Properties

Label 483.3.b.a.323.17
Level $483$
Weight $3$
Character 483.323
Analytic conductor $13.161$
Analytic rank $0$
Dimension $88$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,3,Mod(323,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.323");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 483.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1607967686\)
Analytic rank: \(0\)
Dimension: \(88\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.17
Character \(\chi\) \(=\) 483.323
Dual form 483.3.b.a.323.72

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.71288i q^{2} +(-2.93253 - 0.632651i) q^{3} -3.35974 q^{4} -2.46348i q^{5} +(-1.71631 + 7.95562i) q^{6} +2.64575 q^{7} -1.73695i q^{8} +(8.19950 + 3.71054i) q^{9} -6.68313 q^{10} -11.8962i q^{11} +(9.85255 + 2.12554i) q^{12} -17.4275 q^{13} -7.17762i q^{14} +(-1.55852 + 7.22423i) q^{15} -18.1511 q^{16} +0.203562i q^{17} +(10.0663 - 22.2443i) q^{18} -27.0623 q^{19} +8.27664i q^{20} +(-7.75875 - 1.67384i) q^{21} -32.2730 q^{22} +4.79583i q^{23} +(-1.09888 + 5.09366i) q^{24} +18.9313 q^{25} +47.2788i q^{26} +(-21.6978 - 16.0687i) q^{27} -8.88904 q^{28} +14.7351i q^{29} +(19.5985 + 4.22809i) q^{30} +15.3304 q^{31} +42.2941i q^{32} +(-7.52615 + 34.8860i) q^{33} +0.552240 q^{34} -6.51774i q^{35} +(-27.5482 - 12.4665i) q^{36} +6.24119 q^{37} +73.4169i q^{38} +(51.1067 + 11.0255i) q^{39} -4.27893 q^{40} -27.1454i q^{41} +(-4.54093 + 21.0486i) q^{42} -6.41913 q^{43} +39.9682i q^{44} +(9.14083 - 20.1993i) q^{45} +13.0105 q^{46} +60.7602i q^{47} +(53.2287 + 11.4833i) q^{48} +7.00000 q^{49} -51.3584i q^{50} +(0.128784 - 0.596952i) q^{51} +58.5519 q^{52} +34.4701i q^{53} +(-43.5926 + 58.8637i) q^{54} -29.3060 q^{55} -4.59553i q^{56} +(79.3611 + 17.1210i) q^{57} +39.9746 q^{58} -7.86711i q^{59} +(5.23623 - 24.2715i) q^{60} -3.37527 q^{61} -41.5897i q^{62} +(21.6938 + 9.81717i) q^{63} +42.1344 q^{64} +42.9322i q^{65} +(94.6418 + 20.4176i) q^{66} -63.0208 q^{67} -0.683916i q^{68} +(3.03409 - 14.0639i) q^{69} -17.6819 q^{70} -28.2348i q^{71} +(6.44502 - 14.2421i) q^{72} -54.3051 q^{73} -16.9316i q^{74} +(-55.5166 - 11.9769i) q^{75} +90.9223 q^{76} -31.4744i q^{77} +(29.9110 - 138.647i) q^{78} -26.3806 q^{79} +44.7148i q^{80} +(53.4637 + 60.8492i) q^{81} -73.6423 q^{82} -6.93649i q^{83} +(26.0674 + 5.62366i) q^{84} +0.501470 q^{85} +17.4144i q^{86} +(9.32219 - 43.2112i) q^{87} -20.6631 q^{88} +92.9215i q^{89} +(-54.7983 - 24.7980i) q^{90} -46.1088 q^{91} -16.1128i q^{92} +(-44.9571 - 9.69883i) q^{93} +164.835 q^{94} +66.6673i q^{95} +(26.7574 - 124.029i) q^{96} -170.087 q^{97} -18.9902i q^{98} +(44.1414 - 97.5430i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 8 q^{3} - 176 q^{4} - 22 q^{6} + 20 q^{9} - 16 q^{10} - 18 q^{12} + 64 q^{13} + 20 q^{15} + 272 q^{16} - 38 q^{18} - 48 q^{19} - 28 q^{21} + 208 q^{22} + 228 q^{24} - 568 q^{25} - 88 q^{27} - 8 q^{30}+ \cdots - 248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.71288i 1.35644i −0.734858 0.678221i \(-0.762751\pi\)
0.734858 0.678221i \(-0.237249\pi\)
\(3\) −2.93253 0.632651i −0.977511 0.210884i
\(4\) −3.35974 −0.839935
\(5\) 2.46348i 0.492695i −0.969182 0.246348i \(-0.920770\pi\)
0.969182 0.246348i \(-0.0792305\pi\)
\(6\) −1.71631 + 7.95562i −0.286052 + 1.32594i
\(7\) 2.64575 0.377964
\(8\) 1.73695i 0.217119i
\(9\) 8.19950 + 3.71054i 0.911056 + 0.412283i
\(10\) −6.68313 −0.668313
\(11\) 11.8962i 1.08147i −0.841192 0.540737i \(-0.818145\pi\)
0.841192 0.540737i \(-0.181855\pi\)
\(12\) 9.85255 + 2.12554i 0.821046 + 0.177129i
\(13\) −17.4275 −1.34058 −0.670289 0.742100i \(-0.733830\pi\)
−0.670289 + 0.742100i \(0.733830\pi\)
\(14\) 7.17762i 0.512687i
\(15\) −1.55852 + 7.22423i −0.103901 + 0.481615i
\(16\) −18.1511 −1.13444
\(17\) 0.203562i 0.0119742i 0.999982 + 0.00598712i \(0.00190577\pi\)
−0.999982 + 0.00598712i \(0.998094\pi\)
\(18\) 10.0663 22.2443i 0.559237 1.23579i
\(19\) −27.0623 −1.42433 −0.712165 0.702012i \(-0.752285\pi\)
−0.712165 + 0.702012i \(0.752285\pi\)
\(20\) 8.27664i 0.413832i
\(21\) −7.75875 1.67384i −0.369464 0.0797066i
\(22\) −32.2730 −1.46696
\(23\) 4.79583i 0.208514i
\(24\) −1.09888 + 5.09366i −0.0457868 + 0.212236i
\(25\) 18.9313 0.757251
\(26\) 47.2788i 1.81842i
\(27\) −21.6978 16.0687i −0.803624 0.595138i
\(28\) −8.88904 −0.317466
\(29\) 14.7351i 0.508107i 0.967190 + 0.254054i \(0.0817640\pi\)
−0.967190 + 0.254054i \(0.918236\pi\)
\(30\) 19.5985 + 4.22809i 0.653283 + 0.140936i
\(31\) 15.3304 0.494531 0.247265 0.968948i \(-0.420468\pi\)
0.247265 + 0.968948i \(0.420468\pi\)
\(32\) 42.2941i 1.32169i
\(33\) −7.52615 + 34.8860i −0.228065 + 1.05715i
\(34\) 0.552240 0.0162424
\(35\) 6.51774i 0.186221i
\(36\) −27.5482 12.4665i −0.765228 0.346291i
\(37\) 6.24119 0.168681 0.0843405 0.996437i \(-0.473122\pi\)
0.0843405 + 0.996437i \(0.473122\pi\)
\(38\) 73.4169i 1.93202i
\(39\) 51.1067 + 11.0255i 1.31043 + 0.282706i
\(40\) −4.27893 −0.106973
\(41\) 27.1454i 0.662083i −0.943616 0.331041i \(-0.892600\pi\)
0.943616 0.331041i \(-0.107400\pi\)
\(42\) −4.54093 + 21.0486i −0.108117 + 0.501157i
\(43\) −6.41913 −0.149282 −0.0746411 0.997210i \(-0.523781\pi\)
−0.0746411 + 0.997210i \(0.523781\pi\)
\(44\) 39.9682i 0.908368i
\(45\) 9.14083 20.1993i 0.203130 0.448873i
\(46\) 13.0105 0.282838
\(47\) 60.7602i 1.29277i 0.763011 + 0.646385i \(0.223720\pi\)
−0.763011 + 0.646385i \(0.776280\pi\)
\(48\) 53.2287 + 11.4833i 1.10893 + 0.239236i
\(49\) 7.00000 0.142857
\(50\) 51.3584i 1.02717i
\(51\) 0.128784 0.596952i 0.00252517 0.0117050i
\(52\) 58.5519 1.12600
\(53\) 34.4701i 0.650380i 0.945649 + 0.325190i \(0.105428\pi\)
−0.945649 + 0.325190i \(0.894572\pi\)
\(54\) −43.5926 + 58.8637i −0.807270 + 1.09007i
\(55\) −29.3060 −0.532837
\(56\) 4.59553i 0.0820631i
\(57\) 79.3611 + 17.1210i 1.39230 + 0.300368i
\(58\) 39.9746 0.689218
\(59\) 7.86711i 0.133341i −0.997775 0.0666705i \(-0.978762\pi\)
0.997775 0.0666705i \(-0.0212376\pi\)
\(60\) 5.23623 24.2715i 0.0872705 0.404525i
\(61\) −3.37527 −0.0553324 −0.0276662 0.999617i \(-0.508808\pi\)
−0.0276662 + 0.999617i \(0.508808\pi\)
\(62\) 41.5897i 0.670802i
\(63\) 21.6938 + 9.81717i 0.344347 + 0.155828i
\(64\) 42.1344 0.658351
