28192i
\(679\) 244.648 0.360307
\(680\) 14.0622i 0.0206797i
\(681\) 935.762 + 216.987i 1.37410 + 0.318629i
\(682\) 891.554 1.30726
\(683\) 113.372i 0.165991i 0.996550 + 0.0829954i \(0.0264487\pi\)
−0.996550 + 0.0829954i \(0.973551\pi\)
\(684\) −99.9556 48.9900i −0.146134 0.0716228i
\(685\) −1335.90 −1.95021
\(686\) 52.7056i 0.0768304i
\(687\) −247.512 + 1067.40i −0.360280 + 1.55372i
\(688\) 939.969 1.36623
\(689\) 217.399i 0.315528i
\(690\) 289.939 + 67.2318i 0.420202 + 0.0974374i
\(691\) 945.327 1.36806 0.684028 0.729456i \(-0.260227\pi\)
0.684028 + 0.729456i \(0.260227\pi\)
\(692\) 761.728i 1.10076i
\(693\) −57.8071 + 117.945i −0.0834157 + 0.170195i
\(694\) −165.852 −0.238980
\(695\) 591.945i 0.851719i
\(696\) −10.6703 + 46.0159i −0.0153308 + 0.0661147i
\(697\) 175.041 0.251135
\(698\) 402.218i 0.576243i
\(699\) 368.289 + 85.3996i 0.526879 + 0.122174i
\(700\) 301.916 0.431309
\(701\) 29.3523i 0.0418721i −0.999781 0.0209360i \(-0.993335\pi\)
0.999781 0.0209360i \(-0.00666463\pi\)
\(702\) −1031.33 840.094i −1.46913 1.19671i
\(703\) 62.4682 0.0888594
\(704\) 370.252i 0.525926i
\(705\) −347.152 + 1497.10i −0.492414 + 2.12355i
\(706\) 1025.59 1.45268
\(707\) 56.6181i 0.0800822i
\(708\) −1357.80 314.850i −1.91780 0.444703i
\(709\) 303.215 0.427665 0.213833 0.976870i \(-0.431405\pi\)
0.213833 + 0.976870i \(0.431405\pi\)
\(710\) 2457.60i 3.46140i
\(711\) −842.199 412.776i −1.18453 0.580558i
\(712\) 33.6181 0.0472164
\(713\) 272.373i 0.382010i
\(714\) −35.1093 + 151.410i −0.0491727 + 0.212059i
\(715\) −694.161 −0.970855
\(716\) 854.687i 1.19370i
\(717\) −298.822 69.2916i −0.416768 0.0966410i
\(718\) −1367.53 −1.90463
\(719\) 956.271i 1.33000i 0.746843 + 0.665001i \(0.231569\pi\)
−0.746843 + 0.665001i \(0.768431\pi\)
\(720\) 449.021 916.149i 0.623640 1.27243i
\(721\) 152.826 0.211964
\(722\) 1001.43i 1.38703i
\(723\) 205.176 884.827i 0.283784 1.22383i
\(724\) 981.546 1.35573
\(725\) 1559.26i 2.15071i
\(726\) 753.272 + 174.670i 1.03757 + 0.240593i
\(727\) 232.907 0.320367 0.160184 0.987087i \(-0.448791\pi\)
0.160184 + 0.987087i \(0.448791\pi\)
\(728\) 12.8768i 0.0176879i
\(729\) −147.447 713.933i −0.202259 0.979332i
\(730\) −137.393 −0.188209
\(731\) 414.737i 0.567356i
\(732\) 29.9082 128.980i 0.0408582 0.176202i
\(733\) 1111.04 1.51574 0.757871 0.652405i \(-0.226240\pi\)
0.757871 + 0.652405i \(0.226240\pi\)
\(734\) 1834.00i 2.49863i
\(735\) 148.707 + 34.4825i 0.202322 + 0.0469150i
\(736\) −218.237 −0.296518
\(737\) 95.0886i 0.129021i
\(738\) 585.055 + 286.746i 0.792757 + 0.388544i
\(739\) −967.998 −1.30988 −0.654938 0.755683i \(-0.727305\pi\)
−0.654938 + 0.755683i \(0.727305\pi\)
\(740\) 616.796i 0.833509i
\(741\) 35.4007 152.667i 0.0477742 0.206028i
\(742\) −94.5535 −0.127431
\(743\) 1150.94i 1.54905i −0.632544 0.774524i \(-0.717989\pi\)
0.632544 0.774524i \(-0.282011\pi\)
\(744\) 46.6628 + 10.8203i 0.0627188 + 0.0145434i
