Properties

Label 4842.2.a.f.1.2
Level $4842$
Weight $2$
Character 4842.1
Self dual yes
Analytic conductor $38.664$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4842,2,Mod(1,4842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6635646587\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 4842.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +3.61803 q^{5} -4.23607 q^{7} -1.00000 q^{8} -3.61803 q^{10} -0.236068 q^{11} -1.00000 q^{13} +4.23607 q^{14} +1.00000 q^{16} -0.236068 q^{17} +2.00000 q^{19} +3.61803 q^{20} +0.236068 q^{22} +8.23607 q^{23} +8.09017 q^{25} +1.00000 q^{26} -4.23607 q^{28} -0.854102 q^{29} +7.47214 q^{31} -1.00000 q^{32} +0.236068 q^{34} -15.3262 q^{35} -8.70820 q^{37} -2.00000 q^{38} -3.61803 q^{40} -7.70820 q^{41} +2.23607 q^{43} -0.236068 q^{44} -8.23607 q^{46} +6.85410 q^{47} +10.9443 q^{49} -8.09017 q^{50} -1.00000 q^{52} -0.854102 q^{55} +4.23607 q^{56} +0.854102 q^{58} +6.56231 q^{59} -5.47214 q^{61} -7.47214 q^{62} +1.00000 q^{64} -3.61803 q^{65} +1.76393 q^{67} -0.236068 q^{68} +15.3262 q^{70} -9.70820 q^{71} -10.7082 q^{73} +8.70820 q^{74} +2.00000 q^{76} +1.00000 q^{77} -13.7984 q^{79} +3.61803 q^{80} +7.70820 q^{82} +5.23607 q^{83} -0.854102 q^{85} -2.23607 q^{86} +0.236068 q^{88} +9.79837 q^{89} +4.23607 q^{91} +8.23607 q^{92} -6.85410 q^{94} +7.23607 q^{95} +12.6525 q^{97} -10.9443 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 5 q^{5} - 4 q^{7} - 2 q^{8} - 5 q^{10} + 4 q^{11} - 2 q^{13} + 4 q^{14} + 2 q^{16} + 4 q^{17} + 4 q^{19} + 5 q^{20} - 4 q^{22} + 12 q^{23} + 5 q^{25} + 2 q^{26} - 4 q^{28} + 5 q^{29}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(6\) 0 0
\(7\) −4.23607 −1.60108 −0.800542 0.599277i \(-0.795455\pi\)
−0.800542 + 0.599277i \(0.795455\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −3.61803 −1.14412
\(11\) −0.236068 −0.0711772 −0.0355886 0.999367i \(-0.511331\pi\)
−0.0355886 + 0.999367i \(0.511331\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 4.23607 1.13214
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −0.236068 −0.0572549 −0.0286274 0.999590i \(-0.509114\pi\)
−0.0286274 + 0.999590i \(0.509114\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 3.61803 0.809017
\(21\) 0 0
\(22\) 0.236068 0.0503299
\(23\) 8.23607 1.71734 0.858669 0.512530i \(-0.171292\pi\)
0.858669 + 0.512530i \(0.171292\pi\)
\(24\) 0 0
\(25\) 8.09017 1.61803
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) −4.23607 −0.800542
\(29\) −0.854102 −0.158603 −0.0793014 0.996851i \(-0.525269\pi\)
−0.0793014 + 0.996851i \(0.525269\pi\)
\(30\) 0 0
\(31\) 7.47214 1.34204 0.671018 0.741441i \(-0.265857\pi\)
0.671018 + 0.741441i \(0.265857\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 0.236068 0.0404853
\(35\) −15.3262 −2.59061
\(36\) 0 0
\(37\) −8.70820 −1.43162 −0.715810 0.698295i \(-0.753942\pi\)
−0.715810 + 0.698295i \(0.753942\pi\)
\(38\) −2.00000 −0.324443
\(39\) 0 0
\(40\) −3.61803 −0.572061
\(41\) −7.70820 −1.20382 −0.601910 0.798564i \(-0.705593\pi\)
−0.601910 + 0.798564i \(0.705593\pi\)
\(42\) 0 0
\(43\) 2.23607 0.340997 0.170499 0.985358i \(-0.445462\pi\)
0.170499 + 0.985358i \(0.445462\pi\)
\(44\) −0.236068 −0.0355886
\(45\) 0 0
\(46\) −8.23607 −1.21434
\(47\) 6.85410 0.999774 0.499887 0.866091i \(-0.333375\pi\)
0.499887 + 0.866091i \(0.333375\pi\)
\(48\) 0 0
\(49\) 10.9443 1.56347
\(50\) −8.09017 −1.14412
\(51\) 0 0
\(52\) −1.00000 −0.138675
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) −0.854102 −0.115167
\(56\) 4.23607 0.566068
\(57\) 0 0
\(58\) 0.854102 0.112149
\(59\) 6.56231 0.854339 0.427170 0.904171i \(-0.359511\pi\)
0.427170 + 0.904171i \(0.359511\pi\)
\(60\) 0 0
\(61\) −5.47214 −0.700635 −0.350318 0.936631i \(-0.613926\pi\)
−0.350318 + 0.936631i \(0.613926\pi\)
\(62\) −7.47214 −0.948962
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.61803 −0.448762
\(66\) 0 0
\(67\) 1.76393 0.215499 0.107749 0.994178i \(-0.465636\pi\)
0.107749 + 0.994178i \(0.465636\pi\)
\(68\) −0.236068 −0.0286274
\(69\) 0 0
\(70\) 15.3262 1.83184
\(71\) −9.70820 −1.15215 −0.576076 0.817396i \(-0.695417\pi\)
−0.576076 + 0.817396i \(0.695417\pi\)
\(72\) 0 0
