Properties

Label 483.3.b.a.323.74
Level $483$
Weight $3$
Character 483.323
Analytic conductor $13.161$
Analytic rank $0$
Dimension $88$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,3,Mod(323,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.323");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 483.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1607967686\)
Analytic rank: \(0\)
Dimension: \(88\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.74
Character \(\chi\) \(=\) 483.323
Dual form 483.3.b.a.323.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.85750i q^{2} +(-1.75729 + 2.43145i) q^{3} -4.16533 q^{4} +5.17933i q^{5} +(-6.94788 - 5.02145i) q^{6} -2.64575 q^{7} -0.472440i q^{8} +(-2.82389 - 8.54551i) q^{9} -14.8000 q^{10} -4.51004i q^{11} +(7.31968 - 10.1278i) q^{12} +0.104362 q^{13} -7.56025i q^{14} +(-12.5933 - 9.10157i) q^{15} -15.3113 q^{16} -10.0444i q^{17} +(24.4188 - 8.06927i) q^{18} -19.4307 q^{19} -21.5736i q^{20} +(4.64934 - 6.43301i) q^{21} +12.8875 q^{22} +4.79583i q^{23} +(1.14871 + 0.830213i) q^{24} -1.82546 q^{25} +0.298216i q^{26} +(25.7403 + 8.15076i) q^{27} +11.0204 q^{28} +3.74791i q^{29} +(26.0078 - 35.9853i) q^{30} -37.7648 q^{31} -45.6420i q^{32} +(10.9659 + 7.92544i) q^{33} +28.7020 q^{34} -13.7032i q^{35} +(11.7624 + 35.5949i) q^{36} +19.5299 q^{37} -55.5234i q^{38} +(-0.183394 + 0.253751i) q^{39} +2.44692 q^{40} +11.9288i q^{41} +(18.3824 + 13.2855i) q^{42} +16.6104 q^{43} +18.7858i q^{44} +(44.2600 - 14.6258i) q^{45} -13.7041 q^{46} +64.8406i q^{47} +(26.9064 - 37.2287i) q^{48} +7.00000 q^{49} -5.21626i q^{50} +(24.4225 + 17.6509i) q^{51} -0.434703 q^{52} -7.40726i q^{53} +(-23.2908 + 73.5531i) q^{54} +23.3590 q^{55} +1.24996i q^{56} +(34.1454 - 47.2448i) q^{57} -10.7097 q^{58} -11.2757i q^{59} +(52.4552 + 37.9111i) q^{60} -47.5042 q^{61} -107.913i q^{62} +(7.47131 + 22.6093i) q^{63} +69.1768 q^{64} +0.540526i q^{65} +(-22.6470 + 31.3352i) q^{66} -40.1639 q^{67} +41.8383i q^{68} +(-11.6608 - 8.42765i) q^{69} +39.1570 q^{70} -41.2532i q^{71} +(-4.03724 + 1.33412i) q^{72} +27.1251 q^{73} +55.8066i q^{74} +(3.20786 - 4.43851i) q^{75} +80.9355 q^{76} +11.9325i q^{77} +(-0.725096 - 0.524050i) q^{78} +11.4925 q^{79} -79.3024i q^{80} +(-65.0513 + 48.2631i) q^{81} -34.0866 q^{82} +36.0723i q^{83} +(-19.3661 + 26.7956i) q^{84} +52.0233 q^{85} +47.4643i q^{86} +(-9.11285 - 6.58615i) q^{87} -2.13073 q^{88} +113.863i q^{89} +(41.7934 + 126.473i) q^{90} -0.276116 q^{91} -19.9762i q^{92} +(66.3635 - 91.8231i) q^{93} -185.282 q^{94} -100.638i q^{95} +(110.976 + 80.2060i) q^{96} -51.8908 q^{97} +20.0025i q^{98} +(-38.5406 + 12.7359i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 8 q^{3} - 176 q^{4} - 22 q^{6} + 20 q^{9} - 16 q^{10} - 18 q^{12} + 64 q^{13} + 20 q^{15} + 272 q^{16} - 38 q^{18} - 48 q^{19} - 28 q^{21} + 208 q^{22} + 228 q^{24} - 568 q^{25} - 88 q^{27} - 8 q^{30}+ \cdots - 248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.85750i 1.42875i 0.699762 + 0.714376i \(0.253289\pi\)
−0.699762 + 0.714376i \(0.746711\pi\)
\(3\) −1.75729 + 2.43145i −0.585762 + 0.810483i
\(4\) −4.16533 −1.04133
\(5\) 5.17933i 1.03587i 0.855421 + 0.517933i \(0.173298\pi\)
−0.855421 + 0.517933i \(0.826702\pi\)
\(6\) −6.94788 5.02145i −1.15798 0.836909i
\(7\) −2.64575 −0.377964
\(8\) 0.472440i 0.0590550i
\(9\) −2.82389 8.54551i −0.313765 0.949501i
\(10\) −14.8000 −1.48000
\(11\) 4.51004i 0.410004i −0.978762 0.205002i \(-0.934280\pi\)
0.978762 0.205002i \(-0.0657201\pi\)
\(12\) 7.31968 10.1278i 0.609974 0.843983i
\(13\) 0.104362 0.00802786 0.00401393 0.999992i \(-0.498722\pi\)
0.00401393 + 0.999992i \(0.498722\pi\)
\(14\) 7.56025i 0.540018i
\(15\) −12.5933 9.10157i −0.839552 0.606771i
\(16\) −15.3113 −0.956958
\(17\) 10.0444i 0.590848i −0.955366 0.295424i \(-0.904539\pi\)
0.955366 0.295424i \(-0.0954609\pi\)
\(18\) 24.4188 8.06927i 1.35660 0.448293i
\(19\) −19.4307 −1.02267 −0.511335 0.859381i \(-0.670849\pi\)
−0.511335 + 0.859381i \(0.670849\pi\)
\(20\) 21.5736i 1.07868i
\(21\) 4.64934 6.43301i 0.221397 0.306334i
\(22\) 12.8875 0.585794
\(23\) 4.79583i 0.208514i
\(24\) 1.14871 + 0.830213i 0.0478631 + 0.0345922i
\(25\) −1.82546 −0.0730184
\(26\) 0.298216i 0.0114698i
\(27\) 25.7403 + 8.15076i 0.953346 + 0.301880i
\(28\) 11.0204 0.393587
\(29\) 3.74791i 0.129238i 0.997910 + 0.0646191i \(0.0205833\pi\)
−0.997910 + 0.0646191i \(0.979417\pi\)
\(30\) 26.0078 35.9853i 0.866926 1.19951i
\(31\) −37.7648 −1.21822 −0.609109 0.793087i \(-0.708473\pi\)
−0.609109 + 0.793087i \(0.708473\pi\)
\(32\) 45.6420i 1.42631i
\(33\) 10.9659 + 7.92544i 0.332301 + 0.240165i
\(34\) 28.7020 0.844176
\(35\) 13.7032i 0.391521i
\(36\) 11.7624 + 35.5949i 0.326734 + 0.988747i
\(37\) 19.5299 0.527834 0.263917 0.964545i \(-0.414986\pi\)
0.263917 + 0.964545i \(0.414986\pi\)
\(38\) 55.5234i 1.46114i
\(39\) −0.183394 + 0.253751i −0.00470242 + 0.00650645i
\(40\) 2.44692 0.0611731
\(41\) 11.9288i 0.290947i 0.989362 + 0.145473i \(0.0464705\pi\)
−0.989362 + 0.145473i \(0.953530\pi\)
\(42\) 18.3824 + 13.2855i 0.437675 + 0.316322i
\(43\) 16.6104 0.386289 0.193144 0.981170i \(-0.438131\pi\)
0.193144 + 0.981170i \(0.438131\pi\)
\(44\) 18.7858i 0.426951i
\(45\) 44.2600 14.6258i 0.983555 0.325019i
\(46\) −13.7041 −0.297915
\(47\) 64.8406i 1.37959i 0.724007 + 0.689793i \(0.242299\pi\)
−0.724007 + 0.689793i \(0.757701\pi\)
\(48\) 26.9064 37.2287i 0.560550 0.775598i
\(49\) 7.00000 0.142857
\(50\) 5.21626i 0.104325i
\(51\) 24.4225 + 17.6509i 0.478872 + 0.346096i
\(52\) −0.434703 −0.00835968
\(53\) 7.40726i 0.139760i −0.997555 0.0698798i \(-0.977738\pi\)
0.997555 0.0698798i \(-0.0222616\pi\)
\(54\) −23.2908 + 73.5531i −0.431312 + 1.36210i
\(55\) 23.3590 0.424709
\(56\) 1.24996i 0.0223207i
\(57\) 34.1454 47.2448i 0.599042 0.828857i
\(58\) −10.7097 −0.184650
\(59\) 11.2757i 0.191113i −0.995424 0.0955565i \(-0.969537\pi\)
0.995424 0.0955565i \(-0.0304631\pi\)
\(60\) 52.4552 + 37.9111i 0.874253 + 0.631851i
\(61\) −47.5042 −0.778757 −0.389378 0.921078i \(-0.627310\pi\)
−0.389378 + 0.921078i \(0.627310\pi\)
\(62\) 107.913i 1.74053i
\(63\) 7.47131 + 22.6093i 0.118592 + 0.358877i
\(64\) 69.1768 1.08089
\(65\) 0.540526i 0.00831579i
