Properties

Label 484.2.a.d.1.2
Level 484484
Weight 22
Character 484.1
Self dual yes
Analytic conductor 3.8653.865
Analytic rank 00
Dimension 22
CM discriminant -11
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [484,2,Mod(1,484)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(484, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("484.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 484=22112 484 = 2^{2} \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 484.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 3.864759457833.86475945783
Analytic rank: 00
Dimension: 22
Coefficient field: Q(33)\Q(\sqrt{33})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x8 x^{2} - x - 8 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

Embedding invariants

Embedding label 1.2
Root 3.372283.37228 of defining polynomial
Character χ\chi == 484.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+3.37228q31.37228q5+8.37228q94.62772q15+7.37228q233.11684q25+18.1168q276.11684q3112.1168q3711.4891q4512.0000q477.00000q49+6.00000q53+4.62772q59+2.11684q67+24.8614q6912.8614q7110.5109q75+35.9783q81+18.8614q8920.6277q93+0.116844q97+O(q100)q+3.37228 q^{3} -1.37228 q^{5} +8.37228 q^{9} -4.62772 q^{15} +7.37228 q^{23} -3.11684 q^{25} +18.1168 q^{27} -6.11684 q^{31} -12.1168 q^{37} -11.4891 q^{45} -12.0000 q^{47} -7.00000 q^{49} +6.00000 q^{53} +4.62772 q^{59} +2.11684 q^{67} +24.8614 q^{69} -12.8614 q^{71} -10.5109 q^{75} +35.9783 q^{81} +18.8614 q^{89} -20.6277 q^{93} +0.116844 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q3+3q5+11q915q15+9q23+11q25+19q27+5q317q3724q4714q49+12q53+15q5913q67+21q69+3q7144q75+26q81+17q97+O(q100) 2 q + q^{3} + 3 q^{5} + 11 q^{9} - 15 q^{15} + 9 q^{23} + 11 q^{25} + 19 q^{27} + 5 q^{31} - 7 q^{37} - 24 q^{47} - 14 q^{49} + 12 q^{53} + 15 q^{59} - 13 q^{67} + 21 q^{69} + 3 q^{71} - 44 q^{75} + 26 q^{81}+ \cdots - 17 q^{97}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 3.37228 1.94699 0.973494 0.228714i 0.0734519π-0.0734519\pi
0.973494 + 0.228714i 0.0734519π0.0734519\pi
44 0 0
55 −1.37228 −0.613703 −0.306851 0.951757i 0.599275π-0.599275\pi
−0.306851 + 0.951757i 0.599275π0.599275\pi
66 0 0
77 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
88 0 0
99 8.37228 2.79076
1010 0 0
1111 0 0
1212 0 0
1313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 −4.62772 −1.19487
1616 0 0
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 0 0
2121 0 0
2222 0 0
2323 7.37228 1.53723 0.768613 0.639713i 0.220947π-0.220947\pi
0.768613 + 0.639713i 0.220947π0.220947\pi
2424 0 0
2525 −3.11684 −0.623369
2626 0 0
2727 18.1168 3.48659
2828 0 0
2929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3030 0 0
3131 −6.11684 −1.09862 −0.549309 0.835619i 0.685109π-0.685109\pi
−0.549309 + 0.835619i 0.685109π0.685109\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 −12.1168 −1.99200 −0.995998 0.0893706i 0.971514π-0.971514\pi
−0.995998 + 0.0893706i 0.971514π0.971514\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 −11.4891 −1.71270
4646 0 0
4747 −12.0000 −1.75038 −0.875190 0.483779i 0.839264π-0.839264\pi
−0.875190 + 0.483779i 0.839264π0.839264\pi
4848 0 0
4949 −7.00000 −1.00000
5050 0 0
5151 0 0
5252 0 0
5353 6.00000 0.824163 0.412082 0.911147i 0.364802π-0.364802\pi
0.412082 + 0.911147i 0.364802π0.364802\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 4.62772 0.602478 0.301239 0.953549i 0.402600π-0.402600\pi
0.301239 + 0.953549i 0.402600π0.402600\pi
6060 0 0
6161 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 2.11684 0.258614 0.129307 0.991605i 0.458725π-0.458725\pi
0.129307 + 0.991605i 0.458725π0.458725\pi
6868 0 0