\(745\) −1627.87 −2.18506
\(746\) 670.186i 0.898372i
\(747\) −217.291 + 443.345i −0.290885 + 0.593501i
\(748\) −155.575 −0.207988
\(749\) 158.664i 0.211834i
\(750\) −39.8247 + 171.745i −0.0530995 + 0.228994i
\(751\) 1100.29 1.46511 0.732553 0.680710i \(-0.238329\pi\)
0.732553 + 0.680710i \(0.238329\pi\)
\(752\) 1099.02i 1.46147i
\(753\) 446.809 + 103.607i 0.593371 + 0.137592i
\(754\) −2759.21 −3.65944
\(755\) 781.413i 1.03498i
\(756\) −184.920 + 227.014i −0.244603 + 0.300283i
\(757\) 244.526 0.323020 0.161510 0.986871i \(-0.448364\pi\)
0.161510 + 0.986871i \(0.448364\pi\)
\(758\) 539.422i 0.711638i
\(759\) −17.9274 + 77.3125i −0.0236198 + 0.101861i
\(760\) −6.16686 −0.00811428
\(761\) 22.8281i 0.0299975i −0.999888 0.0149987i \(-0.995226\pi\)
0.999888 0.0149987i \(-0.00477442\pi\)
\(762\) 532.926 + 123.576i 0.699378 + 0.162173i
\(763\) −182.695 −0.239443
\(764\) 30.6873i 0.0401667i
\(765\) −404.228 198.119i −0.528402 0.258979i
\(766\) 155.524 0.203034
\(767\) 1962.32i 2.55844i
\(768\) −164.599 + 709.837i −0.214321 + 0.924267i
\(769\) 789.173 1.02623 0.513117 0.858319i \(-0.328491\pi\)
0.513117 + 0.858319i \(0.328491\pi\)
\(770\) 301.913i 0.392094i
\(771\) −817.762 189.625i −1.06065 0.245946i
\(772\) −1142.35 −1.47972
\(773\) 263.077i 0.340332i −0.985415 0.170166i \(-0.945570\pi\)
0.985415 0.170166i \(-0.0544304\pi\)
\(774\) 679.407 1386.21i 0.877787 1.79097i
\(775\) 1581.18 2.04024
\(776\) 25.9965i 0.0335007i
\(777\) 37.1164 160.066i 0.0477689 0.206005i
\(778\) 882.677 1.13455
\(779\) 76.7627i 0.0985400i
\(780\) −1507.39 349.538i −1.93256 0.448126i
\(781\) 655.320 0.839078
\(782\) 93.9120i 0.120092i
\(783\) −1172.43 955.030i −1.49735 1.21971i
\(784\) −109.166 −0.139242
\(785\) 950.083i 1.21030i
\(786\) −83.4166 + 359.737i −0.106128 + 0.457680i
\(787\) 810.866 1.03032 0.515162 0.857093i \(-0.327732\pi\)
0.515162 + 0.857093i \(0.327732\pi\)
\(788\) 168.158i 0.213399i
\(789\) −726.076 168.364i −0.920249 0.213389i
\(790\) −2155.83 −2.72890
\(791\) 492.177i 0.622221i
\(792\) −12.5329 6.14262i −0.0158244 0.00775583i
\(793\) 186.405 0.235063
\(794\) 23.1241i 0.0291236i
\(795\) 61.8613 266.779i 0.0778130 0.335571i
\(796\) 663.889 0.834032
\(797\) 856.466i 1.07461i −0.843387 0.537306i \(-0.819442\pi\)
0.843387 0.537306i \(-0.180558\pi\)
\(798\) −66.3995 15.3969i −0.0832074 0.0192943i
\(799\) −484.915 −0.606903
\(800\) 1266.91i 1.58364i
\(801\) −473.637 + 966.373i −0.591307 + 1.20646i
\(802\) −1091.11 −1.36049
\(803\) 36.6359i 0.0456238i
\(804\) −47.8809 + 206.488i −0.0595534 + 0.256826i
\(805\) 92.2354 0.114578
\(806\) 2798.00i 3.47147i
\(807\) 410.601 + 95.2111i 0.508800 + 0.117982i
\(808\) 6.01628 0.00744589
\(809\) 190.452i 0.235416i 0.993048 + 0.117708i \(0.0375548\pi\)
−0.993048 + 0.117708i \(0.962445\pi\)
\(810\) −1026.53 1324.38i −1.26733 1.63504i
\(811\) −1132.47 −1.39639 −0.698193 0.715909i \(-0.746012\pi\)