\(66\) −22.6470 + 31.3352i −0.343136 + 0.474776i
\(67\) −40.1639 −0.599461 −0.299731 0.954024i \(-0.596897\pi\)
−0.299731 + 0.954024i \(0.596897\pi\)
\(68\) 41.8383i 0.615270i
\(69\) −11.6608 8.42765i −0.168997 0.122140i
\(70\) 39.1570 0.559386
\(71\) 41.2532i 0.581031i −0.956870 0.290516i \(-0.906173\pi\)
0.956870 0.290516i \(-0.0938269\pi\)
\(72\) −4.03724 + 1.33412i −0.0560728 + 0.0185294i
\(73\) 27.1251 0.371576 0.185788 0.982590i \(-0.440516\pi\)
0.185788 + 0.982590i \(0.440516\pi\)
\(74\) 55.8066i 0.754144i
\(75\) 3.20786 4.43851i 0.0427714 0.0591801i
\(76\) 80.9355 1.06494
\(77\) 11.9325i 0.154967i
\(78\) −0.725096 0.524050i −0.00929610 0.00671859i
\(79\) 11.4925 0.145475 0.0727373 0.997351i \(-0.476827\pi\)
0.0727373 + 0.997351i \(0.476827\pi\)
\(80\) 79.3024i 0.991281i
\(81\) −65.0513 + 48.2631i −0.803103 + 0.595841i
\(82\) −34.0866 −0.415691
\(83\) 36.0723i 0.434606i 0.976104 + 0.217303i \(0.0697260\pi\)
−0.976104 + 0.217303i \(0.930274\pi\)
\(84\) −19.3661 + 26.7956i −0.230548 + 0.318996i
\(85\) 52.0233 0.612039
\(86\) 47.4643i 0.551911i
\(87\) −9.11285 6.58615i −0.104745 0.0757029i
\(88\) −2.13073 −0.0242128
\(89\) 113.863i 1.27936i 0.768643 + 0.639678i \(0.220932\pi\)
−0.768643 + 0.639678i \(0.779068\pi\)
\(90\) 41.7934 + 126.473i 0.464371 + 1.40526i
\(91\) −0.276116 −0.00303425
\(92\) 19.9762i 0.217133i
\(93\) 66.3635 91.8231i 0.713586 0.987345i
\(94\) −185.282 −1.97109
\(95\) 100.638i 1.05935i
\(96\) 110.976 + 80.2060i 1.15600 + 0.835479i
\(97\) −51.8908 −0.534957 −0.267478 0.963564i \(-0.586190\pi\)
−0.267478 + 0.963564i \(0.586190\pi\)
\(98\) 20.0025i 0.204107i
\(99\) −38.5406 + 12.7359i −0.389299 + 0.128645i
\(100\) 7.60365 0.0760365
\(101\) 76.8146i 0.760540i −0.924875 0.380270i \(-0.875831\pi\)
0.924875 0.380270i \(-0.124169\pi\)
\(102\) −50.4376 + 69.7874i −0.494486 + 0.684190i
\(103\) −78.1734 −0.758965 −0.379482 0.925199i \(-0.623898\pi\)
−0.379482 + 0.925199i \(0.623898\pi\)
\(104\) 0.0493049i 0.000474086i
\(105\) 33.3187 + 24.0805i 0.317321 + 0.229338i
\(106\) 21.1663 0.199682
\(107\) 81.1111i 0.758048i −0.925387 0.379024i \(-0.876260\pi\)
0.925387 0.379024i \(-0.123740\pi\)
\(108\) −107.217 33.9506i −0.992751 0.314358i
\(109\) −191.309 −1.75513 −0.877564 0.479460i \(-0.840832\pi\)
−0.877564 + 0.479460i \(0.840832\pi\)
\(110\) 66.7485i 0.606804i
\(111\) −34.3195 + 47.4858i −0.309185 + 0.427800i
\(112\) 40.5100 0.361696
\(113\) 58.0554i 0.513765i −0.966443 0.256883i \(-0.917305\pi\)
0.966443 0.256883i \(-0.0826953\pi\)
\(114\) 135.002 + 97.5706i 1.18423 + 0.855882i
\(115\) −24.8392 −0.215993
\(116\) 15.6113i 0.134580i
\(117\) −0.294707 0.891828i −0.00251886 0.00762246i
\(118\) 32.2203 0.273053
\(119\) 26.5750i 0.223320i
\(120\) −4.29995 + 5.94957i −0.0358329 + 0.0495798i
\(121\) 100.660 0.831897
\(122\) 135.743i 1.11265i
\(123\) −29.0043 20.9623i −0.235807 0.170425i
\(124\) 157.303 1.26857
\(125\) 120.029i 0.960229i
\(126\) −64.6061 + 21.3493i −0.512747 + 0.169439i
\(127\) −230.070 −1.81158 −0.905788 0.423731i \(-0.860720\pi\)
−0.905788 + 0.423731i \(0.860720\pi\)
\(128\) 15.1052i 0.118009i
\(129\) −29.1892 + 40.3874i −0.226273 + 0.313080i
\(130\) −1.54456 −0.0118812
\(131\) 13.6376i 0.104104i −0.998644 0.0520518i \(-0.983424\pi\)
0.998644 0.0520518i \(-0.0165761\pi\)
\(132\) −45.6768 33.0121i −0.346036 0.250092i
\(133\) 51.4089 0.386533
\(134\) 114.769i 0.856482i
\(135\) −42.2155 + 133.318i −0.312707 + 0.987539i
\(136\) −4.74539 −0.0348926
\(137\) 115.845i 0.845587i −0.906226 0.422794i \(-0.861050\pi\)
0.906226 0.422794i \(-0.138950\pi\)
\(138\) 24.0821 33.3208i 0.174508 0.241455i
\(139\) 124.795 0.897803 0.448902 0.893581i \(-0.351815\pi\)
0.448902 + 0.893581i \(0.351815\pi\)
\(140\) 57.0785i 0.407703i
\(141\) −157.656 113.943i −1.11813 0.808109i
\(142\) 117.881 0.830150
\(143\) 0.470678i 0.00329146i
\(144\) 43.2375 + 130.843i 0.300260 + 0.908632i
\(145\) −19.4117 −0.133874
\(146\) 77.5100i 0.530890i
\(147\) −12.3010 + 17.0201i −0.0836803 + 0.115783i
\(148\) −81.3483 −0.549651
\(149\) 211.033i 1.41633i −0.706046 0.708166i \(-0.749523\pi\)
0.706046 0.708166i \(-0.250477\pi\)
\(150\) 12.6831 + 9.16646i 0.0845538 + 0.0611097i
\(151\) −128.437 −0.850574 −0.425287 0.905059i \(-0.639827\pi\)
−0.425287 + 0.905059i \(0.639827\pi\)
\(152\) 9.17986i 0.0603938i
\(153\) −85.8346 + 28.3643i −0.561011 + 0.185388i
\(154\) −34.0970 −0.221409
\(155\) 195.596i 1.26191i
\(156\) 0.763898 1.05696i 0.00489678 0.00677538i
\(157\) −145.825 −0.928821 −0.464411 0.885620i \(-0.653734\pi\)
−0.464411 + 0.885620i \(0.653734\pi\)
\(158\) 32.8398i 0.207847i
\(159\) 18.0104 + 13.0167i 0.113273 + 0.0818659i
\(160\) 236.395 1.47747
\(161\) 12.6886i 0.0788110i
\(162\) −137.912 185.884i −0.851309 1.14743i
\(163\) −280.558 −1.72121 −0.860607 0.509270i \(-0.829916\pi\)
−0.860607 + 0.509270i \(0.829916\pi\)
\(164\) 49.6875i 0.302972i
\(165\) −41.0485 + 56.7962i −0.248779 + 0.344220i
\(166\) −103.077 −0.620945
\(167\) 148.319i 0.888135i 0.895993 + 0.444067i \(0.146465\pi\)
−0.895993 + 0.444067i \(0.853535\pi\)
\(168\) −3.03921 2.19654i −0.0180906 0.0130746i
\(169\) −168.989 −0.999936
\(170\) 148.657i 0.874453i
\(171\) 54.8702 + 166.045i 0.320879 + 0.971026i
\(172\) −69.1879 −0.402255
\(173\) 112.504i 0.650311i −0.945661 0.325155i \(-0.894583\pi\)
0.945661 0.325155i \(-0.105417\pi\)
\(174\) 18.8200 26.0400i 0.108161 0.149655i
\(175\) 4.82971 0.0275984
\(176\) 69.0548i 0.392357i
\(177\) 27.4162 + 19.8146i 0.154894 + 0.111947i
\(178\) −325.363 −1.82788
\(179\) 35.7186i 0.199545i −0.995010 0.0997726i \(-0.968188\pi\)
0.995010 0.0997726i \(-0.0318115\pi\)
\(180\) −184.358 + 60.9215i −1.02421 + 0.338453i
\(181\) 98.0897 0.541932 0.270966 0.962589i \(-0.412657\pi\)
0.270966 + 0.962589i \(0.412657\pi\)
\(182\) 0.789004i 0.00433519i
\(183\) 83.4784 115.504i 0.456166 0.631169i
\(184\) 2.26574 0.0123138
\(185\) 101.152i 0.546765i
\(186\) 262.385 + 189.634i 1.41067 + 1.01954i
\(187\) −45.3007 −0.242250
\(188\) 270.082i 1.43661i
\(189\) −68.1025 21.5649i −0.360331 0.114100i
\(190\) 287.574 1.51355
\(191\) 57.9900i 0.303613i −0.988410 0.151806i \(-0.951491\pi\)
0.988410 0.151806i \(-0.0485090\pi\)