\(65\) 42.9322i 0.660496i
\(66\) 94.6418 + 20.4176i 1.43397 + 0.309357i
\(67\) −63.0208 −0.940608 −0.470304 0.882504i \(-0.655856\pi\)
−0.470304 + 0.882504i \(0.655856\pi\)
\(68\) 0.683916i 0.0100576i
\(69\) 3.03409 14.0639i 0.0439723 0.203825i
\(70\) −17.6819 −0.252598
\(71\) 28.2348i 0.397673i −0.980033 0.198836i \(-0.936284\pi\)
0.980033 0.198836i \(-0.0637162\pi\)
\(72\) 6.44502 14.2421i 0.0895142 0.197807i
\(73\) −54.3051 −0.743905 −0.371953 0.928252i \(-0.621312\pi\)
−0.371953 + 0.928252i \(0.621312\pi\)
\(74\) 16.9316i 0.228806i
\(75\) −55.5166 11.9769i −0.740222 0.159692i
\(76\) 90.9223 1.19635
\(77\) 31.4744i 0.408759i
\(78\) 29.9110 138.647i 0.383474 1.77752i
\(79\) −26.3806 −0.333932 −0.166966 0.985963i \(-0.553397\pi\)
−0.166966 + 0.985963i \(0.553397\pi\)
\(80\) 44.7148i 0.558935i
\(81\) 53.4637 + 60.8492i 0.660046 + 0.751225i
\(82\) −73.6423 −0.898077
\(83\) 6.93649i 0.0835722i −0.999127 0.0417861i \(-0.986695\pi\)
0.999127 0.0417861i \(-0.0133048\pi\)
\(84\) 26.0674 + 5.62366i 0.310326 + 0.0669484i
\(85\) 0.501470 0.00589965
\(86\) 17.4144i 0.202493i
\(87\) 9.32219 43.2112i 0.107152 0.496681i
\(88\) −20.6631 −0.234808
\(89\) 92.9215i 1.04406i 0.852926 + 0.522031i \(0.174825\pi\)
−0.852926 + 0.522031i \(0.825175\pi\)
\(90\) −54.7983 24.7980i −0.608870 0.275534i
\(91\) −46.1088 −0.506691
\(92\) 16.1128i 0.175139i
\(93\) −44.9571 9.69883i −0.483409 0.104288i
\(94\) 164.835 1.75357
\(95\) 66.6673i 0.701761i
\(96\) 26.7574 124.029i 0.278723 1.29197i
\(97\) −170.087 −1.75347 −0.876736 0.480972i \(-0.840284\pi\)
−0.876736 + 0.480972i \(0.840284\pi\)
\(98\) 18.9902i 0.193777i
\(99\) 44.1414 97.5430i 0.445873 0.985283i
\(100\) −63.6042 −0.636042
\(101\) 18.5230i 0.183396i −0.995787 0.0916979i \(-0.970771\pi\)
0.995787 0.0916979i \(-0.0292294\pi\)
\(102\) −1.61946 0.349376i −0.0158771 0.00342525i
\(103\) 64.9633 0.630712 0.315356 0.948973i \(-0.397876\pi\)
0.315356 + 0.948973i \(0.397876\pi\)
\(104\) 30.2707i 0.291064i
\(105\) −4.12346 + 19.1135i −0.0392711 + 0.182033i
\(106\) 93.5135 0.882202
\(107\) 101.916i 0.952483i −0.879315 0.476242i \(-0.841999\pi\)
0.879315 0.476242i \(-0.158001\pi\)
\(108\) 72.8991 + 53.9867i 0.674992 + 0.499877i
\(109\) 66.2966 0.608225 0.304113 0.952636i \(-0.401640\pi\)
0.304113 + 0.952636i \(0.401640\pi\)
\(110\) 79.5039i 0.722762i
\(111\) −18.3025 3.94850i −0.164887 0.0355721i
\(112\) −48.0233 −0.428780
\(113\) 36.2110i 0.320451i 0.987080 + 0.160226i \(0.0512222\pi\)
−0.987080 + 0.160226i \(0.948778\pi\)
\(114\) 46.4473 215.297i 0.407432 1.88857i
\(115\) 11.8144 0.102734
\(116\) 49.5062i 0.426777i
\(117\) −142.897 64.6655i −1.22134 0.552697i
\(118\) −21.3426 −0.180869
\(119\) 0.538575i 0.00452584i
\(120\) 12.5481 + 2.70707i 0.104568 + 0.0225589i
\(121\) −20.5199 −0.169586
\(122\) 9.15673i 0.0750552i
\(123\) −17.1736 + 79.6048i −0.139623 + 0.647193i
\(124\) −51.5063 −0.415374
\(125\) 108.224i 0.865789i
\(126\) 26.6329 58.8529i 0.211372 0.467087i
\(127\) 38.1195 0.300154 0.150077 0.988674i \(-0.452048\pi\)
0.150077 + 0.988674i \(0.452048\pi\)
\(128\) 54.8703i 0.428674i
\(129\) 18.8243 + 4.06107i 0.145925 + 0.0314812i
\(130\) 116.470 0.895925
\(131\) 201.997i 1.54196i −0.636857 0.770982i \(-0.719766\pi\)
0.636857 0.770982i \(-0.280234\pi\)
\(132\) 25.2859 117.208i 0.191560 0.887940i
\(133\) −71.6001 −0.538347
\(134\) 170.968i 1.27588i
\(135\) −39.5849 + 53.4521i −0.293221 + 0.395942i
\(136\) 0.353577 0.00259983
\(137\) 51.6647i 0.377114i −0.982062 0.188557i \(-0.939619\pi\)
0.982062 0.188557i \(-0.0603811\pi\)
\(138\) −38.1538 8.23113i −0.276477 0.0596459i
\(139\) −164.094 −1.18053 −0.590266 0.807209i \(-0.700977\pi\)
−0.590266 + 0.807209i \(0.700977\pi\)
\(140\) 21.8979i 0.156414i
\(141\) 38.4400 178.181i 0.272624 1.26370i
\(142\) −76.5976 −0.539420
\(143\) 207.321i 1.44980i
\(144\) −148.830 67.3504i −1.03354 0.467711i
\(145\) 36.2996 0.250342
\(146\) 147.323i 1.00906i
\(147\) −20.5277 4.42856i −0.139644 0.0301263i
\(148\) −20.9688 −0.141681
\(149\) 115.751i 0.776850i −0.921480 0.388425i \(-0.873019\pi\)
0.921480 0.388425i \(-0.126981\pi\)
\(150\) −32.4920 + 150.610i −0.216613 + 1.00407i
\(151\) 61.6599 0.408343 0.204172 0.978935i \(-0.434550\pi\)
0.204172 + 0.978935i \(0.434550\pi\)
\(152\) 47.0058i 0.309249i
\(153\) −0.755326 + 1.66911i −0.00493677 + 0.0109092i
\(154\) −85.3865 −0.554457
\(155\) 37.7662i 0.243653i
\(156\) −171.705 37.0429i −1.10068 0.237455i
\(157\) 36.0816 0.229819 0.114910 0.993376i \(-0.463342\pi\)
0.114910 + 0.993376i \(0.463342\pi\)
\(158\) 71.5676i 0.452960i
\(159\) 21.8076 101.085i 0.137155 0.635753i
\(160\) 104.190 0.651190
\(161\) 12.6886i 0.0788110i
\(162\) 165.077 145.041i 1.01899 0.895315i
\(163\) −263.142 −1.61437 −0.807184 0.590300i \(-0.799009\pi\)
−0.807184 + 0.590300i \(0.799009\pi\)
\(164\) 91.2015i 0.556107i
\(165\) 85.9409 + 18.5405i 0.520854 + 0.112367i
\(166\) −18.8179 −0.113361
\(167\) 305.453i 1.82906i −0.404517 0.914530i \(-0.632560\pi\)
0.404517 0.914530i \(-0.367440\pi\)
\(168\) −2.90737 + 13.4766i −0.0173058 + 0.0802176i
\(169\) 134.718 0.797147
\(170\) 1.36043i 0.00800253i
\(171\) −221.897 100.416i −1.29765 0.587227i
\(172\) 21.5666 0.125387
\(173\) 282.283i 1.63169i 0.578269 + 0.815847i \(0.303729\pi\)
−0.578269 + 0.815847i \(0.696271\pi\)
\(174\) −117.227 25.2900i −0.673718 0.145345i
\(175\) 50.0875 0.286214
\(176\) 215.929i 1.22687i
\(177\) −4.97714 + 23.0706i −0.0281194 + 0.130342i
\(178\) 252.085 1.41621
\(179\) 252.363i 1.40985i −0.709282 0.704925i \(-0.750981\pi\)
0.709282 0.704925i \(-0.249019\pi\)
\(180\) −30.7108 + 67.8644i −0.170616 + 0.377024i
\(181\) −340.899 −1.88342 −0.941711 0.336424i \(-0.890783\pi\)
−0.941711 + 0.336424i \(0.890783\pi\)
\(182\) 125.088i 0.687296i
\(183\) 9.89811 + 2.13537i 0.0540880 + 0.0116687i
\(184\) 8.33011 0.0452724
\(185\) 15.3750i 0.0831083i
\(186\) −26.3118 + 121.963i −0.141461 + 0.655717i
\(187\) 2.42162 0.0129498
\(188\) 204.139i 1.08584i
\(189\) −57.4071 42.5138i −0.303741 0.224941i
\(190\) 180.861 0.951898
\(191\) 260.176i 1.36218i −0.732200 0.681090i \(-0.761506\pi\)
0.732200 0.681090i \(-0.238494\pi\)
\(192\) −123.561 26.6564i −0.643545 0.138836i