\(73\) −10.7082 −1.25330 −0.626650 0.779301i \(-0.715575\pi\)
−0.626650 + 0.779301i \(0.715575\pi\)
\(74\) 8.70820 1.01231
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) −13.7984 −1.55244 −0.776219 0.630463i \(-0.782865\pi\)
−0.776219 + 0.630463i \(0.782865\pi\)
\(80\) 3.61803 0.404508
\(81\) 0 0
\(82\) 7.70820 0.851229
\(83\) 5.23607 0.574733 0.287367 0.957821i \(-0.407220\pi\)
0.287367 + 0.957821i \(0.407220\pi\)
\(84\) 0 0
\(85\) −0.854102 −0.0926404
\(86\) −2.23607 −0.241121
\(87\) 0 0
\(88\) 0.236068 0.0251649
\(89\) 9.79837 1.03863 0.519313 0.854584i \(-0.326188\pi\)
0.519313 + 0.854584i \(0.326188\pi\)
\(90\) 0 0
\(91\) 4.23607 0.444061
\(92\) 8.23607 0.858669
\(93\) 0 0
\(94\) −6.85410 −0.706947
\(95\) 7.23607 0.742405
\(96\) 0 0
\(97\) 12.6525 1.28466 0.642332 0.766426i \(-0.277967\pi\)
0.642332 + 0.766426i \(0.277967\pi\)
\(98\) −10.9443 −1.10554
\(99\) 0 0
\(100\) 8.09017 0.809017
\(101\) 5.09017 0.506491 0.253245 0.967402i \(-0.418502\pi\)
0.253245 + 0.967402i \(0.418502\pi\)
\(102\) 0 0
\(103\) 10.8541 1.06949 0.534743 0.845015i \(-0.320408\pi\)
0.534743 + 0.845015i \(0.320408\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 0 0
\(107\) 12.2361 1.18291 0.591453 0.806340i \(-0.298555\pi\)
0.591453 + 0.806340i \(0.298555\pi\)
\(108\) 0 0
\(109\) −4.70820 −0.450964 −0.225482 0.974247i \(-0.572396\pi\)
−0.225482 + 0.974247i \(0.572396\pi\)
\(110\) 0.854102 0.0814354
\(111\) 0 0
\(112\) −4.23607 −0.400271
\(113\) 15.3820 1.44701 0.723507 0.690317i \(-0.242529\pi\)
0.723507 + 0.690317i \(0.242529\pi\)
\(114\) 0 0
\(115\) 29.7984 2.77871
\(116\) −0.854102 −0.0793014
\(117\) 0 0
\(118\) −6.56231 −0.604109
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −10.9443 −0.994934
\(122\) 5.47214 0.495424
\(123\) 0 0
\(124\) 7.47214 0.671018
\(125\) 11.1803 1.00000
\(126\) 0 0
\(127\) 20.7984 1.84556 0.922779 0.385331i \(-0.125913\pi\)
0.922779 + 0.385331i \(0.125913\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 3.61803 0.317323
\(131\) −2.76393 −0.241486 −0.120743 0.992684i \(-0.538528\pi\)
−0.120743 + 0.992684i \(0.538528\pi\)
\(132\) 0 0
\(133\) −8.47214 −0.734627
\(134\) −1.76393 −0.152381
\(135\) 0 0
\(136\) 0.236068 0.0202427
\(137\) 15.6180 1.33434 0.667169 0.744906i \(-0.267506\pi\)
0.667169 + 0.744906i \(0.267506\pi\)
\(138\) 0 0
\(139\) 10.5623 0.895883 0.447942 0.894063i \(-0.352157\pi\)
0.447942 + 0.894063i \(0.352157\pi\)
\(140\) −15.3262 −1.29530
\(141\) 0 0
\(142\) 9.70820 0.814694
\(143\) 0.236068 0.0197410
\(144\) 0 0
\(145\) −3.09017 −0.256625
\(146\) 10.7082 0.886217
\(147\) 0 0
\(148\) −8.70820 −0.715810
\(149\) −0.326238 −0.0267265 −0.0133632 0.999911i \(-0.504254\pi\)
−0.0133632 + 0.999911i \(0.504254\pi\)
\(150\) 0 0
\(151\) −9.94427 −0.809253 −0.404627 0.914482i \(-0.632599\pi\)
−0.404627 + 0.914482i \(0.632599\pi\)
\(152\) −2.00000 −0.162221
\(153\) 0 0
\(154\) −1.00000 −0.0805823
\(155\) 27.0344 2.17146
\(156\) 0 0
\(157\) 22.6525 1.80786 0.903932 0.427676i \(-0.140668\pi\)
0.903932 + 0.427676i \(0.140668\pi\)
\(158\) 13.7984 1.09774
\(159\) 0 0
\(160\) −3.61803 −0.286031
\(161\) −34.8885 −2.74960
\(162\) 0 0
\(163\) 17.3262 1.35710 0.678548 0.734556i \(-0.262610\pi\)
0.678548 + 0.734556i \(0.262610\pi\)
\(164\) −7.70820 −0.601910
\(165\) 0 0
\(166\) −5.23607 −0.406398
\(167\) −3.61803 −0.279972 −0.139986 0.990153i \(-0.544706\pi\)
−0.139986 + 0.990153i \(0.544706\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0.854102 0.0655066
\(171\) 0 0
\(172\) 2.23607 0.170499
\(173\) 7.47214 0.568096 0.284048 0.958810i \(-0.408322\pi\)
0.284048 + 0.958810i \(0.408322\pi\)
\(174\) 0 0
\(175\) −34.2705 −2.59061
\(176\) −0.236068 −0.0177943
\(177\) 0 0
\(178\) −9.79837 −0.734419
\(179\) −18.7082 −1.39832 −0.699158 0.714967i \(-0.746442\pi\)
−0.699158 + 0.714967i \(0.746442\pi\)
\(180\) 0 0
\(181\) 19.4164 1.44321 0.721605 0.692305i \(-0.243405\pi\)
0.721605 + 0.692305i \(0.243405\pi\)
\(182\) −4.23607 −0.313998
\(183\) 0 0
\(184\) −8.23607 −0.607171
\(185\) −31.5066 −2.31641
\(186\) 0 0
\(187\) 0.0557281 0.00407524
\(188\) 6.85410 0.499887
\(189\) 0 0
\(190\) −7.23607 −0.524960
\(191\) 5.05573 0.365820 0.182910 0.983130i \(-0.441448\pi\)