\(192\) −121.563 + 168.200i −0.633143 + 0.876041i
\(193\) 198.515 1.02857 0.514287 0.857618i \(-0.328057\pi\)
0.514287 + 0.857618i \(0.328057\pi\)
\(194\) 148.278i 0.764321i
\(195\) −1.31426 0.949860i −0.00673981 0.00487108i
\(196\) −29.1573 −0.148762
\(197\) 43.3935i 0.220272i −0.993917 0.110136i \(-0.964871\pi\)
0.993917 0.110136i \(-0.0351286\pi\)
\(198\) −36.3928 110.130i −0.183802 0.556212i
\(199\) −258.069 −1.29683 −0.648414 0.761288i \(-0.724567\pi\)
−0.648414 + 0.761288i \(0.724567\pi\)
\(200\) 0.862421i 0.00431210i
\(201\) 70.5795 97.6565i 0.351142 0.485853i
\(202\) 219.498 1.08662
\(203\) 9.91604i 0.0488475i
\(204\) −101.728 73.5220i −0.498666 0.360402i
\(205\) −61.7832 −0.301382
\(206\) 223.381i 1.08437i
\(207\) 40.9828 13.5429i 0.197985 0.0654246i
\(208\) −1.59792 −0.00768233
\(209\) 87.6335i 0.419299i
\(210\) −68.8101 + 95.2083i −0.327667 + 0.453373i
\(211\) 80.9414 0.383609 0.191804 0.981433i \(-0.438566\pi\)
0.191804 + 0.981433i \(0.438566\pi\)
\(212\) 30.8537i 0.145536i
\(213\) 100.305 + 72.4938i 0.470916 + 0.340346i
\(214\) 231.775 1.08306
\(215\) 86.0308i 0.400143i
\(216\) 3.85075 12.1608i 0.0178275 0.0562999i
\(217\) 99.9161 0.460443
\(218\) 546.666i 2.50764i
\(219\) −47.6665 + 65.9532i −0.217655 + 0.301156i
\(220\) −97.2980 −0.442264
\(221\) 1.04826i 0.00474325i
\(222\) −135.691 98.0683i −0.611221 0.441749i
\(223\) 277.936 1.24635 0.623174 0.782083i \(-0.285843\pi\)
0.623174 + 0.782083i \(0.285843\pi\)
\(224\) 120.757i 0.539095i
\(225\) 5.15489 + 15.5995i 0.0229106 + 0.0693310i
\(226\) 165.894 0.734043
\(227\) 249.477i 1.09902i 0.835488 + 0.549509i \(0.185185\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(228\) −142.227 + 196.791i −0.623802 + 0.863116i
\(229\) 112.418 0.490908 0.245454 0.969408i \(-0.421063\pi\)
0.245454 + 0.969408i \(0.421063\pi\)
\(230\) 70.9781i 0.308600i
\(231\) −29.0131 20.9687i −0.125598 0.0907738i
\(232\) 1.77066 0.00763217
\(233\) 209.239i 0.898022i 0.893526 + 0.449011i \(0.148224\pi\)
−0.893526 + 0.449011i \(0.851776\pi\)
\(234\) 2.54840 0.842127i 0.0108906 0.00359883i
\(235\) −335.831 −1.42907
\(236\) 46.9669i 0.199012i
\(237\) −20.1956 + 27.9434i −0.0852135 + 0.117905i
\(238\) −75.9383 −0.319068
\(239\) 447.303i 1.87156i 0.352583 + 0.935781i \(0.385304\pi\)
−0.352583 + 0.935781i \(0.614696\pi\)
\(240\) 192.820 + 139.357i 0.803416 + 0.580655i
\(241\) 92.7145 0.384708 0.192354 0.981326i \(-0.438388\pi\)
0.192354 + 0.981326i \(0.438388\pi\)
\(242\) 287.635i 1.18857i
\(243\) −3.03546 242.981i −0.0124916 0.999922i
\(244\) 197.871 0.810946
\(245\) 36.2553i 0.147981i
\(246\) 59.9000 82.8799i 0.243496 0.336910i
\(247\) −2.02783 −0.00820986
\(248\) 17.8416i 0.0719419i
\(249\) −87.7080 63.3894i −0.352241 0.254576i
\(250\) −342.982 −1.37193
\(251\) 335.906i 1.33827i 0.743141 + 0.669135i \(0.233335\pi\)
−0.743141 + 0.669135i \(0.766665\pi\)
\(252\) −31.1205 94.1752i −0.123494 0.373711i
\(253\) 21.6294 0.0854917
\(254\) 657.427i 2.58829i
\(255\) −91.4199 + 126.492i −0.358510 + 0.496048i
\(256\) 233.544 0.912282
\(257\) 493.068i 1.91855i 0.282470 + 0.959276i \(0.408846\pi\)
−0.282470 + 0.959276i \(0.591154\pi\)
\(258\) −115.407 83.4084i −0.447314 0.323288i
\(259\) −51.6711 −0.199502
\(260\) 2.25147i 0.00865951i
\(261\) 32.0278 10.5837i 0.122712 0.0405505i
\(262\) 38.9694 0.148738
\(263\) 172.635i 0.656407i −0.944607 0.328203i \(-0.893557\pi\)
0.944607 0.328203i \(-0.106443\pi\)
\(264\) 3.74430 5.18075i 0.0141829 0.0196241i
\(265\) 38.3646 0.144772
\(266\) 146.901i 0.552260i
\(267\) −276.851 200.089i −1.03690 0.749398i
\(268\) 167.296 0.624239
\(269\) 471.994i 1.75462i 0.479920 + 0.877312i \(0.340666\pi\)
−0.479920 + 0.877312i \(0.659334\pi\)
\(270\) −380.956 120.631i −1.41095 0.446781i
\(271\) 78.1542 0.288392 0.144196 0.989549i \(-0.453940\pi\)
0.144196 + 0.989549i \(0.453940\pi\)
\(272\) 153.793i 0.565417i
\(273\) 0.485216 0.671363i 0.00177735 0.00245921i
\(274\) 331.029 1.20813
\(275\) 8.23290i 0.0299378i
\(276\) 48.5712 + 35.1040i 0.175983 + 0.127188i
\(277\) 22.2952 0.0804879 0.0402440 0.999190i \(-0.487186\pi\)
0.0402440 + 0.999190i \(0.487186\pi\)
\(278\) 356.601i 1.28274i
\(279\) 106.643 + 322.719i 0.382235 + 1.15670i
\(280\) −6.47395 −0.0231213
\(281\) 445.483i 1.58535i 0.609646 + 0.792674i \(0.291311\pi\)
−0.609646 + 0.792674i \(0.708689\pi\)
\(282\) 325.594 450.504i 1.15459 1.59753i
\(283\) −341.664 −1.20729 −0.603647 0.797252i \(-0.706286\pi\)
−0.603647 + 0.797252i \(0.706286\pi\)
\(284\) 171.833i 0.605047i
\(285\) 244.697 + 176.850i 0.858585 + 0.620527i
\(286\) 1.34496 0.00470267
\(287\) 31.5607i 0.109967i
\(288\) −390.034 + 128.888i −1.35428 + 0.447527i
\(289\) 188.110 0.650899
\(290\) 55.4689i 0.191272i
\(291\) 91.1870 126.170i 0.313357 0.433573i
\(292\) −112.985 −0.386935
\(293\) 298.928i 1.02023i −0.860106 0.510116i \(-0.829603\pi\)
0.860106 0.510116i \(-0.170397\pi\)
\(294\) −48.6351 35.1502i −0.165426 0.119558i
\(295\) 58.4004 0.197967
\(296\) 9.22669i 0.0311712i
\(297\) 36.7603 116.090i 0.123772 0.390876i
\(298\) 603.029 2.02359
\(299\) 0.500504i 0.00167393i
\(300\) −13.3618 + 18.4879i −0.0445393 + 0.0616263i
\(301\) −43.9470 −0.146003
\(302\) 367.008i 1.21526i
\(303\) 186.771 + 134.985i 0.616405 + 0.445496i
\(304\) 297.510 0.978653
\(305\) 246.040i 0.806688i
\(306\) −81.0511 245.273i −0.264873 0.801545i
\(307\) −431.487 −1.40550 −0.702748 0.711439i \(-0.748044\pi\)
−0.702748 + 0.711439i \(0.748044\pi\)
\(308\) 49.7026i 0.161372i
\(309\) 137.373 190.075i 0.444573 0.615128i
\(310\) 558.917 1.80296
\(311\) 470.458i 1.51273i 0.654152 + 0.756363i \(0.273025\pi\)
−0.654152 + 0.756363i \(0.726975\pi\)
\(312\) 0.119882 + 0.0866429i 0.000384238 + 0.000277701i
\(313\) 512.346 1.63689 0.818444 0.574586i \(-0.194837\pi\)
0.818444 + 0.574586i \(0.194837\pi\)
\(314\) 416.695i 1.32706i
\(315\) −117.101 + 38.6964i −0.371749 + 0.122846i
\(316\) −47.8700 −0.151487
\(317\) 564.038i 1.77930i −0.456643 0.889650i \(-0.650948\pi\)
0.456643 0.889650i \(-0.349052\pi\)
\(318\) −37.1952 + 51.4647i −0.116966 + 0.161839i
\(319\) 16.9032 0.0529882
\(320\) 358.289i 1.11965i
\(321\) 197.218 + 142.536i 0.614385 + 0.444036i
\(322\) 36.2577 0.112601
\(323\) 195.170i 0.604243i