\(193\) −266.038 −1.37843 −0.689217 0.724555i \(-0.742045\pi\)
−0.689217 + 0.724555i \(0.742045\pi\)
\(194\) 461.426i 2.37848i
\(195\) 27.1611 125.900i 0.139288 0.645642i
\(196\) −23.5182 −0.119991
\(197\) 136.564i 0.693220i −0.938009 0.346610i \(-0.887333\pi\)
0.938009 0.346610i \(-0.112667\pi\)
\(198\) −264.623 119.751i −1.33648 0.604801i
\(199\) 35.3878 0.177828 0.0889141 0.996039i \(-0.471660\pi\)
0.0889141 + 0.996039i \(0.471660\pi\)
\(200\) 32.8827i 0.164413i
\(201\) 184.810 + 39.8702i 0.919455 + 0.198359i
\(202\) −50.2507 −0.248766
\(203\) 38.9854i 0.192046i
\(204\) −0.432680 + 2.00561i −0.00212098 + 0.00983140i
\(205\) −66.8720 −0.326205
\(206\) 176.238i 0.855524i
\(207\) −17.7951 + 39.3234i −0.0859668 + 0.189968i
\(208\) 316.328 1.52081
\(209\) 321.939i 1.54038i
\(210\) 51.8527 + 11.1865i 0.246918 + 0.0532689i
\(211\) −49.5778 −0.234966 −0.117483 0.993075i \(-0.537483\pi\)
−0.117483 + 0.993075i \(0.537483\pi\)
\(212\) 115.811i 0.546277i
\(213\) −17.8628 + 82.7994i −0.0838627 + 0.388729i
\(214\) −276.485 −1.29199
\(215\) 15.8134i 0.0735506i
\(216\) −27.9105 + 37.6880i −0.129215 + 0.174482i
\(217\) 40.5606 0.186915
\(218\) 179.855i 0.825023i
\(219\) 159.251 + 34.3562i 0.727176 + 0.156878i
\(220\) 98.4607 0.447549
\(221\) 3.54758i 0.0160524i
\(222\) −10.7118 + 49.6526i −0.0482515 + 0.223660i
\(223\) −394.062 −1.76709 −0.883547 0.468342i \(-0.844851\pi\)
−0.883547 + 0.468342i \(0.844851\pi\)
\(224\) 111.900i 0.499552i
\(225\) 155.227 + 70.2453i 0.689899 + 0.312202i
\(226\) 98.2362 0.434674
\(227\) 75.6079i 0.333074i 0.986035 + 0.166537i \(0.0532586\pi\)
−0.986035 + 0.166537i \(0.946741\pi\)
\(228\) −266.633 57.5221i −1.16944 0.252290i
\(229\) 73.2421 0.319834 0.159917 0.987130i \(-0.448877\pi\)
0.159917 + 0.987130i \(0.448877\pi\)
\(230\) 32.0511i 0.139353i
\(231\) −19.9123 + 92.2998i −0.0862006 + 0.399566i
\(232\) 25.5941 0.110320
\(233\) 151.085i 0.648436i 0.945982 + 0.324218i \(0.105101\pi\)
−0.945982 + 0.324218i \(0.894899\pi\)
\(234\) −175.430 + 387.663i −0.749701 + 1.65668i
\(235\) 149.681 0.636942
\(236\) 26.4315i 0.111998i
\(237\) 77.3621 + 16.6898i 0.326422 + 0.0704209i
\(238\) 1.46109 0.00613904
\(239\) 403.356i 1.68768i −0.536593 0.843841i \(-0.680289\pi\)
0.536593 0.843841i \(-0.319711\pi\)
\(240\) 28.2889 131.128i 0.117870 0.546365i
\(241\) 405.045 1.68069 0.840343 0.542056i \(-0.182354\pi\)
0.840343 + 0.542056i \(0.182354\pi\)
\(242\) 55.6680i 0.230033i
\(243\) −118.288 212.266i −0.486781 0.873524i
\(244\) 11.3400 0.0464756
\(245\) 17.2443i 0.0703850i
\(246\) 215.959 + 46.5899i 0.877881 + 0.189390i
\(247\) 471.628 1.90943
\(248\) 26.6282i 0.107372i
\(249\) −4.38838 + 20.3415i −0.0176240 + 0.0816928i
\(250\) −293.598 −1.17439
\(251\) 100.182i 0.399133i −0.979884 0.199567i \(-0.936047\pi\)
0.979884 0.199567i \(-0.0639534\pi\)
\(252\) −72.8857 32.9832i −0.289229 0.130886i
\(253\) 57.0522 0.225503
\(254\) 103.414i 0.407141i
\(255\) −1.47058 0.317256i −0.00576697 0.00124414i
\(256\) 317.395 1.23982
\(257\) 288.377i 1.12209i −0.827786 0.561044i \(-0.810400\pi\)
0.827786 0.561044i \(-0.189600\pi\)
\(258\) 11.0172 51.0682i 0.0427024 0.197939i
\(259\) 16.5126 0.0637554
\(260\) 144.241i 0.554774i
\(261\) −54.6753 + 120.821i −0.209484 + 0.462914i
\(262\) −547.995 −2.09159
\(263\) 507.686i 1.93036i −0.261580 0.965182i \(-0.584244\pi\)
0.261580 0.965182i \(-0.415756\pi\)
\(264\) 60.5953 + 13.0725i 0.229527 + 0.0495172i
\(265\) 84.9163 0.320439
\(266\) 194.243i 0.730236i
\(267\) 58.7869 272.495i 0.220176 1.02058i
\(268\) 211.733 0.790050
\(269\) 201.692i 0.749786i −0.927068 0.374893i \(-0.877679\pi\)
0.927068 0.374893i \(-0.122321\pi\)
\(270\) 145.009 + 107.389i 0.537072 + 0.397738i
\(271\) 412.413 1.52182 0.760910 0.648858i \(-0.224753\pi\)
0.760910 + 0.648858i \(0.224753\pi\)
\(272\) 3.69488i 0.0135841i
\(273\) 135.216 + 29.1708i 0.495296 + 0.106853i
\(274\) −140.160 −0.511534
\(275\) 225.211i 0.818948i
\(276\) −10.1938 + 47.2512i −0.0369339 + 0.171200i
\(277\) 171.831 0.620329 0.310165 0.950683i \(-0.399616\pi\)
0.310165 + 0.950683i \(0.399616\pi\)
\(278\) 445.168i 1.60132i
\(279\) 125.702 + 56.8843i 0.450545 + 0.203886i
\(280\) −11.3210 −0.0404321
\(281\) 387.163i 1.37780i 0.724855 + 0.688902i \(0.241907\pi\)
−0.724855 + 0.688902i \(0.758093\pi\)
\(282\) −483.385 104.283i −1.71413 0.369799i
\(283\) 321.435 1.13581 0.567907 0.823093i \(-0.307753\pi\)
0.567907 + 0.823093i \(0.307753\pi\)
\(284\) 94.8615i 0.334019i
\(285\) 42.1772 195.504i 0.147990 0.685979i
\(286\) 562.439 1.96657
\(287\) 71.8200i 0.250244i
\(288\) −156.934 + 346.790i −0.544909 + 1.20413i
\(289\) 288.959 0.999857
\(290\) 98.4766i 0.339574i
\(291\) 498.785 + 107.606i 1.71404 + 0.369779i
\(292\) 182.451 0.624832
\(293\) 459.424i 1.56800i 0.620760 + 0.784000i \(0.286824\pi\)
−0.620760 + 0.784000i \(0.713176\pi\)
\(294\) −12.0142 + 55.6894i −0.0408645 + 0.189420i
\(295\) −19.3804 −0.0656964
\(296\) 10.8406i 0.0366238i
\(297\) −191.157 + 258.122i −0.643626 + 0.869098i
\(298\) −314.018 −1.05375
\(299\) 83.5794i 0.279530i
\(300\) 186.521 + 40.2393i 0.621738 + 0.134131i
\(301\) −16.9834 −0.0564233
\(302\) 167.276i 0.553894i
\(303\) −11.7186 + 54.3192i −0.0386752 + 0.179271i
\(304\) 491.210 1.61582
\(305\) 8.31491i 0.0272620i
\(306\) 4.52810 + 2.04911i 0.0147977 + 0.00669644i
\(307\) 100.073 0.325971 0.162986 0.986628i \(-0.447888\pi\)
0.162986 + 0.986628i \(0.447888\pi\)
\(308\) 105.746i 0.343331i
\(309\) −190.507 41.0991i −0.616528 0.133007i
\(310\) −102.455 −0.330501
\(311\) 464.199i 1.49260i 0.665609 + 0.746300i \(0.268172\pi\)
−0.665609 + 0.746300i \(0.731828\pi\)
\(312\) 19.1508 88.7698i 0.0613807 0.284519i
\(313\) −394.898 −1.26165 −0.630827 0.775923i \(-0.717284\pi\)
−0.630827 + 0.775923i \(0.717284\pi\)
\(314\) 97.8853i 0.311737i
\(315\) 24.1844 53.4423i 0.0767758 0.169658i
\(316\) 88.6321 0.280481
\(317\) 264.405i 0.834084i −0.908887 0.417042i \(-0.863067\pi\)
0.908887 0.417042i \(-0.136933\pi\)
\(318\) −274.231 59.1614i −0.862363 0.186042i
\(319\) 175.292 0.549505
\(320\) 103.797i 0.324366i
\(321\) −64.4771 + 298.871i −0.200863 + 0.931063i
\(322\) 34.4226 0.106903
\(323\) 5.50885i 0.0170553i