6969 24.8614 2.99296
7070 0 0
7171 −12.8614 −1.52637 −0.763184 0.646181i 0.776365π-0.776365\pi
−0.763184 + 0.646181i 0.776365π0.776365\pi
7272 0 0
7373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7474 0 0
7575 −10.5109 −1.21369
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 0 0
8181 35.9783 3.99758
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 18.8614 1.99931 0.999653 0.0263586i 0.00839118π-0.00839118\pi
0.999653 + 0.0263586i 0.00839118π0.00839118\pi
9090 0 0
9191 0 0
9292 0 0
9393 −20.6277 −2.13899
9494 0 0
9595 0 0
9696 0 0
9797 0.116844 0.0118637 0.00593185 0.999982i 0.498112π-0.498112\pi
0.00593185 + 0.999982i 0.498112π0.498112\pi
9898 0 0
9999 0 0
100100 0 0
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 −4.00000 −0.394132 −0.197066 0.980390i 0.563141π-0.563141\pi
−0.197066 + 0.980390i 0.563141π0.563141\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0 0
111111 −40.8614 −3.87839
112112 0 0
113113 −13.3723 −1.25796 −0.628979 0.777422i 0.716527π-0.716527\pi
−0.628979 + 0.777422i 0.716527π0.716527\pi
114114 0 0
115115 −10.1168 −0.943401
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0 0
122122 0 0
123123 0 0
124124 0 0
125125 11.1386 0.996266
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0 0
134134 0 0
135135 −24.8614 −2.13973
136136 0 0
137137 21.6060 1.84592 0.922961 0.384893i 0.125762π-0.125762\pi
0.922961 + 0.384893i 0.125762π0.125762\pi
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 −40.4674 −3.40797
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 −23.6060 −1.94699
148148 0 0
149149 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 0 0
154154 0 0
155155 8.39403 0.674225
156156 0 0
157157 20.1168 1.60550 0.802749 0.596316i 0.203370π-0.203370\pi
0.802749 + 0.596316i 0.203370π0.203370\pi
158158 0 0
159159 20.2337 1.60464
160160 0 0
161161 0 0
162162 0 0
163163 −16.0000 −1.25322 −0.626608 0.779334i 0.715557π-0.715557\pi
−0.626608 + 0.779334i 0.715557π0.715557\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 −13.0000 −1.00000
170170 0 0
171171 0 0
172172 0 0
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 0 0
176176 0 0
177177 15.6060 1.17302
178178 0 0
179179 −24.8614 −1.85823 −0.929114 0.369792i 0.879429π-0.879429\pi
−0.929114 + 0.369792i 0.879429π0.879429\pi
180180 0 0
181181 3.88316 0.288633 0.144316 0.989532i 0.453902π-0.453902\pi
0.144316 + 0.989532i 0.453902π0.453902\pi
182182 0 0
183183 0 0
184184 0 0
185185 16.6277 1.22249
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 27.6060 1.99750 0.998749 0.0500060i 0.0159241π-0.0159241\pi
0.998749 + 0.0500060i 0.0159241π0.0159241\pi
192192 0 0
193193 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 −20.0000 −1.41776 −0.708881 0.705328i 0.750800π-0.750800\pi
−0.708881 + 0.705328i 0.750800π0.750800\pi
200200 0 0
201201 7.13859 0.503518
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 61.7228 4.29003
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
212212 0 0
213213 −43.3723 −2.97182
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 26.3505 1.76456 0.882281 0.470723i 0.156007π-0.156007\pi
0.882281 + 0.470723i 0.156007π0.156007\pi
224224 0 0
225225 −26.0951 −1.73967
226226 0 0
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 28.3505 1.87346 0.936728 0.350058i 0.113838π-0.113838\pi
0.936728 + 0.350058i 0.113838π0.113838\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 16.4674 1.07421
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
242242 0 0
243243 66.9783 4.29666
244244 0 0
245245 9.60597 0.613703
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 −0.861407 −0.0543715 −0.0271858 0.999630i 0.508655π-0.508655\pi