\(324\) 270.960 201.032i 0.836298 0.620469i
\(325\) −0.190509 −0.000586181
\(326\) 801.695i 2.45919i
\(327\) 336.185 465.158i 1.02809 1.42250i
\(328\) 5.63565 0.0171819
\(329\) 171.552i 0.521435i
\(330\) −162.295 117.296i −0.491804 0.355443i
\(331\) 406.464 1.22799 0.613994 0.789310i \(-0.289562\pi\)
0.613994 + 0.789310i \(0.289562\pi\)
\(332\) 150.253i 0.452570i
\(333\) −55.1501 166.892i −0.165616 0.501179i
\(334\) −423.821 −1.26892
\(335\) 208.022i 0.620961i
\(336\) −71.1876 + 98.4979i −0.211868 + 0.293149i
\(337\) 643.215 1.90865 0.954325 0.298771i \(-0.0965766\pi\)
0.954325 + 0.298771i \(0.0965766\pi\)
\(338\) 482.887i 1.42866i
\(339\) 141.159 + 102.020i 0.416398 + 0.300944i
\(340\) −216.695 −0.637337
\(341\) 170.321i 0.499474i
\(342\) −474.476 + 156.792i −1.38736 + 0.458456i
\(343\) −18.5203 −0.0539949
\(344\) 7.84743i 0.0228123i
\(345\) 43.6496 60.3952i 0.126521 0.175059i
\(346\) 321.480 0.929133
\(347\) 346.936i 0.999816i 0.866078 + 0.499908i \(0.166633\pi\)
−0.866078 + 0.499908i \(0.833367\pi\)
\(348\) 37.9581 + 27.4335i 0.109075 + 0.0788320i
\(349\) −87.8421 −0.251697 −0.125848 0.992049i \(-0.540165\pi\)
−0.125848 + 0.992049i \(0.540165\pi\)
\(350\) 13.8009i 0.0394312i
\(351\) 2.68632 + 0.850632i 0.00765333 + 0.00242345i
\(352\) −205.847 −0.584793
\(353\) 100.317i 0.284184i −0.989853 0.142092i \(-0.954617\pi\)
0.989853 0.142092i \(-0.0453829\pi\)
\(354\) −56.6202 + 78.3419i −0.159944 + 0.221305i
\(355\) 213.664 0.601871
\(356\) 474.276i 1.33224i
\(357\) −64.6158 46.6999i −0.180997 0.130812i
\(358\) 102.066 0.285101
\(359\) 236.827i 0.659684i 0.944036 + 0.329842i \(0.106995\pi\)
−0.944036 + 0.329842i \(0.893005\pi\)
\(360\) −6.90984 20.9102i −0.0191940 0.0580839i
\(361\) 16.5536 0.0458548
\(362\) 280.292i 0.774287i
\(363\) −176.888 + 244.748i −0.487294 + 0.674238i
\(364\) 1.15012 0.00315966
\(365\) 140.490i 0.384903i
\(366\) 330.053 + 238.540i 0.901785 + 0.651749i
\(367\) −449.428 −1.22460 −0.612299 0.790626i \(-0.709755\pi\)
−0.612299 + 0.790626i \(0.709755\pi\)
\(368\) 73.4306i 0.199540i
\(369\) 101.938 33.6856i 0.276254 0.0912889i
\(370\) −289.041 −0.781192
\(371\) 19.5978i 0.0528242i
\(372\) −276.426 + 382.474i −0.743081 + 1.02816i
\(373\) −32.5920 −0.0873781 −0.0436891 0.999045i \(-0.513911\pi\)
−0.0436891 + 0.999045i \(0.513911\pi\)
\(374\) 129.447i 0.346115i
\(375\) −291.843 210.925i −0.778249 0.562466i
\(376\) 30.6333 0.0814715
\(377\) 0.391140i 0.00103751i
\(378\) 61.6218 194.603i 0.163021 0.514824i
\(379\) −497.826 −1.31353 −0.656763 0.754097i \(-0.728075\pi\)
−0.656763 + 0.754097i \(0.728075\pi\)
\(380\) 419.192i 1.10314i
\(381\) 404.299 559.404i 1.06115 1.46825i
\(382\) 165.707 0.433787
\(383\) 565.733i 1.47711i −0.674194 0.738554i \(-0.735509\pi\)
0.674194 0.738554i \(-0.264491\pi\)
\(384\) −36.7275 26.5441i −0.0956444 0.0691253i
\(385\) −61.8021 −0.160525
\(386\) 567.256i 1.46958i
\(387\) −46.9059 141.944i −0.121204 0.366781i
\(388\) 216.143 0.557068
\(389\) 56.1192i 0.144265i −0.997395 0.0721327i \(-0.977019\pi\)
0.997395 0.0721327i \(-0.0229805\pi\)
\(390\) 2.71423 3.75551i 0.00695956 0.00962951i
\(391\) 48.1713 0.123200
\(392\) 3.30708i 0.00843643i
\(393\) 33.1591 + 23.9651i 0.0843742 + 0.0609800i
\(394\) 123.997 0.314714
\(395\) 59.5234i 0.150692i
\(396\) 160.534 53.0491i 0.405390 0.133962i
\(397\) −472.761 −1.19083 −0.595417 0.803417i \(-0.703013\pi\)
−0.595417 + 0.803417i \(0.703013\pi\)
\(398\) 737.433i 1.85285i
\(399\) −90.3402 + 124.998i −0.226416 + 0.313278i
\(400\) 27.9502 0.0698755
\(401\) 360.051i 0.897882i −0.893561 0.448941i \(-0.851801\pi\)
0.893561 0.448941i \(-0.148199\pi\)
\(402\) 279.054 + 201.681i 0.694164 + 0.501695i
\(403\) −3.94121 −0.00977969
\(404\) 319.958i 0.791976i
\(405\) −249.971 336.922i −0.617211 0.831907i
\(406\) 28.3351 0.0697910
\(407\) 88.0805i 0.216414i
\(408\) 8.33900 11.5382i 0.0204387 0.0282798i
\(409\) −117.315 −0.286834 −0.143417 0.989662i \(-0.545809\pi\)
−0.143417 + 0.989662i \(0.545809\pi\)
\(410\) 176.546i 0.430600i
\(411\) 281.672 + 203.574i 0.685334 + 0.495313i
\(412\) 325.618 0.790335
\(413\) 29.8326i 0.0722339i
\(414\) 38.6989 + 117.109i 0.0934755 + 0.282871i
\(415\) −186.830 −0.450194
\(416\) 4.76330i 0.0114502i
\(417\) −219.300 + 303.432i −0.525899 + 0.727654i
\(418\) −250.413 −0.599074
\(419\) 45.4820i 0.108549i 0.998526 + 0.0542745i \(0.0172846\pi\)
−0.998526 + 0.0542745i \(0.982715\pi\)
\(420\) −138.783 100.303i −0.330437 0.238817i
\(421\) 329.422 0.782476 0.391238 0.920290i \(-0.372047\pi\)
0.391238 + 0.920290i \(0.372047\pi\)
\(422\) 231.291i 0.548082i
\(423\) 554.095 183.102i 1.30992 0.432866i
\(424\) −3.49949 −0.00825351
\(425\) 18.3357i 0.0431428i
\(426\) −207.151 + 286.622i −0.486271 + 0.672823i
\(427\) 125.684 0.294342
\(428\) 337.855i 0.789381i
\(429\) 1.14443 + 0.827116i 0.00266767 + 0.00192801i
\(430\) −245.833 −0.571705
\(431\) 228.376i 0.529875i 0.964266 + 0.264938i \(0.0853514\pi\)
−0.964266 + 0.264938i \(0.914649\pi\)
\(432\) −394.119 124.799i −0.912312 0.288887i
\(433\) 376.144 0.868692 0.434346 0.900746i \(-0.356979\pi\)
0.434346 + 0.900746i \(0.356979\pi\)
\(434\) 285.511i 0.657859i
\(435\) 34.1119 47.1985i 0.0784181 0.108502i
\(436\) 796.865 1.82767
\(437\) 93.1865i 0.213242i
\(438\) −188.462 136.207i −0.430278 0.310976i
\(439\) −802.365 −1.82771 −0.913856 0.406039i \(-0.866910\pi\)
−0.913856 + 0.406039i \(0.866910\pi\)
\(440\) 11.0357i 0.0250812i
\(441\) −19.7672 59.8185i −0.0448236 0.135643i
\(442\) 2.99540 0.00677693
\(443\) 45.2110i 0.102057i −0.998697 0.0510283i \(-0.983750\pi\)
0.998697 0.0510283i \(-0.0162499\pi\)
\(444\) 142.952 197.794i 0.321965 0.445483i
\(445\) −589.732 −1.32524
\(446\) 794.202i 1.78072i
\(447\) 513.117 + 370.846i 1.14791 + 0.829634i
\(448\) −183.025 −0.408537
\(449\) 739.546i 1.64710i 0.567247 + 0.823548i \(0.308008\pi\)
−0.567247 + 0.823548i \(0.691992\pi\)
\(450\) −44.5756 + 14.7301i −0.0990568 + 0.0327336i
\(451\) 53.7994 0.119289
\(452\) 241.820i 0.535001i
\(453\) 225.700 312.287i 0.498234 0.689376i
\(454\) −712.882 −1.57022
\(455\) 1.43010i 0.00314307i
\(456\) −22.3204 16.1317i −0.0489482 0.0353764i
\(457\) 606.571 1.32729 0.663644 0.748049i \(-0.269009\pi\)