\(324\) −179.624 204.438i −0.554396 0.630980i
\(325\) −329.925 −1.01515
\(326\) 713.873i 2.18980i
\(327\) −194.417 41.9426i −0.594547 0.128265i
\(328\) −47.1502 −0.143751
\(329\) 160.756i 0.488621i
\(330\) 50.2982 233.148i 0.152419 0.706508i
\(331\) −138.493 −0.418407 −0.209204 0.977872i \(-0.567087\pi\)
−0.209204 + 0.977872i \(0.567087\pi\)
\(332\) 23.3048i 0.0701952i
\(333\) 51.1747 + 23.1582i 0.153678 + 0.0695442i
\(334\) −828.659 −2.48101
\(335\) 155.250i 0.463433i
\(336\) 140.830 + 30.3820i 0.419137 + 0.0904227i
\(337\) 167.452 0.496889 0.248445 0.968646i \(-0.420081\pi\)
0.248445 + 0.968646i \(0.420081\pi\)
\(338\) 365.474i 1.08128i
\(339\) 22.9089 106.190i 0.0675780 0.313245i
\(340\) −1.68481 −0.00495532
\(341\) 182.374i 0.534822i
\(342\) −272.416 + 601.982i −0.796539 + 1.76018i
\(343\) 18.5203 0.0539949
\(344\) 11.1497i 0.0324119i
\(345\) −34.6462 7.47441i −0.100424 0.0216649i
\(346\) 765.801 2.21330
\(347\) 407.284i 1.17373i 0.809685 + 0.586865i \(0.199638\pi\)
−0.809685 + 0.586865i \(0.800362\pi\)
\(348\) −31.3201 + 145.178i −0.0900004 + 0.417179i
\(349\) 140.756 0.403312 0.201656 0.979456i \(-0.435368\pi\)
0.201656 + 0.979456i \(0.435368\pi\)
\(350\) 135.882i 0.388233i
\(351\) 378.139 + 280.038i 1.07732 + 0.797828i
\(352\) 503.139 1.42937
\(353\) 366.450i 1.03810i 0.854743 + 0.519051i \(0.173715\pi\)
−0.854743 + 0.519051i \(0.826285\pi\)
\(354\) 62.5878 + 13.5024i 0.176802 + 0.0381424i
\(355\) −69.5557 −0.195931
\(356\) 312.192i 0.876945i
\(357\) 0.340730 1.57939i 0.000954426 0.00442406i
\(358\) −684.632 −1.91238
\(359\) 375.644i 1.04636i −0.852221 0.523181i \(-0.824745\pi\)
0.852221 0.523181i \(-0.175255\pi\)
\(360\) −35.0851 15.8772i −0.0974587 0.0441032i
\(361\) 371.367 1.02872
\(362\) 924.820i 2.55475i
\(363\) 60.1751 + 12.9819i 0.165772 + 0.0357628i
\(364\) 154.914 0.425587
\(365\) 133.779i 0.366519i
\(366\) 5.79302 26.8524i 0.0158279 0.0733673i
\(367\) −519.664 −1.41598 −0.707989 0.706223i \(-0.750398\pi\)
−0.707989 + 0.706223i \(0.750398\pi\)
\(368\) 87.0496i 0.236548i
\(369\) 100.724 222.579i 0.272965 0.603195i
\(370\) −41.7107 −0.112732
\(371\) 91.1994i 0.245820i
\(372\) 151.044 + 32.5856i 0.406032 + 0.0875956i
\(373\) −121.541 −0.325847 −0.162923 0.986639i \(-0.552092\pi\)
−0.162923 + 0.986639i \(0.552092\pi\)
\(374\) 6.56957i 0.0175657i
\(375\) −68.4679 + 317.370i −0.182581 + 0.846319i
\(376\) 105.537 0.280684
\(377\) 256.796i 0.681157i
\(378\) −115.335 + 155.739i −0.305119 + 0.412007i
\(379\) −739.079 −1.95008 −0.975039 0.222035i \(-0.928730\pi\)
−0.975039 + 0.222035i \(0.928730\pi\)
\(380\) 223.985i 0.589434i
\(381\) −111.787 24.1164i −0.293404 0.0632975i
\(382\) −705.828 −1.84772
\(383\) 298.359i 0.779006i −0.921025 0.389503i \(-0.872647\pi\)
0.921025 0.389503i \(-0.127353\pi\)
\(384\) 34.7138 160.909i 0.0904005 0.419034i
\(385\) −77.5365 −0.201393
\(386\) 721.729i 1.86977i
\(387\) −52.6337 23.8185i −0.136004 0.0615464i
\(388\) 571.447 1.47280
\(389\) 379.341i 0.975170i 0.873076 + 0.487585i \(0.162122\pi\)
−0.873076 + 0.487585i \(0.837878\pi\)
\(390\) −341.553 73.6850i −0.875776 0.188936i
\(391\) −0.976249 −0.00249680
\(392\) 12.1586i 0.0310169i
\(393\) −127.794 + 592.364i −0.325175 + 1.50729i
\(394\) −370.483 −0.940312
\(395\) 64.9881i 0.164527i
\(396\) −148.304 + 327.719i −0.374504 + 0.827574i
\(397\) −191.873 −0.483308 −0.241654 0.970362i \(-0.577690\pi\)
−0.241654 + 0.970362i \(0.577690\pi\)
\(398\) 96.0030i 0.241214i
\(399\) 209.970 + 45.2979i 0.526240 + 0.113529i
\(400\) −343.624 −0.859059
\(401\) 651.879i 1.62563i −0.582520 0.812816i \(-0.697933\pi\)
0.582520 0.812816i \(-0.302067\pi\)
\(402\) 108.163 501.369i 0.269063 1.24719i
\(403\) −267.171 −0.662956
\(404\) 62.2324i 0.154041i
\(405\) 149.901 131.707i 0.370125 0.325202i
\(406\) 105.763 0.260500
\(407\) 74.2466i 0.182424i
\(408\) −1.03688 0.223691i −0.00254136 0.000548262i
\(409\) −36.9551 −0.0903547 −0.0451773 0.998979i \(-0.514385\pi\)
−0.0451773 + 0.998979i \(0.514385\pi\)
\(410\) 181.416i 0.442478i
\(411\) −32.6857 + 151.508i −0.0795273 + 0.368634i
\(412\) −218.260 −0.529757
\(413\) 20.8144i 0.0503981i
\(414\) 106.680 + 48.2761i 0.257681 + 0.116609i
\(415\) −17.0879 −0.0411756
\(416\) 737.080i 1.77183i
\(417\) 481.211 + 103.814i 1.15398 + 0.248955i
\(418\) 873.382 2.08943
\(419\) 701.950i 1.67530i −0.546209 0.837649i \(-0.683929\pi\)
0.546209 0.837649i \(-0.316071\pi\)
\(420\) 13.8538 64.2164i 0.0329851 0.152896i
\(421\) 460.821 1.09459 0.547293 0.836941i \(-0.315658\pi\)
0.547293 + 0.836941i \(0.315658\pi\)
\(422\) 134.499i 0.318718i
\(423\) −225.453 + 498.204i −0.532987 + 1.17779i
\(424\) 59.8728 0.141210
\(425\) 3.85369i 0.00906751i
\(426\) 224.625 + 48.4596i 0.527289 + 0.113755i
\(427\) −8.93014 −0.0209137
\(428\) 342.410i 0.800024i
\(429\) 131.162 607.977i 0.305739 1.41719i
\(430\) 42.8999 0.0997671
\(431\) 479.527i 1.11259i −0.830985 0.556296i \(-0.812222\pi\)
0.830985 0.556296i \(-0.187778\pi\)
\(432\) 393.840 + 291.665i 0.911666 + 0.675150i
\(433\) −414.291 −0.956792 −0.478396 0.878144i \(-0.658782\pi\)
−0.478396 + 0.878144i \(0.658782\pi\)
\(434\) 110.036i 0.253539i
\(435\) −106.450 22.9650i −0.244712 0.0527931i
\(436\) −222.739 −0.510870
\(437\) 129.786i 0.296994i
\(438\) 93.2044 432.031i 0.212795 0.986372i
\(439\) 517.906 1.17974 0.589871 0.807498i \(-0.299179\pi\)
0.589871 + 0.807498i \(0.299179\pi\)
\(440\) 50.9031i 0.115689i
\(441\) 57.3965 + 25.9738i 0.130151 + 0.0588975i
\(442\) −9.62417 −0.0217741
\(443\) 646.657i 1.45972i 0.683595 + 0.729861i \(0.260415\pi\)
−0.683595 + 0.729861i \(0.739585\pi\)
\(444\) 61.4917 + 13.2659i 0.138495 + 0.0298782i
\(445\) 228.910 0.514404
\(446\) 1069.04i 2.39696i
\(447\) −73.2298 + 339.443i −0.163825 + 0.759379i
\(448\) 111.477 0.248833
\(449\) 586.052i 1.30524i 0.757686 + 0.652619i \(0.226330\pi\)
−0.757686 + 0.652619i \(0.773670\pi\)
\(450\) 190.567 421.113i 0.423483 0.935807i
\(451\) −322.927 −0.716025
\(452\) 121.660i 0.269158i
\(453\) −180.820 39.0092i −0.399160 0.0861130i
\(454\) 205.115 0.451796
\(455\) 113.588i 0.249644i
\(456\) 29.7383 137.846i 0.0652155 0.302294i
\(457\) 190.005 0.415765 0.207882 0.978154i \(-0.433343\pi\)