0.182910 + 0.983130i \(0.441448\pi\)
\(192\) 0 0
\(193\) −8.23607 −0.592845 −0.296423 0.955057i \(-0.595794\pi\)
−0.296423 + 0.955057i \(0.595794\pi\)
\(194\) −12.6525 −0.908395
\(195\) 0 0
\(196\) 10.9443 0.781734
\(197\) 22.3820 1.59465 0.797325 0.603551i \(-0.206248\pi\)
0.797325 + 0.603551i \(0.206248\pi\)
\(198\) 0 0
\(199\) −5.38197 −0.381517 −0.190759 0.981637i \(-0.561095\pi\)
−0.190759 + 0.981637i \(0.561095\pi\)
\(200\) −8.09017 −0.572061
\(201\) 0 0
\(202\) −5.09017 −0.358143
\(203\) 3.61803 0.253936
\(204\) 0 0
\(205\) −27.8885 −1.94782
\(206\) −10.8541 −0.756241
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) −0.472136 −0.0326583
\(210\) 0 0
\(211\) 0.854102 0.0587988 0.0293994 0.999568i \(-0.490641\pi\)
0.0293994 + 0.999568i \(0.490641\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −12.2361 −0.836440
\(215\) 8.09017 0.551745
\(216\) 0 0
\(217\) −31.6525 −2.14871
\(218\) 4.70820 0.318880
\(219\) 0 0
\(220\) −0.854102 −0.0575835
\(221\) 0.236068 0.0158797
\(222\) 0 0
\(223\) −5.32624 −0.356671 −0.178336 0.983970i \(-0.557071\pi\)
−0.178336 + 0.983970i \(0.557071\pi\)
\(224\) 4.23607 0.283034
\(225\) 0 0
\(226\) −15.3820 −1.02319
\(227\) 24.0344 1.59522 0.797611 0.603172i \(-0.206097\pi\)
0.797611 + 0.603172i \(0.206097\pi\)
\(228\) 0 0
\(229\) −10.7082 −0.707618 −0.353809 0.935318i \(-0.615114\pi\)
−0.353809 + 0.935318i \(0.615114\pi\)
\(230\) −29.7984 −1.96485
\(231\) 0 0
\(232\) 0.854102 0.0560745
\(233\) −4.23607 −0.277514 −0.138757 0.990326i \(-0.544311\pi\)
−0.138757 + 0.990326i \(0.544311\pi\)
\(234\) 0 0
\(235\) 24.7984 1.61767
\(236\) 6.56231 0.427170
\(237\) 0 0
\(238\) −1.00000 −0.0648204
\(239\) 19.2705 1.24651 0.623253 0.782020i \(-0.285811\pi\)
0.623253 + 0.782020i \(0.285811\pi\)
\(240\) 0 0
\(241\) −4.70820 −0.303282 −0.151641 0.988436i \(-0.548456\pi\)
−0.151641 + 0.988436i \(0.548456\pi\)
\(242\) 10.9443 0.703524
\(243\) 0 0
\(244\) −5.47214 −0.350318
\(245\) 39.5967 2.52974
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) −7.47214 −0.474481
\(249\) 0 0
\(250\) −11.1803 −0.707107
\(251\) −24.0902 −1.52056 −0.760279 0.649597i \(-0.774938\pi\)
−0.760279 + 0.649597i \(0.774938\pi\)
\(252\) 0 0
\(253\) −1.94427 −0.122235
\(254\) −20.7984 −1.30501
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 5.47214 0.341342 0.170671 0.985328i \(-0.445406\pi\)
0.170671 + 0.985328i \(0.445406\pi\)
\(258\) 0 0
\(259\) 36.8885 2.29214
\(260\) −3.61803 −0.224381
\(261\) 0 0
\(262\) 2.76393 0.170756
\(263\) −23.2705 −1.43492 −0.717461 0.696599i \(-0.754696\pi\)
−0.717461 + 0.696599i \(0.754696\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 8.47214 0.519460
\(267\) 0 0
\(268\) 1.76393 0.107749
\(269\) −1.00000 −0.0609711
\(270\) 0 0
\(271\) 24.1246 1.46547 0.732733 0.680516i \(-0.238244\pi\)
0.732733 + 0.680516i \(0.238244\pi\)
\(272\) −0.236068 −0.0143137
\(273\) 0 0
\(274\) −15.6180 −0.943520
\(275\) −1.90983 −0.115167
\(276\) 0 0
\(277\) −21.3820 −1.28472 −0.642359 0.766404i \(-0.722044\pi\)
−0.642359 + 0.766404i \(0.722044\pi\)
\(278\) −10.5623 −0.633485
\(279\) 0 0
\(280\) 15.3262 0.915918
\(281\) 29.1803 1.74075 0.870377 0.492387i \(-0.163875\pi\)
0.870377 + 0.492387i \(0.163875\pi\)
\(282\) 0 0
\(283\) 5.76393 0.342630 0.171315 0.985216i \(-0.445198\pi\)
0.171315 + 0.985216i \(0.445198\pi\)
\(284\) −9.70820 −0.576076
\(285\) 0 0
\(286\) −0.236068 −0.0139590
\(287\) 32.6525 1.92741
\(288\) 0 0
\(289\) −16.9443 −0.996722
\(290\) 3.09017 0.181461
\(291\) 0 0
\(292\) −10.7082 −0.626650
\(293\) −7.52786 −0.439783 −0.219891 0.975524i \(-0.570570\pi\)
−0.219891 + 0.975524i \(0.570570\pi\)
\(294\) 0 0
\(295\) 23.7426 1.38235
\(296\) 8.70820 0.506154
\(297\) 0 0
\(298\) 0.326238 0.0188985
\(299\) −8.23607 −0.476304
\(300\) 0 0
\(301\) −9.47214 −0.545965
\(302\) 9.94427 0.572229
\(303\) 0 0
\(304\) 2.00000 0.114708
\(305\) −19.7984 −1.13365
\(306\) 0 0
\(307\) 32.1246 1.83345 0.916724 0.399521i \(-0.130823\pi\)
0.916724 + 0.399521i \(0.130823\pi\)
\(308\) 1.00000 0.0569803
\(309\) 0 0
\(310\) −27.0344 −1.53545
\(311\) 17.2361 0.977368 0.488684 0.872461i \(-0.337477\pi\)
0.488684 + 0.872461i \(0.337477\pi\)
\(312\) 0 0