−0.0271858 + 0.999630i 0.508655π0.508655\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 18.0000 1.12281 0.561405 0.827541i 0.310261π-0.310261\pi
0.561405 + 0.827541i 0.310261π0.310261\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 −8.23369 −0.505791
266266 0 0
267267 63.6060 3.89262
268268 0 0
269269 30.0000 1.82913 0.914566 0.404436i 0.132532π-0.132532\pi
0.914566 + 0.404436i 0.132532π0.132532\pi
270270 0 0
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 0 0
279279 −51.2119 −3.06598
280280 0 0
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −17.0000 −1.00000
290290 0 0
291291 0.394031 0.0230985
292292 0 0
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 0 0
295295 −6.35053 −0.369742
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 −13.4891 −0.767370
310310 0 0
311311 −12.0000 −0.680458 −0.340229 0.940343i 0.610505π-0.610505\pi
−0.340229 + 0.940343i 0.610505π0.610505\pi
312312 0 0
313313 16.3505 0.924187 0.462093 0.886831i 0.347098π-0.347098\pi
0.462093 + 0.886831i 0.347098π0.347098\pi
314314 0 0
315315 0 0
316316 0 0
317317 33.6060 1.88750 0.943750 0.330661i 0.107272π-0.107272\pi
0.943750 + 0.330661i 0.107272π0.107272\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −26.1168 −1.43551 −0.717756 0.696295i 0.754831π-0.754831\pi
−0.717756 + 0.696295i 0.754831π0.754831\pi
332332 0 0
333333 −101.446 −5.55919
334334 0 0
335335 −2.90491 −0.158712
336336 0 0
337337 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
338338 0 0
339339 −45.0951 −2.44923
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 −34.1168 −1.83679
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 0 0
352352 0 0
353353 −27.0951 −1.44213 −0.721063 0.692869i 0.756346π-0.756346\pi
−0.721063 + 0.692869i 0.756346π0.756346\pi
354354 0 0
355355 17.6495 0.936737
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 −19.0000 −1.00000
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 9.88316 0.515897 0.257948 0.966159i 0.416954π-0.416954\pi
0.257948 + 0.966159i 0.416954π0.416954\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
374374 0 0
375375 37.5625 1.93972
376376 0 0
377377 0 0
378378 0 0
379379 38.3505 1.96993 0.984967 0.172741i 0.0552624π-0.0552624\pi
0.984967 + 0.172741i 0.0552624π0.0552624\pi
380380 0 0
381381 0 0
382382 0 0
383383 −16.6277 −0.849637 −0.424818 0.905279i 0.639662π-0.639662\pi
−0.424818 + 0.905279i 0.639662π0.639662\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 39.0951 1.98220 0.991100 0.133120i 0.0424994π-0.0424994\pi
0.991100 + 0.133120i 0.0424994π0.0424994\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 2.00000 0.100377 0.0501886 0.998740i 0.484018π-0.484018\pi
0.0501886 + 0.998740i 0.484018π0.484018\pi
398398 0 0
399399 0 0
400400 0 0
401401 30.0000 1.49813 0.749064 0.662497i 0.230503π-0.230503\pi
0.749064 + 0.662497i 0.230503π0.230503\pi
402402 0 0
403403 0 0
404404 0 0
405405 −49.3723 −2.45333
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
410410 0 0
411411 72.8614 3.59399
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 24.0000 1.17248 0.586238 0.810139i 0.300608π-0.300608\pi
0.586238 + 0.810139i 0.300608π0.300608\pi
420420 0 0
421421 10.0000 0.487370 0.243685 0.969854i 0.421644π-0.421644\pi
0.243685 + 0.969854i 0.421644π0.421644\pi
422422 0 0
423423 −100.467 −4.88489
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 −40.3505 −1.93912 −0.969561 0.244848i 0.921262π-0.921262\pi
−0.969561 + 0.244848i 0.921262π0.921262\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 −58.6060 −2.79076
442442 0 0
443443 21.0951 1.00226 0.501129 0.865373i 0.332918π-0.332918\pi