−0.698193 + 0.715909i \(0.746012\pi\)
\(812\) 607.354i 0.747973i
\(813\) 12.0342 51.8980i 0.0148022 0.0638352i
\(814\) 324.974 0.399231
\(815\) 699.122i 0.857818i
\(816\) 313.605 + 72.7195i 0.384320 + 0.0891170i
\(817\) 181.879 0.222618
\(818\) 190.505i 0.232891i
\(819\) −370.153 181.418i −0.451957 0.221512i
\(820\) 757.937 0.924313
\(821\) 895.125i 1.09029i 0.838343 + 0.545143i \(0.183525\pi\)
−0.838343 + 0.545143i \(0.816475\pi\)
\(822\) 354.416 1528.43i 0.431163 1.85941i
\(823\) 416.341 0.505882 0.252941 0.967482i \(-0.418602\pi\)
0.252941 + 0.967482i \(0.418602\pi\)
\(824\) 16.2394i 0.0197080i
\(825\) −448.815 104.072i −0.544019 0.126148i
\(826\) −853.476 −1.03326
\(827\) 229.621i 0.277656i −0.990317 0.138828i \(-0.955666\pi\)
0.990317 0.138828i \(-0.0443335\pi\)
\(828\) −77.8599 + 158.860i −0.0940337 + 0.191859i
\(829\) 1247.07 1.50431 0.752153 0.658988i \(-0.229015\pi\)
0.752153 + 0.658988i \(0.229015\pi\)
\(830\) 1134.86i 1.36730i
\(831\) −91.2974 + 393.723i −0.109864 + 0.473794i
\(832\) 1161.98 1.39661
\(833\) 48.1665i 0.0578230i
\(834\) 677.260 + 157.044i 0.812062 + 0.188303i
\(835\) −1254.02 −1.50182
\(836\) 68.2261i 0.0816102i
\(837\) −968.456 + 1188.91i −1.15706 + 1.42044i
\(838\) 1196.18 1.42743
\(839\) 831.736i 0.991342i 0.868510 + 0.495671i \(0.165078\pi\)
−0.868510 + 0.495671i \(0.834922\pi\)
\(840\) −3.66413 + 15.8017i −0.00436206 + 0.0188116i
\(841\) −2295.71 −2.72974
\(842\) 1735.68i 2.06138i
\(843\) −547.894 127.047i −0.649933 0.150708i
\(844\) 221.899 0.262914
\(845\) 950.026i 1.12429i
\(846\) −1620.78 794.371i −1.91581 0.938972i
\(847\) 239.631 0.282917
\(848\) 195.842i 0.230946i
\(849\) −313.702 + 1352.85i −0.369496 + 1.59346i
\(850\) −545.179 −0.641387
\(851\) 99.2808i 0.116664i
\(852\) 1423.05 + 329.980i 1.67025 + 0.387300i
\(853\) −878.370 −1.02974 −0.514871 0.857268i \(-0.672160\pi\)
−0.514871 + 0.857268i \(0.672160\pi\)
\(854\) 81.0733i 0.0949336i
\(855\) 86.8833 177.270i 0.101618 0.207334i
\(856\) −16.8597 −0.0196959
\(857\) 757.697i 0.884127i 0.896984 + 0.442064i \(0.145754\pi\)
−0.896984 + 0.442064i \(0.854246\pi\)
\(858\) 184.163 794.208i 0.214642 0.925650i
\(859\) 616.704 0.717933 0.358966 0.933350i \(-0.383129\pi\)
0.358966 + 0.933350i \(0.383129\pi\)
\(860\) 1795.83i 2.08818i
\(861\) 196.694 + 45.6097i 0.228448 + 0.0529730i
\(862\) −498.658 −0.578490
\(863\) 11.0011i 0.0127476i 0.999980 + 0.00637378i \(0.00202885\pi\)
−0.999980 + 0.00637378i \(0.997971\pi\)
\(864\) 952.605 + 775.970i 1.10255 + 0.898113i
\(865\) −1350.92 −1.56175
\(866\) 983.543i 1.13573i
\(867\) −163.760 + 706.220i −0.188881 + 0.814556i
\(868\) 615.893 0.709554
\(869\) 574.855i 0.661513i
\(870\) −3385.95 785.142i −3.89190 0.902462i
\(871\) −298.421 −0.342619
\(872\) 19.4133i 0.0222630i
\(873\) −747.287 366.258i −0.855998 0.419540i
\(874\) −41.1843 −0.0471216
\(875\) 54.6355i 0.0624406i