\(313\) 13.1459 0.743050 0.371525 0.928423i \(-0.378835\pi\)
0.371525 + 0.928423i \(0.378835\pi\)
\(314\) −22.6525 −1.27835
\(315\) 0 0
\(316\) −13.7984 −0.776219
\(317\) 30.2361 1.69823 0.849113 0.528211i \(-0.177137\pi\)
0.849113 + 0.528211i \(0.177137\pi\)
\(318\) 0 0
\(319\) 0.201626 0.0112889
\(320\) 3.61803 0.202254
\(321\) 0 0
\(322\) 34.8885 1.94426
\(323\) −0.472136 −0.0262703
\(324\) 0 0
\(325\) −8.09017 −0.448762
\(326\) −17.3262 −0.959612
\(327\) 0 0
\(328\) 7.70820 0.425614
\(329\) −29.0344 −1.60072
\(330\) 0 0
\(331\) 0.819660 0.0450526 0.0225263 0.999746i \(-0.492829\pi\)
0.0225263 + 0.999746i \(0.492829\pi\)
\(332\) 5.23607 0.287367
\(333\) 0 0
\(334\) 3.61803 0.197970
\(335\) 6.38197 0.348684
\(336\) 0 0
\(337\) −27.9787 −1.52410 −0.762049 0.647520i \(-0.775806\pi\)
−0.762049 + 0.647520i \(0.775806\pi\)
\(338\) 12.0000 0.652714
\(339\) 0 0
\(340\) −0.854102 −0.0463202
\(341\) −1.76393 −0.0955223
\(342\) 0 0
\(343\) −16.7082 −0.902158
\(344\) −2.23607 −0.120561
\(345\) 0 0
\(346\) −7.47214 −0.401705
\(347\) −13.3607 −0.717239 −0.358619 0.933484i \(-0.616752\pi\)
−0.358619 + 0.933484i \(0.616752\pi\)
\(348\) 0 0
\(349\) 21.2705 1.13858 0.569292 0.822135i \(-0.307217\pi\)
0.569292 + 0.822135i \(0.307217\pi\)
\(350\) 34.2705 1.83184
\(351\) 0 0
\(352\) 0.236068 0.0125825
\(353\) 9.85410 0.524481 0.262240 0.965003i \(-0.415539\pi\)
0.262240 + 0.965003i \(0.415539\pi\)
\(354\) 0 0
\(355\) −35.1246 −1.86422
\(356\) 9.79837 0.519313
\(357\) 0 0
\(358\) 18.7082 0.988759
\(359\) 16.9443 0.894284 0.447142 0.894463i \(-0.352442\pi\)
0.447142 + 0.894463i \(0.352442\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) −19.4164 −1.02050
\(363\) 0 0
\(364\) 4.23607 0.222030
\(365\) −38.7426 −2.02788
\(366\) 0 0
\(367\) −9.20163 −0.480321 −0.240160 0.970733i \(-0.577200\pi\)
−0.240160 + 0.970733i \(0.577200\pi\)
\(368\) 8.23607 0.429335
\(369\) 0 0
\(370\) 31.5066 1.63795
\(371\) 0 0
\(372\) 0 0
\(373\) 6.94427 0.359561 0.179780 0.983707i \(-0.442461\pi\)
0.179780 + 0.983707i \(0.442461\pi\)
\(374\) −0.0557281 −0.00288163
\(375\) 0 0
\(376\) −6.85410 −0.353473
\(377\) 0.854102 0.0439885
\(378\) 0 0
\(379\) 6.14590 0.315694 0.157847 0.987464i \(-0.449545\pi\)
0.157847 + 0.987464i \(0.449545\pi\)
\(380\) 7.23607 0.371202
\(381\) 0 0
\(382\) −5.05573 −0.258674
\(383\) 17.3820 0.888177 0.444088 0.895983i \(-0.353528\pi\)
0.444088 + 0.895983i \(0.353528\pi\)
\(384\) 0 0
\(385\) 3.61803 0.184392
\(386\) 8.23607 0.419205
\(387\) 0 0
\(388\) 12.6525 0.642332
\(389\) −28.9443 −1.46753 −0.733766 0.679402i \(-0.762239\pi\)
−0.733766 + 0.679402i \(0.762239\pi\)
\(390\) 0 0
\(391\) −1.94427 −0.0983261
\(392\) −10.9443 −0.552769
\(393\) 0 0
\(394\) −22.3820 −1.12759
\(395\) −49.9230 −2.51190
\(396\) 0 0
\(397\) −34.2705 −1.71999 −0.859994 0.510304i \(-0.829533\pi\)
−0.859994 + 0.510304i \(0.829533\pi\)
\(398\) 5.38197 0.269774
\(399\) 0 0
\(400\) 8.09017 0.404508
\(401\) 4.27051 0.213259 0.106630 0.994299i \(-0.465994\pi\)
0.106630 + 0.994299i \(0.465994\pi\)
\(402\) 0 0
\(403\) −7.47214 −0.372214
\(404\) 5.09017 0.253245
\(405\) 0 0
\(406\) −3.61803 −0.179560
\(407\) 2.05573 0.101899
\(408\) 0 0
\(409\) −11.6525 −0.576178 −0.288089 0.957604i \(-0.593020\pi\)
−0.288089 + 0.957604i \(0.593020\pi\)
\(410\) 27.8885 1.37732
\(411\) 0 0
\(412\) 10.8541 0.534743
\(413\) −27.7984 −1.36787
\(414\) 0 0
\(415\) 18.9443 0.929938
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) 0.472136 0.0230929
\(419\) 17.4377 0.851887 0.425944 0.904750i \(-0.359942\pi\)
0.425944 + 0.904750i \(0.359942\pi\)
\(420\) 0 0
\(421\) 11.4721 0.559118 0.279559 0.960129i \(-0.409812\pi\)
0.279559 + 0.960129i \(0.409812\pi\)
\(422\) −0.854102 −0.0415770
\(423\) 0 0
\(424\) 0 0
\(425\) −1.90983 −0.0926404
\(426\) 0 0
\(427\) 23.1803 1.12178
\(428\) 12.2361 0.591453
\(429\) 0 0
\(430\) −8.09017 −0.390143
\(431\) 15.4721 0.745267 0.372633 0.927979i \(-0.378455\pi\)
0.372633 + 0.927979i \(0.378455\pi\)
\(432\) 0 0
\(433\) 12.2016 0.586373 0.293186 0.956055i \(-0.405284\pi\)
0.293186 + 0.956055i \(0.405284\pi\)
\(434\) 31.6525 1.51937
\(435\) 0 0
\(436\) −4.70820 −0.225482
\(437\) 16.4721 0.787969