0.501129 + 0.865373i 0.332918π0.332918\pi
444444 0 0
445445 −25.8832 −1.22698
446446 0 0
447447 0 0
448448 0 0
449449 −5.13859 −0.242505 −0.121253 0.992622i 0.538691π-0.538691\pi
−0.121253 + 0.992622i 0.538691π0.538691\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 −10.3505 −0.481030 −0.240515 0.970645i 0.577316π-0.577316\pi
−0.240515 + 0.970645i 0.577316π0.577316\pi
464464 0 0
465465 28.3070 1.31271
466466 0 0
467467 −35.8397 −1.65846 −0.829231 0.558906i 0.811221π-0.811221\pi
−0.829231 + 0.558906i 0.811221π0.811221\pi
468468 0 0
469469 0 0
470470 0 0
471471 67.8397 3.12589
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 50.2337 2.30004
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 −0.160343 −0.00728079
486486 0 0
487487 −30.1168 −1.36472 −0.682362 0.731014i 0.739047π-0.739047\pi
−0.682362 + 0.731014i 0.739047π0.739047\pi
488488 0 0
489489 −53.9565 −2.44000
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 40.0000 1.79065 0.895323 0.445418i 0.146945π-0.146945\pi
0.895323 + 0.445418i 0.146945π0.146945\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0 0
507507 −43.8397 −1.94699
508508 0 0
509509 25.3723 1.12461 0.562303 0.826931i 0.309915π-0.309915\pi
0.562303 + 0.826931i 0.309915π0.309915\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 5.48913 0.241880
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −29.8397 −1.30730 −0.653650 0.756797i 0.726763π-0.726763\pi
−0.653650 + 0.756797i 0.726763π0.726763\pi
522522 0 0
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 31.3505 1.36307
530530 0 0
531531 38.7446 1.68137
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 −83.8397 −3.61795
538538 0 0
539539 0 0
540540 0 0
541541 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
542542 0 0
543543 13.0951 0.561964
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 56.0733 2.38018
556556 0 0
557557 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 18.3505 0.772013
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 93.0951 3.88910
574574 0 0
575575 −22.9783 −0.958259
576576 0 0
577577 32.1168 1.33704 0.668521 0.743693i 0.266928π-0.266928\pi
0.668521 + 0.743693i 0.266928π0.266928\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −48.0000 −1.98117 −0.990586 0.136892i 0.956289π-0.956289\pi
−0.990586 + 0.136892i 0.956289π0.956289\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 −67.4456 −2.76037
598598 0 0
599599 −36.0000 −1.47092 −0.735460 0.677568i 0.763034π-0.763034\pi
−0.735460 + 0.677568i 0.763034π0.763034\pi
600600 0 0
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 17.7228 0.721729
604604 0 0
605605 0 0
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
614614 0 0
615615 0 0
616616 0 0
617617 −42.0000 −1.69086 −0.845428 0.534089i 0.820655π-0.820655\pi
−0.845428 + 0.534089i 0.820655π0.820655\pi
618618 0 0
619619 −42.5842 −1.71160 −0.855802 0.517303i 0.826936π-0.826936\pi
−0.855802 + 0.517303i 0.826936π0.826936\pi
620620 0 0
621621 133.562 5.35968
622622 0 0
623623 0 0
624624 0 0
625625 0.298936 0.0119574
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −46.5842 −1.85449 −0.927244 0.374457i 0.877829π-0.877829\pi
−0.927244 + 0.374457i 0.877829π0.877829\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 −107.679 −4.25973
640640 0 0
641641 2.39403 0.0945585 0.0472793 0.998882i 0.484945π-0.484945\pi
0.0472793 + 0.998882i 0.484945π0.484945\pi
642642 0 0
643643 −46.3505 −1.82789 −0.913943 0.405842i 0.866978π-0.866978\pi
−0.913943 + 0.405842i 0.866978π0.866978\pi
644644 0 0
645645 0 0
646646 0 0
647647 −23.8397 −0.937234 −0.468617 0.883402i 0.655247π-0.655247\pi