0.663644 + 0.748049i \(0.269009\pi\)
\(458\) 321.235i 0.701386i
\(459\) 81.8696 258.547i 0.178365 0.563283i
\(460\) 103.464 0.224921
\(461\) 46.1395i 0.100086i 0.998747 + 0.0500429i \(0.0159358\pi\)
−0.998747 + 0.0500429i \(0.984064\pi\)
\(462\) 59.9183 82.9052i 0.129693 0.179448i
\(463\) −424.488 −0.916821 −0.458410 0.888741i \(-0.651581\pi\)
−0.458410 + 0.888741i \(0.651581\pi\)
\(464\) 57.3855i 0.123676i
\(465\) 475.582 + 343.718i 1.02276 + 0.739179i
\(466\) −597.902 −1.28305
\(467\) 308.599i 0.660811i −0.943839 0.330405i \(-0.892815\pi\)
0.943839 0.330405i \(-0.107185\pi\)
\(468\) 1.22755 + 3.71476i 0.00262298 + 0.00793752i
\(469\) 106.264 0.226575
\(470\) 959.638i 2.04178i
\(471\) 256.256 354.566i 0.544068 0.752794i
\(472\) −5.32708 −0.0112862
\(473\) 74.9136i 0.158380i
\(474\) −79.8484 57.7090i −0.168456 0.121749i
\(475\) 35.4700 0.0746737
\(476\) 110.694i 0.232550i
\(477\) −63.2988 + 20.9173i −0.132702 + 0.0438517i
\(478\) −1278.17 −2.67400
\(479\) 472.310i 0.986033i 0.870020 + 0.493016i \(0.164106\pi\)
−0.870020 + 0.493016i \(0.835894\pi\)
\(480\) −415.413 + 574.782i −0.865445 + 1.19746i
\(481\) 2.03818 0.00423738
\(482\) 264.932i 0.549652i
\(483\) 30.8516 + 22.2975i 0.0638750 + 0.0461645i
\(484\) −419.280 −0.866282
\(485\) 268.760i 0.554144i
\(486\) 694.319 8.67383i 1.42864 0.0178474i
\(487\) −359.862 −0.738936 −0.369468 0.929243i \(-0.620460\pi\)
−0.369468 + 0.929243i \(0.620460\pi\)
\(488\) 22.4429i 0.0459895i
\(489\) 493.021 682.162i 1.00822 1.39501i
\(490\) −103.600 −0.211428
\(491\) 67.9890i 0.138471i −0.997600 0.0692353i \(-0.977944\pi\)
0.997600 0.0692353i \(-0.0220559\pi\)
\(492\) 120.813 + 87.3151i 0.245554 + 0.177470i
\(493\) 37.6456 0.0763602
\(494\) 5.79455i 0.0117299i
\(495\) −65.9632 199.614i −0.133259 0.403262i
\(496\) 578.229 1.16578
\(497\) 109.146i 0.219609i
\(498\) 181.136 250.626i 0.363726 0.503265i
\(499\) −73.0292 −0.146351 −0.0731755 0.997319i \(-0.523313\pi\)
−0.0731755 + 0.997319i \(0.523313\pi\)
\(500\) 499.959i 0.999918i
\(501\) −360.629 260.638i −0.719818 0.520236i
\(502\) −959.852 −1.91206
\(503\) 922.602i 1.83420i −0.398658 0.917100i \(-0.630524\pi\)
0.398658 0.917100i \(-0.369476\pi\)
\(504\) 10.6815 3.52975i 0.0211935 0.00700346i
\(505\) 397.848 0.787818
\(506\) 61.8061i 0.122147i
\(507\) 296.962 410.888i 0.585724 0.810431i
\(508\) 958.319 1.88645
\(509\) 339.384i 0.666765i 0.942792 + 0.333383i \(0.108190\pi\)
−0.942792 + 0.333383i \(0.891810\pi\)
\(510\) −361.452 261.233i −0.708729 0.512221i
\(511\) −71.7662 −0.140443
\(512\) 727.774i 1.42143i
\(513\) −500.154 158.375i −0.974959 0.308724i
\(514\) −1408.94 −2.74114
\(515\) 404.886i 0.786186i
\(516\) 121.583 168.227i 0.235626 0.326021i
\(517\) 292.434 0.565636
\(518\) 147.651i 0.285040i
\(519\) 273.547 + 197.701i 0.527066 + 0.380927i
\(520\) 0.255366 0.000491089
\(521\) 212.314i 0.407513i 0.979022 + 0.203756i \(0.0653151\pi\)
−0.979022 + 0.203756i \(0.934685\pi\)
\(522\) 30.2429 + 91.5196i 0.0579366 + 0.175325i
\(523\) −79.4284 −0.151871 −0.0759354 0.997113i \(-0.524194\pi\)
−0.0759354 + 0.997113i \(0.524194\pi\)
\(524\) 56.8050i 0.108407i
\(525\) −8.48719 + 11.7432i −0.0161661 + 0.0223680i
\(526\) 493.305 0.937843
\(527\) 379.325i 0.719782i
\(528\) −167.903 121.349i −0.317998 0.229828i
\(529\) −23.0000 −0.0434783
\(530\) 109.627i 0.206844i
\(531\) −96.3562 + 31.8412i −0.181462 + 0.0599646i
\(532\) −214.135 −0.402510
\(533\) 1.24492i 0.00233568i
\(534\) 571.756 791.104i 1.07070 1.48147i
\(535\) 420.101 0.785236
\(536\) 18.9750i 0.0354012i
\(537\) 86.8480 + 62.7678i 0.161728 + 0.116886i
\(538\) −1348.73 −2.50692
\(539\) 31.5703i 0.0585720i
\(540\) 175.842 555.313i 0.325633 1.02836i
\(541\) −388.731 −0.718541 −0.359271 0.933233i \(-0.616975\pi\)
−0.359271 + 0.933233i \(0.616975\pi\)
\(542\) 223.326i 0.412040i
\(543\) −172.372 + 238.500i −0.317443 + 0.439227i
\(544\) −458.447 −0.842733
\(545\) 990.852i 1.81808i
\(546\) 1.91842 + 1.38651i 0.00351360 + 0.00253939i
\(547\) 615.373 1.12500 0.562498 0.826798i \(-0.309840\pi\)
0.562498 + 0.826798i \(0.309840\pi\)
\(548\) 482.535i 0.880538i
\(549\) 134.146 + 405.947i 0.244347 + 0.739430i
\(550\) −23.5255 −0.0427737
\(551\) 72.8247i 0.132168i
\(552\) −3.98156 + 5.50904i −0.00721297 + 0.00998015i
\(553\) −30.4063 −0.0549842
\(554\) 63.7085i 0.114997i
\(555\) −245.945 177.752i −0.443144 0.320274i
\(556\) −519.811 −0.934913
\(557\) 922.995i 1.65708i 0.559929 + 0.828541i \(0.310829\pi\)
−0.559929 + 0.828541i \(0.689171\pi\)
\(558\) −922.171 + 304.734i −1.65264 + 0.546118i
\(559\) 1.73350 0.00310107
\(560\) 209.815i 0.374669i
\(561\) 79.6064 110.146i 0.141901 0.196340i
\(562\) −1272.97 −2.26507
\(563\) 720.353i 1.27949i −0.768587 0.639745i \(-0.779040\pi\)
0.768587 0.639745i \(-0.220960\pi\)
\(564\) 656.692 + 474.612i 1.16435 + 0.841511i
\(565\) 300.688 0.532192
\(566\) 976.306i 1.72492i
\(567\) 172.110 127.692i 0.303544 0.225207i
\(568\) −19.4897 −0.0343128
\(569\) 766.567i 1.34722i 0.739088 + 0.673609i \(0.235257\pi\)
−0.739088 + 0.673609i \(0.764743\pi\)
\(570\) −505.350 + 699.222i −0.886579 + 1.22670i
\(571\) −442.635 −0.775193 −0.387597 0.921829i \(-0.626695\pi\)
−0.387597 + 0.921829i \(0.626695\pi\)
\(572\) 1.96053i 0.00342750i
\(573\) 141.000 + 101.905i 0.246073 + 0.177845i
\(574\) 90.1847 0.157116
\(575\) 8.75460i 0.0152254i
\(576\) −195.348 591.151i −0.339145 1.02630i
\(577\) −935.321 −1.62101 −0.810503 0.585734i \(-0.800806\pi\)
−0.810503 + 0.585734i \(0.800806\pi\)
\(578\) 537.524i 0.929973i
\(579\) −348.847 + 482.678i −0.602499 + 0.833641i
\(580\) 80.8561 0.139407
\(581\) 95.4384i 0.164266i
\(582\) 360.531 + 260.567i 0.619469 + 0.447710i
\(583\) −33.4070 −0.0573020
\(584\) 12.8150i 0.0219435i
\(585\) 4.61907 1.52639i 0.00789585 0.00260921i
\(586\) 854.188 1.45766
\(587\) 576.488i 0.982092i 0.871134 + 0.491046i \(0.163385\pi\)
−0.871134 + 0.491046i \(0.836615\pi\)
\(588\) 51.2378 70.8946i 0.0871391 0.120569i
\(589\) 733.797 1.24584
\(590\) 166.879i 0.282846i
\(591\) 105.509 + 76.2549i 0.178526 + 0.129027i
\(592\) −299.028 −0.505115
\(593\) 635.853i 1.07226i 0.844134 + 0.536132i \(0.180115\pi\)
−0.844134 + 0.536132i \(0.819885\pi\)
\(594\) 331.728 + 105.043i 0.558464 + 0.176840i