\(876\) 18.4476 79.5561i 0.0210590 0.0908175i
\(877\) 205.495 0.234315 0.117158 0.993113i \(-0.462622\pi\)
0.117158 + 0.993113i \(0.462622\pi\)
\(878\) 252.886i 0.288025i
\(879\) 1479.58 + 343.089i 1.68326 + 0.390318i
\(880\) 625.331 0.710603
\(881\) 1253.96i 1.42333i −0.702517 0.711667i \(-0.747940\pi\)
0.702517 0.711667i \(-0.252060\pi\)
\(882\) −78.9046 + 160.991i −0.0894610 + 0.182530i
\(883\) −98.8845 −0.111987 −0.0559935 0.998431i \(-0.517833\pi\)
−0.0559935 + 0.998431i \(0.517833\pi\)
\(884\) 488.249i 0.552317i
\(885\) 558.384 2408.05i 0.630942 2.72096i
\(886\) −375.534 −0.423853
\(887\) 316.638i 0.356977i 0.983942 + 0.178488i \(0.0571207\pi\)
−0.983942 + 0.178488i \(0.942879\pi\)
\(888\) 17.0087 + 3.94402i 0.0191540 + 0.00444146i
\(889\) 169.534 0.190702
\(890\) 2473.69i 2.77943i
\(891\) 353.147 273.726i 0.396349 0.307212i
\(892\) −122.442 −0.137266
\(893\) 212.655i 0.238136i
\(894\) 431.877 1862.48i 0.483084 2.08332i
\(895\) 1515.78 1.69361
\(896\) 23.7951i 0.0265571i
\(897\) −242.633 56.2623i −0.270494 0.0627228i
\(898\) −1502.73 −1.67342
\(899\) 3180.81i 3.53816i
\(900\) −922.213 451.993i −1.02468 0.502215i
\(901\) 86.4104 0.0959050
\(902\) 399.338i 0.442725i
\(903\) 108.066 466.040i 0.119675 0.516102i
\(904\) −52.2991 −0.0578530
\(905\) 1740.76i 1.92349i
\(906\) 894.035 + 207.311i 0.986794 + 0.228820i
\(907\) 1788.39 1.97177 0.985883 0.167435i \(-0.0535485\pi\)
0.985883 + 0.167435i \(0.0535485\pi\)
\(908\) 1312.42i 1.44540i
\(909\) −84.7620 + 172.942i −0.0932475 + 0.190255i
\(910\) −947.506 −1.04121
\(911\) 186.043i 0.204218i 0.994773 + 0.102109i \(0.0325591\pi\)
−0.994773 + 0.102109i \(0.967441\pi\)
\(912\) −31.8905 + 137.529i −0.0349676 + 0.150799i
\(913\) −302.611 −0.331447
\(914\) 964.964i 1.05576i
\(915\) 228.745 + 53.0419i 0.249995 + 0.0579693i
\(916\) −1497.05 −1.63433
\(917\) 114.439i 0.124798i
\(918\) 333.916 409.926i 0.363743 0.446542i
\(919\) −152.036 −0.165437 −0.0827184 0.996573i \(-0.526360\pi\)
−0.0827184 + 0.996573i \(0.526360\pi\)
\(920\) 9.80100i 0.0106533i
\(921\) −77.3514 + 333.581i −0.0839863 + 0.362194i
\(922\) 318.261 0.345185
\(923\) 2056.62i 2.22819i
\(924\) −174.820 40.5376i −0.189199 0.0438719i
\(925\) 576.346 0.623077
\(926\) 2067.16i 2.23235i
\(927\) −466.812 228.793i −0.503573 0.246810i
\(928\) 2548.60 2.74634
\(929\) 210.124i 0.226183i 0.993585 + 0.113092i \(0.0360753\pi\)
−0.993585 + 0.113092i \(0.963925\pi\)
\(930\) −796.179 + 3433.55i −0.856107 + 3.69199i
\(931\) −21.1230 −0.0226885
\(932\) 516.530i 0.554217i
\(933\) −538.963 124.976i −0.577666 0.133951i
\(934\) 580.462 0.621480
\(935\) 275.911i 0.295092i
\(936\) 19.2776 39.3327i 0.0205958 0.0420221i
\(937\) −645.838 −0.689262 −0.344631 0.938738i \(-0.611996\pi\)
−0.344631 + 0.938738i \(0.611996\pi\)
\(938\) 129.793i 0.138372i
\(939\) −157.152 + 677.722i −0.167361 + 0.721749i
\(940\) −2099.71 −2.23373