\(438\) 0 0
\(439\) 19.1459 0.913784 0.456892 0.889522i \(-0.348963\pi\)
0.456892 + 0.889522i \(0.348963\pi\)
\(440\) 0.854102 0.0407177
\(441\) 0 0
\(442\) −0.236068 −0.0112286
\(443\) −33.4164 −1.58766 −0.793831 0.608139i \(-0.791916\pi\)
−0.793831 + 0.608139i \(0.791916\pi\)
\(444\) 0 0
\(445\) 35.4508 1.68053
\(446\) 5.32624 0.252205
\(447\) 0 0
\(448\) −4.23607 −0.200135
\(449\) −2.90983 −0.137323 −0.0686617 0.997640i \(-0.521873\pi\)
−0.0686617 + 0.997640i \(0.521873\pi\)
\(450\) 0 0
\(451\) 1.81966 0.0856844
\(452\) 15.3820 0.723507
\(453\) 0 0
\(454\) −24.0344 −1.12799
\(455\) 15.3262 0.718505
\(456\) 0 0
\(457\) 26.7984 1.25358 0.626788 0.779190i \(-0.284369\pi\)
0.626788 + 0.779190i \(0.284369\pi\)
\(458\) 10.7082 0.500362
\(459\) 0 0
\(460\) 29.7984 1.38936
\(461\) −21.1246 −0.983871 −0.491936 0.870632i \(-0.663710\pi\)
−0.491936 + 0.870632i \(0.663710\pi\)
\(462\) 0 0
\(463\) −20.0902 −0.933669 −0.466835 0.884345i \(-0.654606\pi\)
−0.466835 + 0.884345i \(0.654606\pi\)
\(464\) −0.854102 −0.0396507
\(465\) 0 0
\(466\) 4.23607 0.196232
\(467\) 6.58359 0.304652 0.152326 0.988330i \(-0.451324\pi\)
0.152326 + 0.988330i \(0.451324\pi\)
\(468\) 0 0
\(469\) −7.47214 −0.345031
\(470\) −24.7984 −1.14386
\(471\) 0 0
\(472\) −6.56231 −0.302055
\(473\) −0.527864 −0.0242712
\(474\) 0 0
\(475\) 16.1803 0.742405
\(476\) 1.00000 0.0458349
\(477\) 0 0
\(478\) −19.2705 −0.881413
\(479\) 36.5967 1.67215 0.836074 0.548617i \(-0.184845\pi\)
0.836074 + 0.548617i \(0.184845\pi\)
\(480\) 0 0
\(481\) 8.70820 0.397060
\(482\) 4.70820 0.214453
\(483\) 0 0
\(484\) −10.9443 −0.497467
\(485\) 45.7771 2.07863
\(486\) 0 0
\(487\) −14.8328 −0.672139 −0.336070 0.941837i \(-0.609098\pi\)
−0.336070 + 0.941837i \(0.609098\pi\)
\(488\) 5.47214 0.247712
\(489\) 0 0
\(490\) −39.5967 −1.78880
\(491\) −6.76393 −0.305252 −0.152626 0.988284i \(-0.548773\pi\)
−0.152626 + 0.988284i \(0.548773\pi\)
\(492\) 0 0
\(493\) 0.201626 0.00908078
\(494\) 2.00000 0.0899843
\(495\) 0 0
\(496\) 7.47214 0.335509
\(497\) 41.1246 1.84469
\(498\) 0 0
\(499\) 11.9443 0.534699 0.267350 0.963600i \(-0.413852\pi\)
0.267350 + 0.963600i \(0.413852\pi\)
\(500\) 11.1803 0.500000
\(501\) 0 0
\(502\) 24.0902 1.07520
\(503\) −34.3607 −1.53207 −0.766033 0.642801i \(-0.777772\pi\)
−0.766033 + 0.642801i \(0.777772\pi\)
\(504\) 0 0
\(505\) 18.4164 0.819519
\(506\) 1.94427 0.0864334
\(507\) 0 0
\(508\) 20.7984 0.922779
\(509\) −26.6738 −1.18229 −0.591147 0.806564i \(-0.701325\pi\)
−0.591147 + 0.806564i \(0.701325\pi\)
\(510\) 0 0
\(511\) 45.3607 2.00664
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −5.47214 −0.241366
\(515\) 39.2705 1.73047
\(516\) 0 0
\(517\) −1.61803 −0.0711611
\(518\) −36.8885 −1.62079
\(519\) 0 0
\(520\) 3.61803 0.158661
\(521\) −30.4164 −1.33257 −0.666284 0.745699i \(-0.732116\pi\)
−0.666284 + 0.745699i \(0.732116\pi\)
\(522\) 0 0
\(523\) 27.6180 1.20765 0.603826 0.797116i \(-0.293642\pi\)
0.603826 + 0.797116i \(0.293642\pi\)
\(524\) −2.76393 −0.120743
\(525\) 0 0
\(526\) 23.2705 1.01464
\(527\) −1.76393 −0.0768381
\(528\) 0 0
\(529\) 44.8328 1.94925
\(530\) 0 0
\(531\) 0 0
\(532\) −8.47214 −0.367314
\(533\) 7.70820 0.333879
\(534\) 0 0
\(535\) 44.2705 1.91398
\(536\) −1.76393 −0.0761903
\(537\) 0 0
\(538\) 1.00000 0.0431131
\(539\) −2.58359 −0.111283
\(540\) 0 0
\(541\) 20.4721 0.880166 0.440083 0.897957i \(-0.354949\pi\)
0.440083 + 0.897957i \(0.354949\pi\)
\(542\) −24.1246 −1.03624
\(543\) 0 0
\(544\) 0.236068 0.0101213
\(545\) −17.0344 −0.729675
\(546\) 0 0
\(547\) 3.20163 0.136892 0.0684458 0.997655i \(-0.478196\pi\)
0.0684458 + 0.997655i \(0.478196\pi\)
\(548\) 15.6180 0.667169
\(549\) 0 0
\(550\) 1.90983 0.0814354
\(551\) −1.70820 −0.0727719
\(552\) 0 0
\(553\) 58.4508 2.48558
\(554\) 21.3820 0.908433
\(555\) 0 0
\(556\) 10.5623 0.447942
\(557\) −28.2918 −1.19876 −0.599381 0.800464i \(-0.704587\pi\)
−0.599381 + 0.800464i \(0.704587\pi\)
\(558\) 0 0
\(559\) −2.23607 −0.0945756
\(560\) −15.3262 −0.647652
\(561\) 0 0
\(562\) −29.1803 −1.23090
\(563\) −7.29180 −0.307313 −0.153656 0.988124i \(-0.549105\pi\)
−0.153656 + 0.988124i \(0.549105\pi\)
\(564\) 0 0
\(565\) 55.6525 2.34132