\(595\) −137.641 −0.231329
\(596\) 879.025i 1.47487i
\(597\) 453.501 627.481i 0.759633 1.05106i
\(598\) −1.43019 −0.00239162
\(599\) 90.4343i 0.150976i −0.997147 0.0754878i \(-0.975949\pi\)
0.997147 0.0754878i \(-0.0240514\pi\)
\(600\) −2.09693 1.51552i −0.00349489 0.00252587i
\(601\) 435.626 0.724835 0.362418 0.932016i \(-0.381951\pi\)
0.362418 + 0.932016i \(0.381951\pi\)
\(602\) 125.579i 0.208603i
\(603\) 113.418 + 343.221i 0.188090 + 0.569189i
\(604\) 534.981 0.885731
\(605\) 521.349i 0.861734i
\(606\) −385.721 + 533.698i −0.636503 + 0.880690i
\(607\) −172.419 −0.284052 −0.142026 0.989863i \(-0.545362\pi\)
−0.142026 + 0.989863i \(0.545362\pi\)
\(608\) 886.857i 1.45865i
\(609\) 24.1103 + 17.4253i 0.0395901 + 0.0286130i
\(610\) 703.060 1.15256
\(611\) 6.76690i 0.0110751i
\(612\) 357.530 118.147i 0.584199 0.193050i
\(613\) 213.715 0.348638 0.174319 0.984689i \(-0.444228\pi\)
0.174319 + 0.984689i \(0.444228\pi\)
\(614\) 1232.98i 2.00810i
\(615\) 108.571 150.223i 0.176538 0.244265i
\(616\) 5.63737 0.00915158
\(617\) 942.326i 1.52727i 0.645648 + 0.763635i \(0.276587\pi\)
−0.645648 + 0.763635i \(0.723413\pi\)
\(618\) 543.139 + 392.544i 0.878866 + 0.635185i
\(619\) −845.871 −1.36651 −0.683256 0.730179i \(-0.739437\pi\)
−0.683256 + 0.730179i \(0.739437\pi\)
\(620\) 814.723i 1.31407i
\(621\) −39.0897 + 123.446i −0.0629463 + 0.198786i
\(622\) −1344.33 −2.16131
\(623\) 301.252i 0.483551i
\(624\) 2.80801 3.88527i 0.00450002 0.00622640i
\(625\) −667.304 −1.06769
\(626\) 1464.03i 2.33871i
\(627\) −213.076 153.997i −0.339835 0.245609i
\(628\) 607.410 0.967213
\(629\) 196.166i 0.311870i
\(630\) −110.575 334.616i −0.175516 0.531137i
\(631\) 12.9692 0.0205534 0.0102767 0.999947i \(-0.496729\pi\)
0.0102767 + 0.999947i \(0.496729\pi\)
\(632\) 5.42951i 0.00859100i
\(633\) −142.237 + 196.805i −0.224704 + 0.310908i
\(634\) 1611.74 2.54218
\(635\) 1191.61i 1.87655i
\(636\) −75.0192 54.2188i −0.117955 0.0852497i
\(637\) 0.730536 0.00114684
\(638\) 48.3011i 0.0757070i
\(639\) −352.530 + 116.495i −0.551690 + 0.182308i
\(640\) −78.2347 −0.122242
\(641\) 906.275i 1.41385i −0.707291 0.706923i \(-0.750083\pi\)
0.707291 0.706923i \(-0.249917\pi\)
\(642\) −407.296 + 563.550i −0.634417 + 0.877804i
\(643\) 528.879 0.822519 0.411259 0.911518i \(-0.365089\pi\)
0.411259 + 0.911518i \(0.365089\pi\)
\(644\) 52.8522i 0.0820686i
\(645\) −209.179 151.181i −0.324309 0.234389i
\(646\) −557.700 −0.863313
\(647\) 835.562i 1.29144i 0.763574 + 0.645720i \(0.223443\pi\)
−0.763574 + 0.645720i \(0.776557\pi\)
\(648\) 22.8014 + 30.7329i 0.0351874 + 0.0474273i
\(649\) −50.8537 −0.0783571
\(650\) 0.544380i 0.000837508i
\(651\) −175.581 + 242.941i −0.269710 + 0.373181i
\(652\) 1168.62 1.79236
\(653\) 331.155i 0.507128i 0.967319 + 0.253564i \(0.0816029\pi\)
−0.967319 + 0.253564i \(0.918397\pi\)
\(654\) 1329.19 + 960.649i 2.03240 + 1.46888i
\(655\) 70.6335 0.107837
\(656\) 182.646i 0.278424i
\(657\) −76.5982 231.797i −0.116588 0.352812i
\(658\) 490.211 0.745001
\(659\) 795.950i 1.20782i 0.797054 + 0.603908i \(0.206390\pi\)
−0.797054 + 0.603908i \(0.793610\pi\)
\(660\) 170.981 236.575i 0.259061 0.358447i
\(661\) 507.374 0.767586 0.383793 0.923419i \(-0.374618\pi\)
0.383793 + 0.923419i \(0.374618\pi\)
\(662\) 1161.47i 1.75449i
\(663\) 2.54878 + 1.84209i 0.00384432 + 0.00277841i
\(664\) 17.0420 0.0256657
\(665\) 266.264i 0.400396i
\(666\) 476.896 157.592i 0.716060 0.236624i
\(667\) −17.9743 −0.0269480
\(668\) 617.796i 0.924844i
\(669\) −488.412 + 675.786i −0.730064 + 1.01014i
\(670\) 594.424 0.887200
\(671\) 214.246i 0.319293i
\(672\) −293.615 212.205i −0.436927 0.315781i
\(673\) −127.283 −0.189127 −0.0945637 0.995519i \(-0.530146\pi\)
−0.0945637 + 0.995519i \(0.530146\pi\)
\(674\) 1837.99i 2.72699i
\(675\) −46.9879 14.8789i −0.0696118 0.0220428i
\(676\) 703.896 1.04127
\(677\) 1040.30i 1.53664i −0.640067 0.768319i \(-0.721093\pi\)
0.640067 0.768319i \(-0.278907\pi\)
\(678\) −291.523 + 403.362i −0.429975 + 0.594929i
\(679\) 137.290 0.202195
\(680\) 24.5779i 0.0361440i
\(681\) −606.591 438.403i −0.890735 0.643763i
\(682\) −486.692 −0.713625
\(683\) 7.64329i 0.0111908i −0.999984 0.00559538i \(-0.998219\pi\)
0.999984 0.00559538i \(-0.00178107\pi\)
\(684\) −228.553 691.635i −0.334141 1.01116i
\(685\) 600.002 0.875915
\(686\) 52.9217i 0.0771454i
\(687\) −197.551 + 273.338i −0.287555 + 0.397873i
\(688\) −254.327 −0.369662
\(689\) 0.773038i 0.00112197i
\(690\) 172.580 + 124.729i 0.250115 + 0.180767i
\(691\) −1020.22 −1.47644 −0.738220 0.674560i \(-0.764333\pi\)
−0.738220 + 0.674560i \(0.764333\pi\)
\(692\) 468.616i 0.677190i
\(693\) 101.969 33.6959i 0.147141 0.0486232i
\(694\) −991.372 −1.42849
\(695\) 646.353i 0.930004i
\(696\) −3.11156 + 4.30528i −0.00447064 + 0.00618575i
\(697\) 119.818 0.171905
\(698\) 251.009i 0.359612i
\(699\) −508.754 367.693i −0.727832 0.526028i
\(700\) −20.1174 −0.0287391
\(701\) 315.718i 0.450382i −0.974315 0.225191i \(-0.927699\pi\)
0.974315 0.225191i \(-0.0723007\pi\)
\(702\) −2.43068 + 7.67617i −0.00346251 + 0.0109347i
\(703\) −379.479 −0.539800
\(704\) 311.990i 0.443168i
\(705\) 590.151 816.555i 0.837093 1.15823i
\(706\) 286.656 0.406029
\(707\) 203.232i 0.287457i
\(708\) −114.198 82.5343i −0.161296 0.116574i
\(709\) 241.328 0.340379 0.170189 0.985411i \(-0.445562\pi\)
0.170189 + 0.985411i \(0.445562\pi\)
\(710\) 610.546i 0.859924i
\(711\) −32.4535 98.2091i −0.0456449 0.138128i
\(712\) 53.7933 0.0755524
\(713\) 181.113i 0.254016i
\(714\) 133.445 184.640i 0.186898 0.258599i
\(715\) 2.43780 0.00340951
\(716\) 148.780i 0.207793i
\(717\) −1087.59 786.040i −1.51687 1.09629i
\(718\) −676.733 −0.942525
\(719\) 224.025i 0.311579i −0.987790 0.155790i \(-0.950208\pi\)
0.987790 0.155790i \(-0.0497922\pi\)
\(720\) −677.679 + 223.941i −0.941221 + 0.311029i
\(721\) 206.827 0.286862
\(722\) 47.3019i 0.0655151i
\(723\) −162.926 + 225.431i −0.225347 + 0.311799i
\(724\) −408.576 −0.564332
\(725\) 6.84166i 0.00943677i
\(726\) −699.370 505.457i −0.963319 0.696222i
\(727\) −70.1113 −0.0964393 −0.0482196 0.998837i \(-0.515355\pi\)
−0.0482196 + 0.998837i \(0.515355\pi\)
\(728\) 0.130449i 0.000179188i
\(729\) 596.130 + 419.607i 0.817737 + 0.575592i
