Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [484,2,Mod(45,484)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(484, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 6]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("484.45");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 484 = 2^{2} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 484.i (of order \(11\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.86475945783\) |
Analytic rank: | \(0\) |
Dimension: | \(110\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{11})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
45.1 | 0 | −3.36389 | 0 | 0.594015 | + | 0.381750i | 0 | −0.929866 | + | 0.273033i | 0 | 8.31576 | 0 | ||||||||||||||
45.2 | 0 | −1.97219 | 0 | 1.47725 | + | 0.949373i | 0 | −4.24017 | + | 1.24503i | 0 | 0.889514 | 0 | ||||||||||||||
45.3 | 0 | −1.72075 | 0 | −1.94248 | − | 1.24836i | 0 | 0.240550 | − | 0.0706320i | 0 | −0.0390297 | 0 | ||||||||||||||
45.4 | 0 | −1.58623 | 0 | 2.56865 | + | 1.65077i | 0 | 3.39977 | − | 0.998263i | 0 | −0.483872 | 0 | ||||||||||||||
45.5 | 0 | −0.848441 | 0 | −0.619315 | − | 0.398009i | 0 | 0.729996 | − | 0.214346i | 0 | −2.28015 | 0 | ||||||||||||||
45.6 | 0 | 0.359471 | 0 | −2.27804 | − | 1.46400i | 0 | 2.56877 | − | 0.754259i | 0 | −2.87078 | 0 | ||||||||||||||
45.7 | 0 | 0.481063 | 0 | −0.519205 | − | 0.333673i | 0 | −3.77609 | + | 1.10876i | 0 | −2.76858 | 0 | ||||||||||||||
45.8 | 0 | 1.23311 | 0 | 2.28756 | + | 1.47013i | 0 | 1.88432 | − | 0.553286i | 0 | −1.47943 | 0 | ||||||||||||||
45.9 | 0 | 2.07677 | 0 | −3.50293 | − | 2.25120i | 0 | −4.16309 | + | 1.22239i | 0 | 1.31296 | 0 | ||||||||||||||
45.10 | 0 | 2.38838 | 0 | −0.475313 | − | 0.305465i | 0 | 1.30889 | − | 0.384324i | 0 | 2.70438 | 0 | ||||||||||||||
45.11 | 0 | 2.66807 | 0 | 2.64925 | + | 1.70257i | 0 | −2.11772 | + | 0.621820i | 0 | 4.11859 | 0 | ||||||||||||||
89.1 | 0 | −3.27264 | 0 | −0.637588 | − | 1.39612i | 0 | 2.26780 | − | 1.45743i | 0 | 7.71020 | 0 | ||||||||||||||
89.2 | 0 | −3.16927 | 0 | 1.61924 | + | 3.54564i | 0 | −3.41179 | + | 2.19262i | 0 | 7.04427 | 0 | ||||||||||||||
89.3 | 0 | −1.73399 | 0 | 0.756744 | + | 1.65704i | 0 | 3.78569 | − | 2.43292i | 0 | 0.00671706 | 0 | ||||||||||||||
89.4 | 0 | −1.70980 | 0 | −1.17644 | − | 2.57604i | 0 | −2.29162 | + | 1.47273i | 0 | −0.0765820 | 0 | ||||||||||||||
89.5 | 0 | −1.02091 | 0 | −0.267995 | − | 0.586827i | 0 | 0.493958 | − | 0.317448i | 0 | −1.95775 | 0 | ||||||||||||||
89.6 | 0 | −0.0291248 | 0 | 0.422800 | + | 0.925803i | 0 | −2.63726 | + | 1.69486i | 0 | −2.99915 | 0 | ||||||||||||||
89.7 | 0 | 0.602184 | 0 | −1.63618 | − | 3.58272i | 0 | 2.31185 | − | 1.48574i | 0 | −2.63737 | 0 | ||||||||||||||
89.8 | 0 | 1.38825 | 0 | 0.974029 | + | 2.13282i | 0 | −1.64826 | + | 1.05927i | 0 | −1.07277 | 0 | ||||||||||||||
89.9 | 0 | 1.44940 | 0 | 1.47314 | + | 3.22572i | 0 | 3.83701 | − | 2.46590i | 0 | −0.899249 | 0 | ||||||||||||||
See next 80 embeddings (of 110 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
121.e | even | 11 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 484.2.i.a | ✓ | 110 |
121.e | even | 11 | 1 | inner | 484.2.i.a | ✓ | 110 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
484.2.i.a | ✓ | 110 | 1.a | even | 1 | 1 | trivial |
484.2.i.a | ✓ | 110 | 121.e | even | 11 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(484, [\chi])\).