\(566\) −5.76393 −0.242276
\(567\) 0 0
\(568\) 9.70820 0.407347
\(569\) 5.90983 0.247753 0.123876 0.992298i \(-0.460467\pi\)
0.123876 + 0.992298i \(0.460467\pi\)
\(570\) 0 0
\(571\) 10.0000 0.418487 0.209243 0.977864i \(-0.432900\pi\)
0.209243 + 0.977864i \(0.432900\pi\)
\(572\) 0.236068 0.00987050
\(573\) 0 0
\(574\) −32.6525 −1.36289
\(575\) 66.6312 2.77871
\(576\) 0 0
\(577\) 3.00000 0.124892 0.0624458 0.998048i \(-0.480110\pi\)
0.0624458 + 0.998048i \(0.480110\pi\)
\(578\) 16.9443 0.704789
\(579\) 0 0
\(580\) −3.09017 −0.128312
\(581\) −22.1803 −0.920196
\(582\) 0 0
\(583\) 0 0
\(584\) 10.7082 0.443109
\(585\) 0 0
\(586\) 7.52786 0.310973
\(587\) 10.6738 0.440553 0.220277 0.975437i \(-0.429304\pi\)
0.220277 + 0.975437i \(0.429304\pi\)
\(588\) 0 0
\(589\) 14.9443 0.615768
\(590\) −23.7426 −0.977469
\(591\) 0 0
\(592\) −8.70820 −0.357905
\(593\) 0.583592 0.0239653 0.0119826 0.999928i \(-0.496186\pi\)
0.0119826 + 0.999928i \(0.496186\pi\)
\(594\) 0 0
\(595\) 3.61803 0.148325
\(596\) −0.326238 −0.0133632
\(597\) 0 0
\(598\) 8.23607 0.336798
\(599\) 15.5967 0.637266 0.318633 0.947878i \(-0.396776\pi\)
0.318633 + 0.947878i \(0.396776\pi\)
\(600\) 0 0
\(601\) −25.6869 −1.04779 −0.523896 0.851782i \(-0.675522\pi\)
−0.523896 + 0.851782i \(0.675522\pi\)
\(602\) 9.47214 0.386055
\(603\) 0 0
\(604\) −9.94427 −0.404627
\(605\) −39.5967 −1.60984
\(606\) 0 0
\(607\) 47.5755 1.93103 0.965514 0.260350i \(-0.0838381\pi\)
0.965514 + 0.260350i \(0.0838381\pi\)
\(608\) −2.00000 −0.0811107
\(609\) 0 0
\(610\) 19.7984 0.801613
\(611\) −6.85410 −0.277287
\(612\) 0 0
\(613\) −26.5279 −1.07145 −0.535725 0.844392i \(-0.679962\pi\)
−0.535725 + 0.844392i \(0.679962\pi\)
\(614\) −32.1246 −1.29644
\(615\) 0 0
\(616\) −1.00000 −0.0402911
\(617\) −36.1591 −1.45571 −0.727854 0.685732i \(-0.759482\pi\)
−0.727854 + 0.685732i \(0.759482\pi\)
\(618\) 0 0
\(619\) −40.8328 −1.64121 −0.820605 0.571496i \(-0.806363\pi\)
−0.820605 + 0.571496i \(0.806363\pi\)
\(620\) 27.0344 1.08573
\(621\) 0 0
\(622\) −17.2361 −0.691103
\(623\) −41.5066 −1.66293
\(624\) 0 0
\(625\) 0 0
\(626\) −13.1459 −0.525416
\(627\) 0 0
\(628\) 22.6525 0.903932
\(629\) 2.05573 0.0819672
\(630\) 0 0
\(631\) 5.20163 0.207073 0.103537 0.994626i \(-0.466984\pi\)
0.103537 + 0.994626i \(0.466984\pi\)
\(632\) 13.7984 0.548870
\(633\) 0 0
\(634\) −30.2361 −1.20083
\(635\) 75.2492 2.98617
\(636\) 0 0
\(637\) −10.9443 −0.433628
\(638\) −0.201626 −0.00798245
\(639\) 0 0
\(640\) −3.61803 −0.143015
\(641\) −3.18034 −0.125616 −0.0628079 0.998026i \(-0.520006\pi\)
−0.0628079 + 0.998026i \(0.520006\pi\)
\(642\) 0 0
\(643\) −4.14590 −0.163498 −0.0817491 0.996653i \(-0.526051\pi\)
−0.0817491 + 0.996653i \(0.526051\pi\)
\(644\) −34.8885 −1.37480
\(645\) 0 0
\(646\) 0.472136 0.0185759
\(647\) 2.81966 0.110852 0.0554261 0.998463i \(-0.482348\pi\)
0.0554261 + 0.998463i \(0.482348\pi\)
\(648\) 0 0
\(649\) −1.54915 −0.0608095
\(650\) 8.09017 0.317323
\(651\) 0 0
\(652\) 17.3262 0.678548
\(653\) 27.5410 1.07776 0.538882 0.842381i \(-0.318847\pi\)
0.538882 + 0.842381i \(0.318847\pi\)
\(654\) 0 0
\(655\) −10.0000 −0.390732
\(656\) −7.70820 −0.300955
\(657\) 0 0
\(658\) 29.0344 1.13188
\(659\) 31.3262 1.22030 0.610148 0.792287i \(-0.291110\pi\)
0.610148 + 0.792287i \(0.291110\pi\)
\(660\) 0 0
\(661\) −20.8541 −0.811131 −0.405565 0.914066i \(-0.632925\pi\)
−0.405565 + 0.914066i \(0.632925\pi\)
\(662\) −0.819660 −0.0318570
\(663\) 0 0
\(664\) −5.23607 −0.203199
\(665\) −30.6525 −1.18865
\(666\) 0 0
\(667\) −7.03444 −0.272375
\(668\) −3.61803 −0.139986
\(669\) 0 0
\(670\) −6.38197 −0.246557
\(671\) 1.29180 0.0498692
\(672\) 0 0
\(673\) 10.7082 0.412771 0.206385 0.978471i \(-0.433830\pi\)
0.206385 + 0.978471i \(0.433830\pi\)
\(674\) 27.9787 1.07770
\(675\) 0 0
\(676\) −12.0000 −0.461538
\(677\) 17.4377 0.670185 0.335093 0.942185i \(-0.391232\pi\)
0.335093 + 0.942185i \(0.391232\pi\)
\(678\) 0 0
\(679\) −53.5967 −2.05685
\(680\) 0.854102 0.0327533
\(681\) 0 0
\(682\) 1.76393 0.0675444
\(683\) 21.2361 0.812576 0.406288 0.913745i \(-0.366823\pi\)
0.406288 + 0.913745i \(0.366823\pi\)
\(684\) 0 0
\(685\) 56.5066 2.15901
\(686\) 16.7082 0.637922
\(687\) 0 0