\(730\) −401.450 −0.549931
\(731\) 166.842i 0.228238i
\(732\) −347.716 + 481.113i −0.475021 + 0.657258i
\(733\) 547.069 0.746343 0.373171 0.927762i \(-0.378270\pi\)
0.373171 + 0.927762i \(0.378270\pi\)
\(734\) 1284.24i 1.74965i
\(735\) −88.1529 63.7110i −0.119936 0.0866816i
\(736\) 218.891 0.297406
\(737\) 181.141i 0.245781i
\(738\) 96.2568 + 291.287i 0.130429 + 0.394698i
\(739\) 545.722 0.738459 0.369230 0.929338i \(-0.379622\pi\)
0.369230 + 0.929338i \(0.379622\pi\)
\(740\) 421.330i 0.569365i
\(741\) 3.56349 4.93058i 0.00480902 0.00665395i
\(742\) −56.0007 −0.0754726
\(743\) 509.832i 0.686181i 0.939302 + 0.343090i \(0.111474\pi\)
−0.939302 + 0.343090i \(0.888526\pi\)
\(744\) −43.3809 31.3528i −0.0583077 0.0421408i
\(745\) 1093.01 1.46713
\(746\) 93.1319i 0.124842i
\(747\) 308.256 101.864i 0.412659 0.136364i
\(748\) 188.693 0.252263
\(749\) 214.600i 0.286515i
\(750\) 602.718 833.944i 0.803624 1.11193i
\(751\) 577.684 0.769220 0.384610 0.923079i \(-0.374336\pi\)
0.384610 + 0.923079i \(0.374336\pi\)
\(752\) 992.795i 1.32021i
\(753\) −816.737 590.282i −1.08464 0.783908i
\(754\) −1.11769 −0.00148234
\(755\) 665.216i 0.881081i
\(756\) 283.670 + 89.8249i 0.375225 + 0.118816i
\(757\) −723.297 −0.955478 −0.477739 0.878502i \(-0.658544\pi\)
−0.477739 + 0.878502i \(0.658544\pi\)
\(758\) 1422.54i 1.87670i
\(759\) −38.0091 + 52.5908i −0.0500778 + 0.0692896i
\(760\) −47.5455 −0.0625599
\(761\) 973.741i 1.27955i −0.768560 0.639777i \(-0.779027\pi\)
0.768560 0.639777i \(-0.220973\pi\)
\(762\) 1598.50 + 1155.29i 2.09777 + 1.51612i
\(763\) 506.156 0.663376
\(764\) 241.548i 0.316162i
\(765\) −146.908 444.566i −0.192037 0.581132i
\(766\) 1616.58 2.11042
\(767\) 1.17675i 0.00153423i
\(768\) −410.404 + 567.851i −0.534380 + 0.739389i
\(769\) 494.571 0.643135 0.321568 0.946887i \(-0.395790\pi\)
0.321568 + 0.946887i \(0.395790\pi\)
\(770\) 176.600i 0.229350i
\(771\) −1198.87 866.462i −1.55495 1.12382i
\(772\) −826.879 −1.07109
\(773\) 328.066i 0.424407i −0.977226 0.212203i \(-0.931936\pi\)
0.977226 0.212203i \(-0.0680639\pi\)
\(774\) 405.607 134.034i 0.524039 0.173170i
\(775\) 68.9380 0.0889523
\(776\) 24.5153i 0.0315919i
\(777\) 90.8010 125.636i 0.116861 0.161693i
\(778\) 160.361 0.206119
\(779\) 231.786i 0.297542i
\(780\) 5.47434 + 3.95648i 0.00701838 + 0.00507241i
\(781\) −186.054 −0.238225
\(782\) 137.650i 0.176023i
\(783\) −30.5483 + 96.4725i −0.0390145 + 0.123209i
\(784\) −107.179 −0.136708
\(785\) 755.276i 0.962134i
\(786\) −68.4805 + 94.7522i −0.0871253 + 0.120550i
\(787\) 686.300 0.872046 0.436023 0.899936i \(-0.356387\pi\)
0.436023 + 0.899936i \(0.356387\pi\)
\(788\) 180.749i 0.229376i
\(789\) 419.753 + 303.369i 0.532006 + 0.384498i
\(790\) −170.088 −0.215302
\(791\) 153.600i 0.194185i
\(792\) 6.01693 + 18.2081i 0.00759714 + 0.0229901i
\(793\) −4.95764 −0.00625175
\(794\) 1350.92i 1.70141i
\(795\) −67.4176 + 93.2816i −0.0848021 + 0.117335i
\(796\) 1074.94 1.35043
\(797\) 425.036i 0.533295i −0.963794 0.266648i \(-0.914084\pi\)
0.963794 0.266648i \(-0.0859160\pi\)
\(798\) −357.183 258.147i −0.447597 0.323493i
\(799\) 651.286 0.815126
\(800\) 83.3175i 0.104147i
\(801\) 973.014 321.535i 1.21475 0.401417i
\(802\) 1028.85 1.28285
\(803\) 122.335i 0.152348i
\(804\) −293.987 + 406.772i −0.365656 + 0.505935i
\(805\) 65.7183 0.0816377
\(806\) 11.2620i 0.0139727i
\(807\) −1147.63 829.429i −1.42209 1.02779i
\(808\) −36.2903 −0.0449137
\(809\) 1081.40i 1.33672i −0.743839 0.668358i \(-0.766997\pi\)
0.743839 0.668358i \(-0.233003\pi\)
\(810\) 962.757 714.292i 1.18859 0.881842i
\(811\) 791.945 0.976504 0.488252 0.872703i \(-0.337635\pi\)
0.488252 + 0.872703i \(0.337635\pi\)
\(812\) 41.3036i 0.0508665i
\(813\) −137.339 + 190.028i −0.168929 + 0.233737i
\(814\) 251.690 0.309202
\(815\) 1453.10i 1.78295i
\(816\) −373.941 270.259i −0.458261 0.331200i
\(817\) −322.752 −0.395046
\(818\) 335.228i 0.409814i
\(819\) 0.779722 + 2.35955i 0.000952041 + 0.00288102i
\(820\) 257.348 0.313839
\(821\) 444.407i 0.541300i −0.962678 0.270650i \(-0.912761\pi\)
0.962678 0.270650i \(-0.0872386\pi\)
\(822\) −581.713 + 804.880i −0.707680 + 0.979173i
\(823\) 1496.62 1.81849 0.909245 0.416261i \(-0.136660\pi\)
0.909245 + 0.416261i \(0.136660\pi\)
\(824\) 36.9322i 0.0448207i
\(825\) −20.0179 14.4676i −0.0242641 0.0175364i
\(826\) −85.2468 −0.103204
\(827\) 656.566i 0.793913i 0.917837 + 0.396956i \(0.129934\pi\)
−0.917837 + 0.396956i \(0.870066\pi\)
\(828\) −170.707 + 56.4107i −0.206168 + 0.0681288i
\(829\) −1170.40 −1.41183 −0.705913 0.708298i \(-0.749463\pi\)
−0.705913 + 0.708298i \(0.749463\pi\)
\(830\) 533.869i 0.643216i
\(831\) −39.1790 + 54.2095i −0.0471468 + 0.0652341i
\(832\) 7.21944 0.00867722
\(833\) 70.3109i 0.0844069i
\(834\) −867.058 626.651i −1.03964 0.751380i
\(835\) −768.191 −0.919989
\(836\) 365.023i 0.436630i
\(837\) −972.078 307.812i −1.16138 0.367756i
\(838\) −129.965 −0.155090
\(839\) 488.998i 0.582834i 0.956596 + 0.291417i \(0.0941267\pi\)
−0.956596 + 0.291417i \(0.905873\pi\)
\(840\) 11.3766 15.7411i 0.0135436 0.0187394i
\(841\) 826.953 0.983297
\(842\) 941.326i 1.11796i
\(843\) −1083.17 782.840i −1.28490 0.928636i
\(844\) −337.148 −0.399465
\(845\) 875.250i 1.03580i
\(846\) 523.216 + 1583.33i 0.618459 + 1.87155i
\(847\) −266.320 −0.314427
\(848\) 113.415i 0.133744i
\(849\) 600.402 830.739i 0.707187 0.978491i
\(850\) −52.3943 −0.0616403
\(851\) 93.6619i 0.110061i
\(852\) −417.804 301.961i −0.490381 0.354414i
\(853\) −404.319 −0.473997 −0.236998 0.971510i \(-0.576164\pi\)
−0.236998 + 0.971510i \(0.576164\pi\)
\(854\) 359.143i 0.420542i
\(855\) −860.004 + 284.191i −1.00585 + 0.332387i
\(856\) −38.3202 −0.0447666
\(857\) 458.894i 0.535466i 0.963493 + 0.267733i \(0.0862744\pi\)
−0.963493 + 0.267733i \(0.913726\pi\)
\(858\) −2.36349 + 3.27021i −0.00275465 + 0.00381144i
\(859\) −231.190 −0.269139 −0.134569 0.990904i \(-0.542965\pi\)
−0.134569 + 0.990904i \(0.542965\pi\)
\(860\) 358.347i 0.416682i
\(861\) 76.7381 + 55.4611i 0.0891267 + 0.0644148i
\(862\) −652.586 −0.757061
\(863\) 100.008i 0.115884i −0.998320 0.0579418i \(-0.981546\pi\)
0.998320 0.0579418i \(-0.0184538\pi\)
\(864\) 372.017 1174.84i 0.430575 1.35977i
\(865\) 582.694 0.673635