−0.468617 + 0.883402i 0.655247π0.655247\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −22.6277 −0.885491 −0.442746 0.896647i 0.645995π-0.645995\pi
−0.442746 + 0.896647i 0.645995π0.645995\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 36.5842 1.42296 0.711481 0.702706i 0.248025π-0.248025\pi
0.711481 + 0.702706i 0.248025π0.248025\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 88.8614 3.43558
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 0 0
675675 −56.4674 −2.17343
676676 0 0
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 24.0000 0.918334 0.459167 0.888350i 0.348148π-0.348148\pi
0.459167 + 0.888350i 0.348148π0.348148\pi
684684 0 0
685685 −29.6495 −1.13285
686686 0 0
687687 95.6060 3.64760
688688 0 0
689689 0 0
690690 0 0
691691 34.5842 1.31565 0.657823 0.753173i 0.271478π-0.271478\pi
0.657823 + 0.753173i 0.271478π0.271478\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 0 0
705705 55.5326 2.09148
706706 0 0
707707 0 0
708708 0 0
709709 −52.5842 −1.97484 −0.987421 0.158114i 0.949459π-0.949459\pi
−0.987421 + 0.158114i 0.949459π0.949459\pi
710710 0 0
711711 0 0
712712 0 0
713713 −45.0951 −1.68882
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 −11.1386 −0.415399 −0.207700 0.978193i 0.566598π-0.566598\pi
−0.207700 + 0.978193i 0.566598π0.566598\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 17.8832 0.663250 0.331625 0.943411i 0.392403π-0.392403\pi
0.331625 + 0.943411i 0.392403π0.392403\pi
728728 0 0
729729 117.935 4.36795
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 0 0
735735 32.3940 1.19487
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 54.5842 1.99181 0.995903 0.0904254i 0.0288227π-0.0288227\pi
0.995903 + 0.0904254i 0.0288227π0.0288227\pi
752752 0 0
753753 −2.90491 −0.105861
754754 0 0
755755 0 0
756756 0 0
757757 −38.0000 −1.38113 −0.690567 0.723269i 0.742639π-0.742639\pi
−0.690567 + 0.723269i 0.742639π0.742639\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
770770 0 0
771771 60.7011 2.18610
772772 0 0
773773 54.0000 1.94225 0.971123 0.238581i 0.0766824π-0.0766824\pi
0.971123 + 0.238581i 0.0766824π0.0766824\pi
774774 0 0
775775 19.0652 0.684844
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 −27.6060 −0.985299
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 −27.7663 −0.984770
796796 0 0
797797 −47.3288 −1.67647 −0.838236 0.545308i 0.816413π-0.816413\pi
−0.838236 + 0.545308i 0.816413π0.816413\pi
798798 0 0
799799 0 0
800800 0 0
801801 157.913 5.57958
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 101.168 3.56130
808808 0 0
809809 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
810810 0 0
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 0 0
813813 0 0
814814 0 0
815815 21.9565 0.769103
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
822822 0 0
823823 50.3505 1.75511 0.877555 0.479477i 0.159174π-0.159174\pi
0.877555 + 0.479477i 0.159174π0.159174\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 28.5842 0.992771 0.496385 0.868102i 0.334660π-0.334660\pi
0.496385 + 0.868102i 0.334660π0.334660\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 −110.818 −3.83043
838838 0 0
839839 −9.09509 −0.313998 −0.156999 0.987599i 0.550182π-0.550182\pi
−0.156999 + 0.987599i 0.550182π0.550182\pi
840840 0 0
841841 −29.0000 −1.00000
842842 0 0
843843 0 0
844844 0 0
845845 17.8397 0.613703
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 −89.3288 −3.06215
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 58.5842 1.99887 0.999434 0.0336436i 0.0107111π-0.0107111\pi
0.999434 + 0.0336436i 0.0107111π0.0107111\pi
860860 0 0
861861 0 0
862862 0 0
863863 −36.0000 −1.22545 −0.612727 0.790295i 0.709928π-0.709928\pi