\(688\) 2.23607 0.0852493
\(689\) 0 0
\(690\) 0 0
\(691\) −15.1246 −0.575367 −0.287684 0.957725i \(-0.592885\pi\)
−0.287684 + 0.957725i \(0.592885\pi\)
\(692\) 7.47214 0.284048
\(693\) 0 0
\(694\) 13.3607 0.507164
\(695\) 38.2148 1.44957
\(696\) 0 0
\(697\) 1.81966 0.0689245
\(698\) −21.2705 −0.805101
\(699\) 0 0
\(700\) −34.2705 −1.29530
\(701\) 10.9787 0.414660 0.207330 0.978271i \(-0.433523\pi\)
0.207330 + 0.978271i \(0.433523\pi\)
\(702\) 0 0
\(703\) −17.4164 −0.656872
\(704\) −0.236068 −0.00889715
\(705\) 0 0
\(706\) −9.85410 −0.370864
\(707\) −21.5623 −0.810934
\(708\) 0 0
\(709\) −37.9443 −1.42503 −0.712514 0.701658i \(-0.752443\pi\)
−0.712514 + 0.701658i \(0.752443\pi\)
\(710\) 35.1246 1.31820
\(711\) 0 0
\(712\) −9.79837 −0.367210
\(713\) 61.5410 2.30473
\(714\) 0 0
\(715\) 0.854102 0.0319416
\(716\) −18.7082 −0.699158
\(717\) 0 0
\(718\) −16.9443 −0.632355
\(719\) −42.1803 −1.57306 −0.786531 0.617551i \(-0.788125\pi\)
−0.786531 + 0.617551i \(0.788125\pi\)
\(720\) 0 0
\(721\) −45.9787 −1.71234
\(722\) 15.0000 0.558242
\(723\) 0 0
\(724\) 19.4164 0.721605
\(725\) −6.90983 −0.256625
\(726\) 0 0
\(727\) −44.7082 −1.65814 −0.829068 0.559148i \(-0.811128\pi\)
−0.829068 + 0.559148i \(0.811128\pi\)
\(728\) −4.23607 −0.156999
\(729\) 0 0
\(730\) 38.7426 1.43393
\(731\) −0.527864 −0.0195238
\(732\) 0 0
\(733\) −33.3607 −1.23220 −0.616102 0.787666i \(-0.711289\pi\)
−0.616102 + 0.787666i \(0.711289\pi\)
\(734\) 9.20163 0.339638
\(735\) 0 0
\(736\) −8.23607 −0.303585
\(737\) −0.416408 −0.0153386
\(738\) 0 0
\(739\) 35.0344 1.28876 0.644381 0.764704i \(-0.277115\pi\)
0.644381 + 0.764704i \(0.277115\pi\)
\(740\) −31.5066 −1.15820
\(741\) 0 0
\(742\) 0 0
\(743\) 9.20163 0.337575 0.168787 0.985652i \(-0.446015\pi\)
0.168787 + 0.985652i \(0.446015\pi\)
\(744\) 0 0
\(745\) −1.18034 −0.0432443
\(746\) −6.94427 −0.254248
\(747\) 0 0
\(748\) 0.0557281 0.00203762
\(749\) −51.8328 −1.89393
\(750\) 0 0
\(751\) 39.8673 1.45478 0.727388 0.686226i \(-0.240734\pi\)
0.727388 + 0.686226i \(0.240734\pi\)
\(752\) 6.85410 0.249943
\(753\) 0 0
\(754\) −0.854102 −0.0311046
\(755\) −35.9787 −1.30940
\(756\) 0 0
\(757\) −38.9443 −1.41545 −0.707727 0.706486i \(-0.750279\pi\)
−0.707727 + 0.706486i \(0.750279\pi\)
\(758\) −6.14590 −0.223229
\(759\) 0 0
\(760\) −7.23607 −0.262480
\(761\) 1.41641 0.0513447 0.0256724 0.999670i \(-0.491827\pi\)
0.0256724 + 0.999670i \(0.491827\pi\)
\(762\) 0 0
\(763\) 19.9443 0.722031
\(764\) 5.05573 0.182910
\(765\) 0 0
\(766\) −17.3820 −0.628036
\(767\) −6.56231 −0.236951
\(768\) 0 0
\(769\) −33.3262 −1.20177 −0.600887 0.799334i \(-0.705186\pi\)
−0.600887 + 0.799334i \(0.705186\pi\)
\(770\) −3.61803 −0.130385
\(771\) 0 0
\(772\) −8.23607 −0.296423
\(773\) −47.5967 −1.71194 −0.855968 0.517029i \(-0.827038\pi\)
−0.855968 + 0.517029i \(0.827038\pi\)
\(774\) 0 0
\(775\) 60.4508 2.17146
\(776\) −12.6525 −0.454197
\(777\) 0 0
\(778\) 28.9443 1.03770
\(779\) −15.4164 −0.552350
\(780\) 0 0
\(781\) 2.29180 0.0820069
\(782\) 1.94427 0.0695270
\(783\) 0 0
\(784\) 10.9443 0.390867
\(785\) 81.9574 2.92519
\(786\) 0 0
\(787\) −2.34752 −0.0836802 −0.0418401 0.999124i \(-0.513322\pi\)
−0.0418401 + 0.999124i \(0.513322\pi\)
\(788\) 22.3820 0.797325
\(789\) 0 0
\(790\) 49.9230 1.77618
\(791\) −65.1591 −2.31679
\(792\) 0 0
\(793\) 5.47214 0.194321
\(794\) 34.2705 1.21621
\(795\) 0 0
\(796\) −5.38197 −0.190759
\(797\) −13.2016 −0.467626 −0.233813 0.972282i \(-0.575120\pi\)
−0.233813 + 0.972282i \(0.575120\pi\)
\(798\) 0 0
\(799\) −1.61803 −0.0572419
\(800\) −8.09017 −0.286031
\(801\) 0 0
\(802\) −4.27051 −0.150797
\(803\) 2.52786 0.0892064
\(804\) 0 0
\(805\) −126.228 −4.44895
\(806\) 7.47214 0.263195
\(807\) 0 0
\(808\) −5.09017 −0.179072
\(809\) −15.5279 −0.545931 −0.272965 0.962024i \(-0.588004\pi\)
−0.272965 + 0.962024i \(0.588004\pi\)
\(810\) 0 0
\(811\) −47.5967 −1.67135 −0.835674 0.549226i \(-0.814923\pi\)
−0.835674 + 0.549226i \(0.814923\pi\)
\(812\) 3.61803 0.126968
\(813\) 0 0
\(814\) −2.05573 −0.0720532
\(815\) 62.6869 2.19583
\(816\) 0 0
\(817\) 4.47214 0.156460
\(818\) 11.6525 0.407419
\(819\) 0 0
\(820\) −27.8885 −0.973910
\(821\) −38.3607 −1.33880 −0.669398 0.742904i \(-0.733448\pi\)