\(866\) 1074.83i 1.24115i
\(867\) −330.563 + 457.379i −0.381272 + 0.527542i
\(868\) −416.184 −0.479475
\(869\) 51.8316i 0.0596451i
\(870\) 134.870 + 97.4748i 0.155023 + 0.112040i
\(871\) −4.19159 −0.00481239
\(872\) 90.3820i 0.103649i
\(873\) 146.534 + 443.433i 0.167851 + 0.507942i
\(874\) 266.281 0.304669
\(875\) 317.566i 0.362932i
\(876\) 198.547 274.717i 0.226652 0.313604i
\(877\) 839.337 0.957055 0.478527 0.878073i \(-0.341171\pi\)
0.478527 + 0.878073i \(0.341171\pi\)
\(878\) 2292.76i 2.61135i
\(879\) 726.828 + 525.302i 0.826880 + 0.597613i
\(880\) −357.657 −0.406429
\(881\) 5.71965i 0.00649222i −0.999995 0.00324611i \(-0.998967\pi\)
0.999995 0.00324611i \(-0.00103327\pi\)
\(882\) 170.932 56.4849i 0.193800 0.0640418i
\(883\) −393.472 −0.445609 −0.222804 0.974863i \(-0.571521\pi\)
−0.222804 + 0.974863i \(0.571521\pi\)
\(884\) 4.36634i 0.00493930i
\(885\) −102.626 + 141.998i −0.115962 + 0.160449i
\(886\) 129.191 0.145813
\(887\) 689.862i 0.777748i −0.921291 0.388874i \(-0.872864\pi\)
0.921291 0.388874i \(-0.127136\pi\)
\(888\) 22.4342 + 16.2139i 0.0252638 + 0.0182589i
\(889\) 608.708 0.684711
\(890\) 1685.16i 1.89344i
\(891\) 217.669 + 293.384i 0.244297 + 0.329275i
\(892\) −1157.69 −1.29786
\(893\) 1259.90i 1.41086i
\(894\) −1059.69 + 1466.23i −1.18534 + 1.64008i
\(895\) 184.998 0.206702
\(896\) 39.9645i 0.0446033i
\(897\) −1.21695 0.879528i −0.00135669 0.000980522i
\(898\) −2113.26 −2.35329
\(899\) 141.539i 0.157440i
\(900\) −21.4718 64.9770i −0.0238576 0.0721967i
\(901\) −74.4016 −0.0825767
\(902\) 153.732i 0.170435i
\(903\) 77.2275 106.855i 0.0855232 0.118333i
\(904\) −27.4277 −0.0303404
\(905\) 508.039i 0.561369i
\(906\) 892.362 + 644.939i 0.984947 + 0.711853i
\(907\) 450.916 0.497151 0.248576 0.968613i \(-0.420038\pi\)
0.248576 + 0.968613i \(0.420038\pi\)
\(908\) 1039.15i 1.14444i
\(909\) −656.419 + 216.916i −0.722133 + 0.238631i
\(910\) 4.08651 0.00449067
\(911\) 1411.17i 1.54904i 0.632551 + 0.774518i \(0.282008\pi\)
−0.632551 + 0.774518i \(0.717992\pi\)
\(912\) −522.811 + 723.382i −0.573258 + 0.793182i
\(913\) 162.688 0.178190
\(914\) 1733.28i 1.89637i
\(915\) 598.233 + 432.362i 0.653807 + 0.472527i
\(916\) −468.258 −0.511199
\(917\) 36.0816i 0.0393475i
\(918\) 738.798 + 233.943i 0.804791 + 0.254840i
\(919\) 290.846 0.316481 0.158240 0.987401i \(-0.449418\pi\)
0.158240 + 0.987401i \(0.449418\pi\)
\(920\) 11.7350i 0.0127555i
\(921\) 758.246 1049.14i 0.823286 1.13913i
\(922\) −131.844 −0.142998
\(923\) 4.30528i 0.00466444i
\(924\) 120.849 + 87.3418i 0.130789 + 0.0945257i
\(925\) −35.6510 −0.0385416
\(926\) 1212.98i 1.30991i
\(927\) 220.753 + 668.031i 0.238137 + 0.720637i
\(928\) 171.062 0.184334
\(929\) 539.564i 0.580801i 0.956905 + 0.290400i \(0.0937885\pi\)
−0.956905 + 0.290400i \(0.906211\pi\)
\(930\) −982.177 + 1358.98i −1.05610 + 1.46127i
\(931\) −136.015 −0.146096
\(932\) 871.551i 0.935141i
\(933\) −1143.89 826.729i −1.22604 0.886097i
\(934\) 881.822 0.944135
\(935\) 234.628i 0.250939i
\(936\) −0.421335 + 0.139232i −0.000450145 + 0.000148752i
\(937\) 401.836 0.428853 0.214427 0.976740i \(-0.431212\pi\)
0.214427 + 0.976740i \(0.431212\pi\)
\(938\) 303.649i 0.323720i
\(939\) −900.339 + 1245.74i −0.958827 + 1.32667i
\(940\) 1398.85 1.48813
\(941\) 339.213i 0.360482i −0.983622 0.180241i \(-0.942312\pi\)
0.983622 0.180241i \(-0.0576877\pi\)
\(942\) 1013.17 + 732.253i 1.07556 + 0.777339i
\(943\) −57.2086 −0.0606665
\(944\) 172.645i 0.182887i
\(945\) 111.692 352.726i 0.118192 0.373255i
\(946\) 214.066 0.226286
\(947\) 889.175i 0.938938i 0.882949 + 0.469469i \(0.155555\pi\)
−0.882949 + 0.469469i \(0.844445\pi\)
\(948\) 84.1214 116.394i 0.0887356 0.122778i
\(949\) 2.83083 0.00298296
\(950\) 101.356i 0.106690i
\(951\) 1371.43 + 991.177i 1.44209 + 1.04225i
\(952\) 12.5551 0.0131881
\(953\) 1175.59i 1.23357i −0.787133 0.616783i \(-0.788435\pi\)
0.787133 0.616783i \(-0.211565\pi\)
\(954\) −59.7712 180.876i −0.0626532 0.189598i
\(955\) 300.349 0.314502
\(956\) 1863.17i 1.94892i
\(957\) −29.7038 + 41.0994i −0.0310385 + 0.0429460i
\(958\) −1349.63 −1.40880
\(959\) 306.498i 0.319602i
\(960\) −871.163 629.617i −0.907461 0.655851i
\(961\) 465.177 0.484055
\(962\) 5.82411i 0.00605416i
\(963\) −693.136 + 229.049i −0.719767 + 0.237849i
\(964\) −386.187 −0.400609
\(965\) 1028.17i 1.06546i
\(966\) −63.7151 + 88.1587i −0.0659577 + 0.0912616i
\(967\) −595.677 −0.616005 −0.308003 0.951386i \(-0.599661\pi\)
−0.308003 + 0.951386i \(0.599661\pi\)
\(968\) 47.5556i 0.0491277i
\(969\) −474.547 342.970i −0.489729 0.353943i
\(970\) 767.982 0.791734
\(971\) 825.001i 0.849640i 0.905278 + 0.424820i \(0.139663\pi\)
−0.905278 + 0.424820i \(0.860337\pi\)
\(972\) 12.6437 + 1012.10i 0.0130079 + 1.04125i
\(973\) −330.176 −0.339338
\(974\) 1028.31i 1.05576i
\(975\) 0.334779 0.463213i 0.000343363 0.000475090i
\(976\) 727.352 0.745238
\(977\) 565.759i 0.579078i −0.957166 0.289539i \(-0.906498\pi\)
0.957166 0.289539i \(-0.0935019\pi\)
\(978\) 1949.28 + 1408.81i 1.99313 + 1.44050i
\(979\) 513.525 0.524541
\(980\) 151.015i 0.154097i
\(981\) 540.235 + 1634.83i 0.550698 + 1.66649i
\(982\) 194.279 0.197840
\(983\) 1149.18i 1.16905i 0.811375 + 0.584526i \(0.198719\pi\)
−0.811375 + 0.584526i \(0.801281\pi\)
\(984\) −9.90345 + 13.7028i −0.0100645 + 0.0139256i
\(985\) 224.749 0.228172
\(986\) 107.572i 0.109100i
\(987\) 417.120 + 301.466i 0.422614 + 0.305437i
\(988\) 8.44661 0.00854920
\(989\) 79.6607i 0.0805467i
\(990\) 570.399 188.490i 0.576161 0.190394i
\(991\) 672.510 0.678618 0.339309 0.940675i \(-0.389807\pi\)
0.339309 + 0.940675i \(0.389807\pi\)
\(992\) 1723.66i 1.73756i
\(993\) −714.274 + 988.297i −0.719309 + 0.995264i
\(994\) −311.885 −0.313767
\(995\) 1336.62i 1.34334i
\(996\) 365.333 + 264.038i 0.366800 + 0.265098i
\(997\) −751.741 −0.754003 −0.377001 0.926213i \(-0.623045\pi\)
−0.377001 + 0.926213i \(0.623045\pi\)
\(998\) 208.681i 0.209099i
\(999\) 502.705 + 159.183i 0.503208 + 0.159343i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.3.b.a.323.74 yes 88
3.2 odd 2 inner 483.3.b.a.323.15 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.3.b.a.323.15 88 3.2 odd 2 inner
483.3.b.a.323.74 yes 88 1.1 even 1 trivial