0.207882 + 0.978154i \(0.433343\pi\)
\(458\) 198.697i 0.433837i
\(459\) 3.27098 4.41686i 0.00712632 0.00962278i
\(460\) −39.6934 −0.0862900
\(461\) 162.346i 0.352161i −0.984376 0.176081i \(-0.943658\pi\)
0.984376 0.176081i \(-0.0563419\pi\)
\(462\) 250.399 + 54.0199i 0.541988 + 0.116926i
\(463\) −648.331 −1.40028 −0.700141 0.714004i \(-0.746880\pi\)
−0.700141 + 0.714004i \(0.746880\pi\)
\(464\) 267.459i 0.576419i
\(465\) −23.8928 + 110.751i −0.0513824 + 0.238173i
\(466\) 409.877 0.879565
\(467\) 164.780i 0.352848i −0.984314 0.176424i \(-0.943547\pi\)
0.984314 0.176424i \(-0.0564530\pi\)
\(468\) 480.097 + 217.259i 1.02585 + 0.464229i
\(469\) −166.737 −0.355516
\(470\) 406.068i 0.863975i
\(471\) −105.811 22.8271i −0.224651 0.0484652i
\(472\) −13.6648 −0.0289508
\(473\) 76.3634i 0.161445i
\(474\) 45.2774 209.875i 0.0955219 0.442773i
\(475\) −512.324 −1.07858
\(476\) 1.80947i 0.00380141i
\(477\) −127.903 + 282.638i −0.268140 + 0.592532i
\(478\) −1094.26 −2.28924
\(479\) 460.802i 0.962009i 0.876718 + 0.481004i \(0.159728\pi\)
−0.876718 + 0.481004i \(0.840272\pi\)
\(480\) −305.542 65.9162i −0.636545 0.137325i
\(481\) −108.768 −0.226130
\(482\) 1098.84i 2.27975i
\(483\) 8.02745 37.2097i 0.0166200 0.0770387i
\(484\) 68.9414 0.142441
\(485\) 419.005i 0.863927i
\(486\) −575.854 + 320.901i −1.18488 + 0.660291i
\(487\) −772.371 −1.58598 −0.792989 0.609236i \(-0.791476\pi\)
−0.792989 + 0.609236i \(0.791476\pi\)
\(488\) 5.86268i 0.0120137i
\(489\) 771.672 + 166.477i 1.57806 + 0.340444i
\(490\) −46.7819 −0.0954732
\(491\) 718.102i 1.46253i 0.682093 + 0.731265i \(0.261070\pi\)
−0.682093 + 0.731265i \(0.738930\pi\)
\(492\) 57.6988 267.452i 0.117274 0.543601i
\(493\) −2.99951 −0.00608420
\(494\) 1279.47i 2.59003i
\(495\) −240.295 108.741i −0.485444 0.219679i
\(496\) −278.265 −0.561017
\(497\) 74.7022i 0.150306i
\(498\) 55.1841 + 11.9052i 0.110812 + 0.0239060i
\(499\) 357.562 0.716557 0.358278 0.933615i \(-0.383364\pi\)
0.358278 + 0.933615i \(0.383364\pi\)
\(500\) 363.603i 0.727207i
\(501\) −193.245 + 895.751i −0.385719 + 1.78793i
\(502\) −271.783 −0.541401
\(503\) 815.005i 1.62029i −0.586231 0.810144i \(-0.699389\pi\)
0.586231 0.810144i \(-0.300611\pi\)
\(504\) 17.0519 37.6811i 0.0338332 0.0747641i
\(505\) −45.6309 −0.0903582
\(506\) 154.776i 0.305882i
\(507\) −395.065 85.2295i −0.779221 0.168105i
\(508\) −128.072 −0.252110
\(509\) 113.144i 0.222287i 0.993804 + 0.111143i \(0.0354513\pi\)
−0.993804 + 0.111143i \(0.964549\pi\)
\(510\) −0.860678 + 3.98951i −0.00168760 + 0.00782257i
\(511\) −143.678 −0.281170
\(512\) 641.574i 1.25307i
\(513\) 587.193 + 434.856i 1.14463 + 0.847673i
\(514\) −782.333 −1.52205
\(515\) 160.036i 0.310749i
\(516\) −63.2448 13.6442i −0.122568 0.0264422i
\(517\) 722.816 1.39810
\(518\) 44.7969i 0.0864805i
\(519\) 178.587 827.804i 0.344098 1.59500i
\(520\) 74.5711 0.143406
\(521\) 765.070i 1.46846i −0.678898 0.734232i \(-0.737542\pi\)
0.678898 0.734232i \(-0.262458\pi\)
\(522\) 327.772 + 148.328i 0.627916 + 0.284153i
\(523\) −210.103 −0.401727 −0.200863 0.979619i \(-0.564375\pi\)
−0.200863 + 0.979619i \(0.564375\pi\)
\(524\) 678.659i 1.29515i
\(525\) −146.883 31.6879i −0.279778 0.0603579i
\(526\) −1377.29 −2.61843
\(527\) 3.12070i 0.00592163i
\(528\) 136.608 633.220i 0.258727 1.19928i
\(529\) −23.0000 −0.0434783
\(530\) 230.368i 0.434657i
\(531\) 29.1913 64.5064i 0.0549741 0.121481i
\(532\) 240.558 0.452176
\(533\) 473.077i 0.887573i
\(534\) −739.249 159.482i −1.38436 0.298656i
\(535\) −251.067 −0.469284
\(536\) 109.464i 0.204224i
\(537\) −159.658 + 740.063i −0.297314 + 1.37814i
\(538\) −547.168 −1.01704
\(539\) 83.2735i 0.154496i
\(540\) 132.995 179.585i 0.246287 0.332565i
\(541\) 367.908 0.680052 0.340026 0.940416i \(-0.389564\pi\)
0.340026 + 0.940416i \(0.389564\pi\)
\(542\) 1118.83i 2.06426i
\(543\) 999.699 + 215.670i 1.84107 + 0.397183i
\(544\) −8.60946 −0.0158262
\(545\) 163.320i 0.299670i
\(546\) 79.1371 366.825i 0.144940 0.671840i
\(547\) −569.598 −1.04131 −0.520656 0.853766i \(-0.674313\pi\)
−0.520656 + 0.853766i \(0.674313\pi\)
\(548\) 173.580i 0.316752i
\(549\) −27.6756 12.5241i −0.0504109 0.0228126i
\(550\) −610.970 −1.11085
\(551\) 398.766i 0.723713i
\(552\) −24.4283 5.27006i −0.0442542 0.00954721i
\(553\) −69.7966 −0.126215
\(554\) 466.158i 0.841440i
\(555\) −9.72704 + 45.0878i −0.0175262 + 0.0812393i
\(556\) 551.313 0.991570
\(557\) 107.533i 0.193057i 0.995330 + 0.0965283i \(0.0307738\pi\)
−0.995330 + 0.0965283i \(0.969226\pi\)
\(558\) 154.320 341.015i 0.276560 0.611138i
\(559\) 111.869 0.200124
\(560\) 118.304i 0.211258i
\(561\) −7.10147 1.53204i −0.0126586 0.00273091i
\(562\) 1050.33 1.86891
\(563\) 317.566i 0.564061i 0.959405 + 0.282031i \(0.0910080\pi\)
−0.959405 + 0.282031i \(0.908992\pi\)
\(564\) −129.149 + 598.643i −0.228987 + 1.06142i
\(565\) 89.2049 0.157885
\(566\) 872.017i 1.54067i
\(567\) 141.452 + 160.992i 0.249474 + 0.283936i
\(568\) −49.0423 −0.0863421
\(569\) 381.386i 0.670275i 0.942169 + 0.335137i \(0.108783\pi\)
−0.942169 + 0.335137i \(0.891217\pi\)
\(570\) −530.380 114.422i −0.930491 0.200740i
\(571\) 327.683 0.573875 0.286938 0.957949i \(-0.407363\pi\)
0.286938 + 0.957949i \(0.407363\pi\)
\(572\) 696.546i 1.21774i
\(573\) −164.601 + 762.976i −0.287262 + 1.33155i
\(574\) −194.839 −0.339441
\(575\) 90.7913i 0.157898i
\(576\) 345.482 + 156.342i 0.599794 + 0.271427i
\(577\) 555.461 0.962670 0.481335 0.876537i \(-0.340152\pi\)
0.481335 + 0.876537i \(0.340152\pi\)
\(578\) 783.911i 1.35625i
\(579\) 780.164 + 168.309i 1.34743 + 0.290689i
\(580\) −121.957 −0.210271
\(581\) 18.3522i 0.0315873i
\(582\) 291.922 1353.15i 0.501583 2.32499i
\(583\) 410.064 0.703369
\(584\) 94.3251i 0.161516i
\(585\) −159.302 + 352.023i −0.272311 + 0.601749i
\(586\) 1246.36 2.12690
\(587\) 819.154i 1.39549i −0.716345 0.697747i \(-0.754186\pi\)
0.716345 0.697747i \(-0.245814\pi\)
\(588\) 68.9679 + 14.8788i 0.117292 + 0.0253041i
\(589\) −414.877 −0.704375
\(590\) 52.5769i 0.0891134i
\(591\) −86.3976 + 400.479i −0.146189 + 0.677630i
\(592\) −113.285 −0.191359
\(593\) 476.584i 0.803684i −0.915709 0.401842i \(-0.868370\pi\)
0.915709 0.401842i \(-0.131630\pi\)