−0.612727 + 0.790295i 0.709928π0.709928\pi
864864 0 0
865865 0 0
866866 0 0
867867 −57.3288 −1.94699
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0.978251 0.0331088
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 0 0
879879 0 0
880880 0 0
881881 −42.8614 −1.44404 −0.722019 0.691873i 0.756786π-0.756786\pi
−0.722019 + 0.691873i 0.756786π0.756786\pi
882882 0 0
883883 −56.0000 −1.88455 −0.942275 0.334840i 0.891318π-0.891318\pi
−0.942275 + 0.334840i 0.891318π0.891318\pi
884884 0 0
885885 −21.4158 −0.719884
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 34.1168 1.14040
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 −5.32878 −0.177135
906906 0 0
907907 8.00000 0.265636 0.132818 0.991140i 0.457597π-0.457597\pi
0.132818 + 0.991140i 0.457597π0.457597\pi
908908 0 0
909909 0 0
910910 0 0
911911 −60.0000 −1.98789 −0.993944 0.109885i 0.964952π-0.964952\pi
−0.993944 + 0.109885i 0.964952π0.964952\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 37.7663 1.24175
926926 0 0
927927 −33.4891 −1.09993
928928 0 0
929929 30.0000 0.984268 0.492134 0.870519i 0.336217π-0.336217\pi
0.492134 + 0.870519i 0.336217π0.336217\pi
930930 0 0
931931 0 0
932932 0 0
933933 −40.4674 −1.32484
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 55.1386 1.79938
940940 0 0
941941 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −8.39403 −0.272769 −0.136385 0.990656i 0.543548π-0.543548\pi
−0.136385 + 0.990656i 0.543548π0.543548\pi
948948 0 0
949949 0 0
950950 0 0
951951 113.329 3.67494
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 −37.8832 −1.22587
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 6.41578 0.206961
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 0 0
969969 0 0
970970 0 0
971971 59.8397 1.92035 0.960173 0.279406i 0.0901376π-0.0901376\pi
0.960173 + 0.279406i 0.0901376π0.0901376\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 −35.3288 −1.13027 −0.565134 0.824999i 0.691176π-0.691176\pi
−0.565134 + 0.824999i 0.691176π0.691176\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 −57.0951 −1.82105 −0.910525 0.413453i 0.864323π-0.864323\pi
−0.910525 + 0.413453i 0.864323π0.864323\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −20.0000 −0.635321 −0.317660 0.948205i 0.602897π-0.602897\pi
−0.317660 + 0.948205i 0.602897π0.602897\pi
992992 0 0
993993 −88.0733 −2.79492
994994 0 0
995995 27.4456 0.870085
996996 0 0
997997 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
998998 0 0
999999 −219.519 −6.94527
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 484.2.a.d.1.2 2
3.2 odd 2 4356.2.a.n.1.2 2
4.3 odd 2 1936.2.a.s.1.1 2
8.3 odd 2 7744.2.a.cn.1.2 2
8.5 even 2 7744.2.a.bx.1.1 2
11.2 odd 10 484.2.e.g.81.2 8
11.3 even 5 484.2.e.g.9.1 8
11.4 even 5 484.2.e.g.269.1 8
11.5 even 5 484.2.e.g.245.2 8
11.6 odd 10 484.2.e.g.245.2 8
11.7 odd 10 484.2.e.g.269.1 8
11.8 odd 10 484.2.e.g.9.1 8
11.9 even 5 484.2.e.g.81.2 8
11.10 odd 2 CM 484.2.a.d.1.2 2
33.32 even 2 4356.2.a.n.1.2 2
44.43 even 2 1936.2.a.s.1.1 2
88.21 odd 2 7744.2.a.bx.1.1 2
88.43 even 2 7744.2.a.cn.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
484.2.a.d.1.2 2 1.1 even 1 trivial
484.2.a.d.1.2 2 11.10 odd 2 CM
484.2.e.g.9.1 8 11.3 even 5
484.2.e.g.9.1 8 11.8 odd 10
484.2.e.g.81.2 8 11.2 odd 10
484.2.e.g.81.2 8 11.9 even 5
484.2.e.g.245.2 8 11.5 even 5
484.2.e.g.245.2 8 11.6 odd 10
484.2.e.g.269.1 8 11.4 even 5
484.2.e.g.269.1 8 11.7 odd 10
1936.2.a.s.1.1 2 4.3 odd 2
1936.2.a.s.1.1 2 44.43 even 2
4356.2.a.n.1.2 2 3.2 odd 2
4356.2.a.n.1.2 2 33.32 even 2
7744.2.a.bx.1.1 2 8.5 even 2
7744.2.a.bx.1.1 2 88.21 odd 2
7744.2.a.cn.1.2 2 8.3 odd 2
7744.2.a.cn.1.2 2 88.43 even 2