Properties

Label 484.3.b.a
Level $484$
Weight $3$
Character orbit 484.b
Self dual yes
Analytic conductor $13.188$
Analytic rank $0$
Dimension $1$
CM discriminant -4
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [484,3,Mod(243,484)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(484, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("484.243");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 484.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.1880447950\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + 6 q^{5} - 8 q^{8} + 9 q^{9} - 12 q^{10} + 24 q^{13} + 16 q^{16} - 16 q^{17} - 18 q^{18} + 24 q^{20} + 11 q^{25} - 48 q^{26} + 40 q^{29} - 32 q^{32} + 32 q^{34} + 36 q^{36} - 70 q^{37}+ \cdots - 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/484\mathbb{Z}\right)^\times\).

\(n\) \(243\) \(365\)
\(\chi(n)\) \(1\) \(0\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
243.1
0
−2.00000 0 4.00000 6.00000 0 0 −8.00000 9.00000 −12.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 484.3.b.a 1
4.b odd 2 1 CM 484.3.b.a 1
11.b odd 2 1 484.3.b.b yes 1
44.c even 2 1 484.3.b.b yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
484.3.b.a 1 1.a even 1 1 trivial
484.3.b.a 1 4.b odd 2 1 CM
484.3.b.b yes 1 11.b odd 2 1
484.3.b.b yes 1 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(484, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{5} - 6 \) Copy content Toggle raw display
\( T_{13} - 24 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 6 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 24 \) Copy content Toggle raw display
$17$ \( T + 16 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 40 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T + 70 \) Copy content Toggle raw display
$41$ \( T + 80 \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T - 90 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 120 \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 96 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 78 \) Copy content Toggle raw display
$97$ \( T + 130 \) Copy content Toggle raw display
show more
show less