\(594\) 700.255 + 518.586i 1.17888 + 0.873041i
\(595\) 1.32677 0.00222986
\(596\) 388.892i 0.652504i
\(597\) −103.776 22.3881i −0.173829 0.0375011i
\(598\) −226.741 −0.379166
\(599\) 1095.07i 1.82816i 0.405532 + 0.914081i \(0.367086\pi\)
−0.405532 + 0.914081i \(0.632914\pi\)
\(600\) −20.8033 + 96.4295i −0.0346721 + 0.160716i
\(601\) −225.787 −0.375686 −0.187843 0.982199i \(-0.560150\pi\)
−0.187843 + 0.982199i \(0.560150\pi\)
\(602\) 46.0741i 0.0765350i
\(603\) −516.739 233.841i −0.856947 0.387796i
\(604\) −207.161 −0.342982
\(605\) 50.5502i 0.0835540i
\(606\) 147.362 + 31.7912i 0.243171 + 0.0524607i
\(607\) 1126.99 1.85666 0.928329 0.371761i \(-0.121246\pi\)
0.928329 + 0.371761i \(0.121246\pi\)
\(608\) 1144.57i 1.88252i
\(609\) 24.6642 114.326i 0.0404995 0.187728i
\(610\) 22.5574 0.0369793
\(611\) 1058.90i 1.73306i
\(612\) 2.53770 5.60777i 0.00414657 0.00916302i
\(613\) 486.028 0.792868 0.396434 0.918063i \(-0.370248\pi\)
0.396434 + 0.918063i \(0.370248\pi\)
\(614\) 271.487i 0.442161i
\(615\) 196.105 + 42.3067i 0.318869 + 0.0687914i
\(616\) −54.6694 −0.0887491
\(617\) 825.783i 1.33838i −0.743089 0.669192i \(-0.766640\pi\)
0.743089 0.669192i \(-0.233360\pi\)
\(618\) −111.497 + 516.824i −0.180416 + 0.836285i
\(619\) 666.565 1.07684 0.538421 0.842676i \(-0.319021\pi\)
0.538421 + 0.842676i \(0.319021\pi\)
\(620\) 126.885i 0.204653i
\(621\) 77.0629 104.059i 0.124095 0.167567i
\(622\) 1259.32 2.02463
\(623\) 245.847i 0.394618i
\(624\) −927.644 200.126i −1.48661 0.320714i
\(625\) 206.676 0.330681
\(626\) 1071.31i 1.71136i
\(627\) 203.675 944.096i 0.324840 1.50574i
\(628\) −121.225 −0.193033
\(629\) 1.27047i 0.00201983i
\(630\) −144.983 65.6094i −0.230131 0.104142i
\(631\) −977.985 −1.54990 −0.774949 0.632024i \(-0.782224\pi\)
−0.774949 + 0.632024i \(0.782224\pi\)
\(632\) 45.8218i 0.0725029i
\(633\) 145.389 + 31.3655i 0.229682 + 0.0495505i
\(634\) −717.299 −1.13139
\(635\) 93.9065i 0.147884i
\(636\) −73.2678 + 339.619i −0.115201 + 0.533992i
\(637\) −121.993 −0.191511
\(638\) 475.547i 0.745371i
\(639\) 104.766 231.511i 0.163953 0.362302i
\(640\) 135.172 0.211206
\(641\) 106.244i 0.165747i 0.996560 + 0.0828737i \(0.0264098\pi\)
−0.996560 + 0.0828737i \(0.973590\pi\)
\(642\) 810.803 + 174.919i 1.26293 + 0.272459i
\(643\) 360.637 0.560866 0.280433 0.959874i \(-0.409522\pi\)
0.280433 + 0.959874i \(0.409522\pi\)
\(644\) 42.6303i 0.0661962i
\(645\) 10.0044 46.3733i 0.0155106 0.0718965i
\(646\) −14.9449 −0.0231345
\(647\) 143.629i 0.221992i −0.993821 0.110996i \(-0.964596\pi\)
0.993821 0.110996i \(-0.0354041\pi\)
\(648\) 105.692 92.8638i 0.163105 0.143308i
\(649\) −93.5889 −0.144205
\(650\) 895.049i 1.37700i
\(651\) −118.945 25.6607i −0.182711 0.0394173i
\(652\) 884.089 1.35596
\(653\) 655.723i 1.00417i 0.864818 + 0.502085i \(0.167433\pi\)
−0.864818 + 0.502085i \(0.832567\pi\)
\(654\) −113.785 + 527.431i −0.173984 + 0.806469i
\(655\) −497.616 −0.759718
\(656\) 492.719i 0.751096i
\(657\) −445.275 201.501i −0.677739 0.306699i
\(658\) 436.113 0.662786
\(659\) 65.0443i 0.0987015i 0.998782 + 0.0493507i \(0.0157152\pi\)
−0.998782 + 0.0493507i \(0.984285\pi\)
\(660\) −288.739 62.2913i −0.437484 0.0943807i
\(661\) −238.965 −0.361521 −0.180760 0.983527i \(-0.557856\pi\)
−0.180760 + 0.983527i \(0.557856\pi\)
\(662\) 375.715i 0.567545i
\(663\) −2.24438 + 10.4034i −0.00338519 + 0.0156914i
\(664\) −12.0483 −0.0181451
\(665\) 176.385i 0.265241i
\(666\) 62.8256 138.831i 0.0943327 0.208455i
\(667\) −70.6671 −0.105948
\(668\) 1026.24i 1.53629i
\(669\) 1155.60 + 249.304i 1.72735 + 0.372652i
\(670\) 421.176 0.628620
\(671\) 40.1530i 0.0598405i
\(672\) 70.7934 328.149i 0.105347 0.488317i
\(673\) −353.825 −0.525744 −0.262872 0.964831i \(-0.584670\pi\)
−0.262872 + 0.964831i \(0.584670\pi\)
\(674\) 454.277i 0.674001i
\(675\) −410.768 304.201i −0.608545 0.450669i
\(676\) −452.617 −0.669552
\(677\) 746.674i 1.10292i −0.834203 0.551458i \(-0.814072\pi\)
0.834203 0.551458i \(-0.185928\pi\)
\(678\) −288.081 62.1493i −0.424898 0.0916656i
\(679\) −450.007 −0.662750
\(680\) 0.871028i 0.00128092i
\(681\) 47.8334 221.723i 0.0702400 0.325584i
\(682\) −494.760 −0.725455
\(683\) 1170.89i 1.71433i −0.515044 0.857164i \(-0.672224\pi\)
0.515044 0.857164i \(-0.327776\pi\)
\(684\) 745.518 + 337.371i 1.08994 + 0.493232i
\(685\) −127.275 −0.185802
\(686\) 50.2433i 0.0732410i
\(687\) −214.785 46.3367i −0.312642 0.0674479i
\(688\) 116.514 0.169352
\(689\) 600.728i 0.871884i
\(690\) −20.2772 + 93.9910i −0.0293872 + 0.136219i
\(691\) 739.843 1.07069 0.535343 0.844635i \(-0.320183\pi\)
0.535343 + 0.844635i \(0.320183\pi\)
\(692\) 948.397i 1.37052i
\(693\) 116.787 258.075i 0.168524 0.372402i
\(694\) 1104.92 1.59210
\(695\) 404.241i 0.581642i
\(696\) −75.0556 16.1922i −0.107839 0.0232646i
\(697\) 5.52577 0.00792794
\(698\) 381.855i 0.547070i
\(699\) 95.5844 443.063i 0.136745 0.633853i
\(700\) −168.281 −0.240401
\(701\) 941.941i 1.34371i −0.740683 0.671855i \(-0.765498\pi\)
0.740683 0.671855i \(-0.234502\pi\)
\(702\) 759.710 1025.85i 1.08221 1.46132i
\(703\) −168.901 −0.240257
\(704\) 501.240i 0.711989i
\(705\) −438.945 94.6961i −0.622618 0.134321i
\(706\) 994.137 1.40813
\(707\) 49.0072i 0.0693171i
\(708\) 16.7219 77.5112i 0.0236185 0.109479i
\(709\) −637.979 −0.899829 −0.449914 0.893072i \(-0.648546\pi\)
−0.449914 + 0.893072i \(0.648546\pi\)
\(710\) 188.696i 0.265770i
\(711\) −216.308 97.8865i −0.304231 0.137674i
\(712\) 161.400 0.226685
\(713\) 73.5222i 0.103117i
\(714\) −4.28470 0.924361i −0.00600098 0.00129462i
\(715\) 510.731 0.714309
\(716\) 847.875i 1.18418i
\(717\) −255.184 + 1182.86i −0.355905 + 1.64973i
\(718\) −1019.08 −1.41933
\(719\) 537.161i 0.747094i −0.927611 0.373547i \(-0.878141\pi\)
0.927611 0.373547i \(-0.121859\pi\)
\(720\) −165.916 + 366.639i −0.230439 + 0.509221i
\(721\) 171.877 0.238387
\(722\) 1007.48i 1.39540i
\(723\) −1187.81 256.252i −1.64289 0.354429i
\(724\) 1145.33 1.58195
\(725\) 278.955i 0.384765i
\(726\) 35.2184 163.248i 0.0485102 0.224860i
\(727\) −427.656 −0.588248 −0.294124 0.955767i \(-0.595028\pi\)
−0.294124 + 0.955767i \(0.595028\pi\)
\(728\) 80.0887i 0.110012i
\(729\) 212.593 + 697.313i 0.291622 + 0.956534i