\(941\) 295.988i 0.314546i 0.987555 + 0.157273i \(0.0502703\pi\)
−0.987555 + 0.157273i \(0.949730\pi\)
\(942\) 1087.01 + 252.059i 1.15394 + 0.267579i
\(943\) 121.999 0.129373
\(944\) 1767.75i 1.87261i
\(945\) −402.607 327.954i −0.426039 0.347042i
\(946\) 946.179 1.00019
\(947\) 171.823i 0.181440i 0.995876 + 0.0907198i \(0.0289168\pi\)
−0.995876 + 0.0907198i \(0.971083\pi\)
\(948\) 289.462 1248.32i 0.305340 1.31679i
\(949\) 114.976 0.121155
\(950\) 239.083i 0.251667i
\(951\) −1364.31 316.359i −1.43461 0.332660i
\(952\) −5.11821 −0.00537627
\(953\) 1722.85i 1.80782i −0.427721 0.903911i \(-0.640683\pi\)
0.427721 0.903911i \(-0.359317\pi\)
\(954\) 288.817 + 141.554i 0.302743 + 0.148380i
\(955\) −54.4237 −0.0569882
\(956\) 419.103i 0.438392i
\(957\) 209.359 902.866i 0.218766 0.943434i
\(958\) −1411.70 −1.47359
\(959\) 486.225i 0.507012i
\(960\) 1425.91 + 330.644i 1.48533 + 0.344421i
\(961\) 2264.53 2.35643
\(962\) 1019.88i 1.06017i
\(963\) 237.532 484.643i 0.246659 0.503264i
\(964\) 1240.98 1.28733
\(965\) 2025.94i 2.09942i
\(966\) −24.4703 + 105.529i −0.0253316 + 0.109243i
\(967\) 1006.28 1.04062 0.520310 0.853978i \(-0.325817\pi\)
0.520310 + 0.853978i \(0.325817\pi\)
\(968\) 25.4633i 0.0263051i
\(969\) 60.6811 + 14.0709i 0.0626224 + 0.0145210i
\(970\) −1912.88 −1.97204
\(971\) 1294.27i 1.33292i −0.745540 0.666461i \(-0.767808\pi\)
0.745540 0.666461i \(-0.232192\pi\)
\(972\) 904.703 416.581i 0.930765 0.428582i
\(973\) 215.450 0.221428
\(974\) 2343.32i 2.40587i
\(975\) 326.615 1408.54i 0.334989 1.44465i
\(976\) −167.921 −0.172051
\(977\) 1120.68i 1.14706i 0.819184 + 0.573531i \(0.194427\pi\)
−0.819184 + 0.573531i \(0.805573\pi\)
\(978\) 799.883 + 185.479i 0.817876 + 0.189651i
\(979\) −659.612 −0.673761
\(980\) 208.564i 0.212820i
\(981\) 558.048 + 273.509i 0.568856 + 0.278807i
\(982\) −2356.55 −2.39974
\(983\) 574.248i 0.584179i 0.956391 + 0.292089i \(0.0943505\pi\)
−0.956391 + 0.292089i \(0.905650\pi\)
\(984\) −4.84652 + 20.9008i −0.00492533 + 0.0212406i
\(985\) −298.227 −0.302769
\(986\) 1096.72i 1.11229i
\(987\) −544.899 126.352i −0.552076 0.128017i
\(988\) 214.117 0.216718
\(989\) 289.061i 0.292276i
\(990\) 451.988 922.202i 0.456553 0.931518i
\(991\) 756.387 0.763257 0.381628 0.924316i \(-0.375363\pi\)
0.381628 + 0.924316i \(0.375363\pi\)
\(992\) 2584.43i 2.60528i
\(993\) −139.045 + 599.638i −0.140026 + 0.603865i
\(994\) 894.489 0.899888
\(995\) 1177.40i 1.18332i
\(996\) −657.131 152.377i −0.659770 0.152989i
\(997\) 1058.99 1.06218 0.531089 0.847316i \(-0.321783\pi\)
0.531089 + 0.847316i \(0.321783\pi\)
\(998\) 467.161i 0.468097i
\(999\) −353.005 + 433.361i −0.353359 + 0.433794i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.3.b.a.323.16 88
3.2 odd 2 inner 483.3.b.a.323.73 yes 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.3.b.a.323.16 88 1.1 even 1 trivial
483.3.b.a.323.73 yes 88 3.2 odd 2 inner