Properties

Label 484.2.i.a
Level $484$
Weight $2$
Character orbit 484.i
Analytic conductor $3.865$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [484,2,Mod(45,484)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(484, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("484.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 484.i (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.86475945783\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 110 q - 2 q^{3} + 2 q^{5} - 2 q^{7} + 112 q^{9} - 10 q^{11} - 29 q^{13} - 18 q^{15} - 6 q^{17} - 8 q^{19} - 2 q^{21} + 4 q^{23} - 17 q^{25} + 4 q^{27} - 28 q^{31} + q^{33} + 6 q^{35} - 31 q^{37} + 4 q^{39}+ \cdots - 57 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
45.1 0 −3.36389 0 0.594015 + 0.381750i 0 −0.929866 + 0.273033i 0 8.31576 0
45.2 0 −1.97219 0 1.47725 + 0.949373i 0 −4.24017 + 1.24503i 0 0.889514 0
45.3 0 −1.72075 0 −1.94248 1.24836i 0 0.240550 0.0706320i 0 −0.0390297 0
45.4 0 −1.58623 0 2.56865 + 1.65077i 0 3.39977 0.998263i 0 −0.483872 0
45.5 0 −0.848441 0 −0.619315 0.398009i 0 0.729996 0.214346i 0 −2.28015 0
45.6 0 0.359471 0 −2.27804 1.46400i 0 2.56877 0.754259i 0 −2.87078 0
45.7 0 0.481063 0 −0.519205 0.333673i 0 −3.77609 + 1.10876i 0 −2.76858 0
45.8 0 1.23311 0 2.28756 + 1.47013i 0 1.88432 0.553286i 0 −1.47943 0
45.9 0 2.07677 0 −3.50293 2.25120i 0 −4.16309 + 1.22239i 0 1.31296 0
45.10 0 2.38838 0 −0.475313 0.305465i 0 1.30889 0.384324i 0 2.70438 0
45.11 0 2.66807 0 2.64925 + 1.70257i 0 −2.11772 + 0.621820i 0 4.11859 0
89.1 0 −3.27264 0 −0.637588 1.39612i 0 2.26780 1.45743i 0 7.71020 0
89.2 0 −3.16927 0 1.61924 + 3.54564i 0 −3.41179 + 2.19262i 0 7.04427 0
89.3 0 −1.73399 0 0.756744 + 1.65704i 0 3.78569 2.43292i 0 0.00671706 0
89.4 0 −1.70980 0 −1.17644 2.57604i 0 −2.29162 + 1.47273i 0 −0.0765820 0
89.5 0 −1.02091 0 −0.267995 0.586827i 0 0.493958 0.317448i 0 −1.95775 0
89.6 0 −0.0291248 0 0.422800 + 0.925803i 0 −2.63726 + 1.69486i 0 −2.99915 0
89.7 0 0.602184 0 −1.63618 3.58272i 0 2.31185 1.48574i 0 −2.63737 0
89.8 0 1.38825 0 0.974029 + 2.13282i 0 −1.64826 + 1.05927i 0 −1.07277 0
89.9 0 1.44940 0 1.47314 + 3.22572i 0 3.83701 2.46590i 0 −0.899249 0
See next 80 embeddings (of 110 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 45.11
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
121.e even 11 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 484.2.i.a 110
121.e even 11 1 inner 484.2.i.a 110
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
484.2.i.a 110 1.a even 1 1 trivial
484.2.i.a 110 121.e even 11 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(484, [\chi])\).