\(730\) 362.928 0.497161
\(731\) 1.30669i 0.00178754i
\(732\) −33.2551 7.17430i −0.0454304 0.00980095i
\(733\) 312.467 0.426285 0.213143 0.977021i \(-0.431630\pi\)
0.213143 + 0.977021i \(0.431630\pi\)
\(734\) 1409.79i 1.92069i
\(735\) −10.9097 + 50.5696i −0.0148431 + 0.0688021i
\(736\) −202.835 −0.275591
\(737\) 749.708i 1.01724i
\(738\) −603.831 273.253i −0.818199 0.370262i
\(739\) −958.939 −1.29762 −0.648809 0.760951i \(-0.724732\pi\)
−0.648809 + 0.760951i \(0.724732\pi\)
\(740\) 51.6561i 0.0698056i
\(741\) −1383.07 298.376i −1.86648 0.402667i
\(742\) 247.413 0.333441
\(743\) 1477.85i 1.98903i 0.104587 + 0.994516i \(0.466648\pi\)
−0.104587 + 0.994516i \(0.533352\pi\)
\(744\) −16.8464 + 78.0881i −0.0226430 + 0.104957i
\(745\) −285.149 −0.382750
\(746\) 329.726i 0.441992i
\(747\) 25.7382 56.8758i 0.0344554 0.0761390i
\(748\) −8.13601 −0.0108770
\(749\) 269.644i 0.360005i
\(750\) 860.987 + 185.745i 1.14798 + 0.247660i
\(751\) −305.724 −0.407089 −0.203544 0.979066i \(-0.565246\pi\)
−0.203544 + 0.979066i \(0.565246\pi\)
\(752\) 1102.86i 1.46658i
\(753\) −63.3805 + 293.788i −0.0841707 + 0.390157i
\(754\) −696.658 −0.923950
\(755\) 151.898i 0.201189i
\(756\) 192.873 + 142.835i 0.255123 + 0.188936i
\(757\) −987.031 −1.30387 −0.651936 0.758274i \(-0.726043\pi\)
−0.651936 + 0.758274i \(0.726043\pi\)
\(758\) 2005.04i 2.64517i
\(759\) −167.308 36.0942i −0.220432 0.0475549i
\(760\) 115.798 0.152365
\(761\) 6.19475i 0.00814028i −0.999992 0.00407014i \(-0.998704\pi\)
0.999992 0.00407014i \(-0.00129557\pi\)
\(762\) −65.4249 + 303.265i −0.0858595 + 0.397985i
\(763\) 175.404 0.229888
\(764\) 874.125i 1.14414i
\(765\) 4.11181 + 1.86073i 0.00537491 + 0.00243232i
\(766\) −809.414 −1.05668
\(767\) 137.104i 0.178754i
\(768\) −930.770 200.800i −1.21194 0.261459i
\(769\) 1302.35 1.69357 0.846784 0.531936i \(-0.178535\pi\)
0.846784 + 0.531936i \(0.178535\pi\)
\(770\) 210.347i 0.273179i
\(771\) −182.442 + 845.675i −0.236630 + 1.09685i
\(772\) 893.818 1.15779
\(773\) 889.502i 1.15071i 0.817903 + 0.575357i \(0.195137\pi\)
−0.817903 + 0.575357i \(0.804863\pi\)
\(774\) −64.6167 + 142.789i −0.0834842 + 0.184482i
\(775\) 290.225 0.374484
\(776\) 295.432i 0.380711i
\(777\) −48.4239 10.4468i −0.0623216 0.0134450i
\(778\) 1029.11 1.32276
\(779\) 734.617i 0.943025i
\(780\) −91.2544 + 422.992i −0.116993 + 0.542298i
\(781\) −335.887 −0.430073
\(782\) 2.64845i 0.00338677i
\(783\) 236.774 319.720i 0.302394 0.408327i
\(784\) −127.058 −0.162063
\(785\) 88.8863i 0.113231i
\(786\) 1607.01 + 346.690i 2.04455 + 0.441081i
\(787\) 744.117 0.945511 0.472756 0.881194i \(-0.343259\pi\)
0.472756 + 0.881194i \(0.343259\pi\)
\(788\) 458.821i 0.582260i
\(789\) −321.188 + 1488.80i −0.407082 + 1.88695i
\(790\) 176.305 0.223171
\(791\) 95.8053i 0.121119i
\(792\) −169.427 76.6713i −0.213923 0.0968073i
\(793\) 58.8226 0.0741773
\(794\) 520.530i 0.655580i
\(795\) −249.020 53.7224i −0.313233 0.0675754i
\(796\) −118.894 −0.149364
\(797\) 254.923i 0.319854i 0.987129 + 0.159927i \(0.0511258\pi\)
−0.987129 + 0.159927i \(0.948874\pi\)
\(798\) 122.888 569.623i 0.153995 0.713814i
\(799\) −12.3685 −0.0154799
\(800\) 800.681i 1.00085i
\(801\) −344.789 + 761.910i −0.430449 + 0.951199i
\(802\) −1768.47 −2.20508
\(803\) 646.025i 0.804514i
\(804\) −620.915 133.953i −0.772283 0.166609i
\(805\) 31.2580 0.0388298
\(806\) 724.805i 0.899262i
\(807\) −127.601 + 591.470i −0.158118 + 0.732924i
\(808\) −32.1735 −0.0398186
\(809\) 318.703i 0.393947i 0.980409 + 0.196974i \(0.0631113\pi\)
−0.980409 + 0.196974i \(0.936889\pi\)
\(810\) −357.305 406.663i −0.441117 0.502053i
\(811\) −472.259 −0.582317 −0.291158 0.956675i \(-0.594041\pi\)
−0.291158 + 0.956675i \(0.594041\pi\)
\(812\) 130.981i 0.161307i
\(813\) −1209.41 260.914i −1.48760 0.320927i
\(814\) −201.422 −0.247448
\(815\) 648.244i 0.795391i
\(816\) −2.33757 + 10.8353i −0.00286467 + 0.0132786i
\(817\) 173.716 0.212627
\(818\) 100.255i 0.122561i
\(819\) −378.070 171.089i −0.461624 0.208900i
\(820\) 224.673 0.273991
\(821\) 958.561i 1.16755i 0.811914 + 0.583776i \(0.198426\pi\)
−0.811914 + 0.583776i \(0.801574\pi\)
\(822\) 411.025 + 88.6726i 0.500030 + 0.107874i
\(823\) −195.658 −0.237737 −0.118869 0.992910i \(-0.537927\pi\)
−0.118869 + 0.992910i \(0.537927\pi\)
\(824\) 112.838i 0.136939i
\(825\) −142.480 + 660.438i −0.172703 + 0.800530i
\(826\) −56.4671 −0.0683621
\(827\) 1140.23i 1.37876i 0.724401 + 0.689379i \(0.242117\pi\)
−0.724401 + 0.689379i \(0.757883\pi\)
\(828\) 59.7871 132.117i 0.0722066 0.159561i
\(829\) 175.521 0.211726 0.105863 0.994381i \(-0.466240\pi\)
0.105863 + 0.994381i \(0.466240\pi\)
\(830\) 46.3575i 0.0558524i
\(831\) −503.901 108.709i −0.606379 0.130817i
\(832\) −734.298 −0.882570
\(833\) 1.42493i 0.00171061i
\(834\) 281.636 1305.47i 0.337693 1.56531i
\(835\) −752.476 −0.901169
\(836\) 1081.63i 1.29382i
\(837\) −332.638 246.341i −0.397417 0.294314i
\(838\) −1904.31 −2.27245
\(839\) 496.368i 0.591618i −0.955247 0.295809i \(-0.904411\pi\)
0.955247 0.295809i \(-0.0955893\pi\)
\(840\) 33.1992 + 7.16224i 0.0395228 + 0.00852647i
\(841\) 623.877 0.741827
\(842\) 1250.15i 1.48474i
\(843\) 244.939 1135.37i 0.290556 1.34682i
\(844\) 166.569 0.197356
\(845\) 331.874i 0.392751i
\(846\) 1351.57 + 611.629i 1.59760 + 0.722965i
\(847\) −54.2904 −0.0640973
\(848\) 625.671i 0.737819i
\(849\) −942.620 203.356i −1.11027 0.239525i
\(850\) 10.4546 0.0122996
\(851\) 29.9317i 0.0351724i
\(852\) 60.0142 278.184i 0.0704393 0.326508i
\(853\) 463.297 0.543138 0.271569 0.962419i \(-0.412457\pi\)
0.271569 + 0.962419i \(0.412457\pi\)
\(854\) 24.2264i 0.0283682i
\(855\) −247.372 + 546.639i −0.289324 + 0.639344i
\(856\) −177.022 −0.206802
\(857\) 222.851i 0.260036i −0.991512 0.130018i \(-0.958496\pi\)
0.991512 0.130018i \(-0.0415036\pi\)
\(858\) −1649.37 355.828i −1.92234 0.414717i
\(859\) 794.060 0.924400 0.462200 0.886776i \(-0.347060\pi\)
0.462200 + 0.886776i \(0.347060\pi\)
\(860\) 53.1289i 0.0617777i
\(861\) −45.4370 + 210.615i −0.0527724 + 0.244616i
\(862\) −1300.90 −1.50917
\(863\) 1099.90i 1.27451i 0.770652 + 0.637256i \(0.219931\pi\)
−0.770652 + 0.637256i \(0.780069\pi\)
\(864\) 679.611 917.690i 0.786587 1.06214i
\(865\) 695.397 0.803927
\(866\) 1123.92i 1.29783i
\(867\) −847.381 182.810i −0.977371 0.210854i
\(868\) −136.273 −0.156996
\(869\) 313.830i 0.361139i
\(870\) −62.3014 + 288.786i −0.0716107 + 0.331938i
\(871\) 1098.29 1.26096
\(872\) 115.154i 0.132057i
\(873\) −1394.63 631.114i −1.59751 0.722926i
\(874\) −352.095 −0.402855
\(875\) 286.333i 0.327238i
\(876\) −535.044 115.428i −0.610780 0.131767i
\(877\) 602.030 0.686465 0.343233 0.939250i \(-0.388478\pi\)
0.343233 + 0.939250i \(0.388478\pi\)
\(878\) 1405.02i 1.60025i
\(879\) 290.655 1347.28i 0.330666 1.53274i
\(880\) 531.937 0.604474
\(881\) 244.099i 0.277071i −0.990357 0.138535i \(-0.955761\pi\)
0.990357 0.138535i \(-0.0442395\pi\)
\(882\) 70.4639 155.710i 0.0798911 0.176542i
\(883\) 1191.85 1.34977 0.674885 0.737923i \(-0.264193\pi\)
0.674885 + 0.737923i \(0.264193\pi\)
\(884\) 11.9189i 0.0134830i
\(885\) 56.8338 + 12.2611i 0.0642190 + 0.0138543i
\(886\) 1754.31 1.98003
\(887\) 31.9382i 0.0360070i 0.999838 + 0.0180035i \(0.00573100\pi\)
−0.999838 + 0.0180035i \(0.994269\pi\)
\(888\) −6.85834 + 31.7905i −0.00772336 + 0.0358001i
\(889\) 100.855 0.113447
\(890\) 621.006i 0.697760i
\(891\) 723.875 636.016i 0.812430 0.713823i
\(892\) 1323.95 1.48424
\(893\) 1644.31i 1.84133i
\(894\) 920.869 + 198.664i 1.03005 + 0.222219i
\(895\) −621.691 −0.694626
\(896\) 145.173i 0.162024i
\(897\) −52.8766 + 245.099i −0.0589483 + 0.273243i
\(898\) 1589.89 1.77048
\(899\) 225.896i 0.251275i
\(900\) −521.523 236.006i −0.579470 0.262229i
\(901\) −7.01681 −0.00778780
\(902\) 876.065i 0.971247i
\(903\) 49.8045 + 10.7446i 0.0551545 + 0.0118988i
\(904\) 62.8966 0.0695759
\(905\) 839.797i 0.927953i
\(906\) −105.827 + 490.543i −0.116807 + 0.541438i
\(907\) 712.067 0.785080 0.392540 0.919735i \(-0.371596\pi\)
0.392540 + 0.919735i \(0.371596\pi\)
\(908\) 254.023i 0.279761i
\(909\) 68.7303 151.879i 0.0756109 0.167084i
\(910\) 308.151 0.338628
\(911\) 448.916i 0.492772i 0.969172 + 0.246386i \(0.0792431\pi\)
−0.969172 + 0.246386i \(0.920757\pi\)
\(912\) −1440.49 310.765i −1.57949 0.340751i
\(913\) −82.5180 −0.0903812
\(914\) 515.460i 0.563961i
\(915\) 5.26044 24.3837i 0.00574911 0.0266489i
\(916\) −246.074 −0.268640
\(917\) 534.435i 0.582808i
\(918\) −11.9824 8.87379i −0.0130527 0.00966644i
\(919\) −1385.55 −1.50767 −0.753836 0.657063i \(-0.771799\pi\)
−0.753836 + 0.657063i \(0.771799\pi\)
\(920\) 20.5210i 0.0223055i
\(921\) −293.468 63.3114i −0.318640 0.0687420i
\(922\) −440.427 −0.477686
\(923\) 492.061i 0.533111i
\(924\) 66.9003 310.103i 0.0724029 0.335610i
\(925\) 118.154 0.127734
\(926\) 1758.85i 1.89940i
\(927\) 532.667 + 241.049i 0.574614 + 0.260032i
\(928\) −623.208 −0.671560
\(929\) 136.819i 0.147275i 0.997285 + 0.0736375i \(0.0234608\pi\)
−0.997285 + 0.0736375i \(0.976539\pi\)
\(930\) 300.454 + 64.8185i 0.323068 + 0.0696973i
\(931\) −189.436 −0.203476
\(932\) 507.608i 0.544644i
\(933\) 293.676 1361.28i 0.314765 1.45903i
\(934\) −447.029 −0.478618
\(935\) 5.96560i 0.00638032i
\(936\) −112.321 + 248.205i −0.120001 + 0.265176i
\(937\) −1335.58 −1.42538 −0.712691 0.701479i \(-0.752524\pi\)
−0.712691 + 0.701479i \(0.752524\pi\)
\(938\) 452.339i 0.482238i
\(939\) 1158.05 + 249.833i 1.23328 + 0.266062i
\(940\) −502.890 −0.534990
\(941\) 1376.63i 1.46295i −0.681870 0.731474i \(-0.738833\pi\)
0.681870 0.731474i \(-0.261167\pi\)
\(942\) −61.9273 + 287.052i −0.0657402 + 0.304726i
\(943\) 130.185 0.138054
\(944\) 142.797i 0.151268i
\(945\) −104.732 + 141.421i −0.110827 + 0.149652i
\(946\) 207.165 0.218990
\(947\) 1402.18i 1.48066i −0.672245 0.740328i \(-0.734670\pi\)
0.672245 0.740328i \(-0.265330\pi\)
\(948\) −259.917 56.0732i −0.274174 0.0591490i
\(949\) 946.402 0.997263
\(950\) 1389.88i 1.46303i
\(951\) −167.276 + 775.376i −0.175895 + 0.815327i
\(952\) 0.935476 0.000982643
\(953\) 542.925i 0.569701i −0.958572 0.284850i \(-0.908056\pi\)
0.958572 0.284850i \(-0.0919439\pi\)
\(954\) 766.764 + 346.986i 0.803736 + 0.363717i
\(955\) −640.938 −0.671139
\(956\) 1355.17i 1.41754i
\(957\) −514.050 110.899i −0.537147 0.115882i
\(958\) 1250.10 1.30491
\(959\) 136.692i 0.142536i
\(960\) −65.6674 + 304.389i −0.0684036 + 0.317072i
\(961\) −725.977 −0.755440
\(962\) 295.076i 0.306732i
\(963\) 378.163 835.658i 0.392692 0.867765i
\(964\) −1360.85 −1.41167
\(965\) 655.377i 0.679148i
\(966\) −100.946 21.7775i −0.104498 0.0225440i
\(967\) 1738.32 1.79764 0.898819 0.438319i \(-0.144426\pi\)
0.898819 + 0.438319i \(0.144426\pi\)
\(968\) 35.6419i 0.0368202i
\(969\) −3.48518 + 16.1549i −0.00359668 + 0.0166717i
\(970\) 1136.71 1.17187
\(971\) 1322.19i 1.36168i 0.732434 + 0.680838i \(0.238384\pi\)
−0.732434 + 0.680838i \(0.761616\pi\)
\(972\) 397.417 + 713.160i 0.408865 + 0.733703i
\(973\) −434.152 −0.446199
\(974\) 2095.35i 2.15129i
\(975\) 967.516 + 208.728i 0.992324 + 0.214080i
\(976\) 61.2650 0.0627715
\(977\) 48.0452i 0.0491762i 0.999698 + 0.0245881i \(0.00782743\pi\)
−0.999698 + 0.0245881i \(0.992173\pi\)
\(978\) 451.633 2093.46i 0.461792 2.14055i
\(979\) 1105.41 1.12913
\(980\) 57.9365i 0.0591189i
\(981\) 543.599 + 245.996i 0.554127 + 0.250761i
\(982\) 1948.13 1.98384
\(983\) 389.609i 0.396347i 0.980167 + 0.198173i \(0.0635009\pi\)
−0.980167 + 0.198173i \(0.936499\pi\)
\(984\) 138.269 + 29.8296i 0.140518 + 0.0303147i
\(985\) −336.423 −0.341546
\(986\) 8.13732i 0.00825286i
\(987\) 101.703 471.423i 0.103042 0.477633i
\(988\) −1584.55 −1.60379
\(989\) 30.7851i 0.0311275i
\(990\) −295.003 + 651.892i −0.297982 + 0.658477i
\(991\) 1947.58 1.96527 0.982633 0.185557i \(-0.0594090\pi\)
0.982633 + 0.185557i \(0.0594090\pi\)
\(992\) 648.387i 0.653616i
\(993\) 406.135 + 87.6176i 0.408998 + 0.0882353i
\(994\) −202.658 −0.203882
\(995\) 87.1770i 0.0876151i
\(996\) 14.7438 68.3422i 0.0148030 0.0686166i
\(997\) 299.524 0.300426 0.150213 0.988654i \(-0.452004\pi\)
0.150213 + 0.988654i \(0.452004\pi\)
\(998\) 970.024i 0.971968i
\(999\) −135.420 100.288i −0.135556 0.100388i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.3.b.a.323.17 88
3.2 odd 2 inner 483.3.b.a.323.72 yes 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.3.b.a.323.17 88 1.1 even 1 trivial
483.3.b.a.323.72 yes 88 3.2 odd 2 inner