−0.669398 + 0.742904i \(0.733448\pi\)
\(822\) 0 0
\(823\) −50.8885 −1.77386 −0.886932 0.461901i \(-0.847168\pi\)
−0.886932 + 0.461901i \(0.847168\pi\)
\(824\) −10.8541 −0.378121
\(825\) 0 0
\(826\) 27.7984 0.967229
\(827\) 37.7426 1.31244 0.656220 0.754569i \(-0.272154\pi\)
0.656220 + 0.754569i \(0.272154\pi\)
\(828\) 0 0
\(829\) 43.7984 1.52118 0.760590 0.649232i \(-0.224910\pi\)
0.760590 + 0.649232i \(0.224910\pi\)
\(830\) −18.9443 −0.657565
\(831\) 0 0
\(832\) −1.00000 −0.0346688
\(833\) −2.58359 −0.0895162
\(834\) 0 0
\(835\) −13.0902 −0.453004
\(836\) −0.472136 −0.0163292
\(837\) 0 0
\(838\) −17.4377 −0.602375
\(839\) −14.4508 −0.498899 −0.249449 0.968388i \(-0.580250\pi\)
−0.249449 + 0.968388i \(0.580250\pi\)
\(840\) 0 0
\(841\) −28.2705 −0.974845
\(842\) −11.4721 −0.395356
\(843\) 0 0
\(844\) 0.854102 0.0293994
\(845\) −43.4164 −1.49357
\(846\) 0 0
\(847\) 46.3607 1.59297
\(848\) 0 0
\(849\) 0 0
\(850\) 1.90983 0.0655066
\(851\) −71.7214 −2.45858
\(852\) 0 0
\(853\) 51.8115 1.77399 0.886996 0.461776i \(-0.152788\pi\)
0.886996 + 0.461776i \(0.152788\pi\)
\(854\) −23.1803 −0.793215
\(855\) 0 0
\(856\) −12.2361 −0.418220
\(857\) 42.0689 1.43705 0.718523 0.695503i \(-0.244819\pi\)
0.718523 + 0.695503i \(0.244819\pi\)
\(858\) 0 0
\(859\) −12.7426 −0.434773 −0.217387 0.976086i \(-0.569753\pi\)
−0.217387 + 0.976086i \(0.569753\pi\)
\(860\) 8.09017 0.275873
\(861\) 0 0
\(862\) −15.4721 −0.526983
\(863\) −17.3262 −0.589792 −0.294896 0.955529i \(-0.595285\pi\)
−0.294896 + 0.955529i \(0.595285\pi\)
\(864\) 0 0
\(865\) 27.0344 0.919199
\(866\) −12.2016 −0.414628
\(867\) 0 0
\(868\) −31.6525 −1.07436
\(869\) 3.25735 0.110498
\(870\) 0 0
\(871\) −1.76393 −0.0597686
\(872\) 4.70820 0.159440
\(873\) 0 0
\(874\) −16.4721 −0.557178
\(875\) −47.3607 −1.60108
\(876\) 0 0
\(877\) 42.5755 1.43767 0.718836 0.695180i \(-0.244675\pi\)
0.718836 + 0.695180i \(0.244675\pi\)
\(878\) −19.1459 −0.646143
\(879\) 0 0
\(880\) −0.854102 −0.0287918
\(881\) 44.5066 1.49946 0.749732 0.661741i \(-0.230182\pi\)
0.749732 + 0.661741i \(0.230182\pi\)
\(882\) 0 0
\(883\) −50.1935 −1.68915 −0.844573 0.535441i \(-0.820146\pi\)
−0.844573 + 0.535441i \(0.820146\pi\)
\(884\) 0.236068 0.00793983
\(885\) 0 0
\(886\) 33.4164 1.12265
\(887\) 13.8328 0.464460 0.232230 0.972661i \(-0.425398\pi\)
0.232230 + 0.972661i \(0.425398\pi\)
\(888\) 0 0
\(889\) −88.1033 −2.95489
\(890\) −35.4508 −1.18832
\(891\) 0 0
\(892\) −5.32624 −0.178336
\(893\) 13.7082 0.458728
\(894\) 0 0
\(895\) −67.6869 −2.26252
\(896\) 4.23607 0.141517
\(897\) 0 0
\(898\) 2.90983 0.0971023
\(899\) −6.38197 −0.212850
\(900\) 0 0
\(901\) 0 0
\(902\) −1.81966 −0.0605881
\(903\) 0 0
\(904\) −15.3820 −0.511597
\(905\) 70.2492 2.33516
\(906\) 0 0
\(907\) −14.1246 −0.469000 −0.234500 0.972116i \(-0.575345\pi\)
−0.234500 + 0.972116i \(0.575345\pi\)
\(908\) 24.0344 0.797611
\(909\) 0 0
\(910\) −15.3262 −0.508060
\(911\) −47.3394 −1.56842 −0.784212 0.620493i \(-0.786933\pi\)
−0.784212 + 0.620493i \(0.786933\pi\)
\(912\) 0 0
\(913\) −1.23607 −0.0409079
\(914\) −26.7984 −0.886411
\(915\) 0 0
\(916\) −10.7082 −0.353809
\(917\) 11.7082 0.386639
\(918\) 0 0
\(919\) −5.34752 −0.176399 −0.0881993 0.996103i \(-0.528111\pi\)
−0.0881993 + 0.996103i \(0.528111\pi\)
\(920\) −29.7984 −0.982423
\(921\) 0 0
\(922\) 21.1246 0.695702
\(923\) 9.70820 0.319549
\(924\) 0 0
\(925\) −70.4508 −2.31641
\(926\) 20.0902 0.660204
\(927\) 0 0
\(928\) 0.854102 0.0280373
\(929\) −17.8197 −0.584644 −0.292322 0.956320i \(-0.594428\pi\)
−0.292322 + 0.956320i \(0.594428\pi\)
\(930\) 0 0
\(931\) 21.8885 0.717368
\(932\) −4.23607 −0.138757
\(933\) 0 0
\(934\) −6.58359 −0.215422
\(935\) 0.201626 0.00659388
\(936\) 0 0
\(937\) −33.0902 −1.08101 −0.540504 0.841341i \(-0.681767\pi\)
−0.540504 + 0.841341i \(0.681767\pi\)
\(938\) 7.47214 0.243974
\(939\) 0 0
\(940\) 24.7984 0.808834
\(941\) 46.9787 1.53146 0.765731 0.643161i \(-0.222377\pi\)
0.765731 + 0.643161i \(0.222377\pi\)
\(942\) 0 0
\(943\) −63.4853 −2.06737
\(944\) 6.56231 0.213585
\(945\) 0 0
\(946\) 0.527864 0.0171623
\(947\) 50.2148 1.63176 0.815881 0.578220i \(-0.196253\pi\)
0.815881 + 0.578220i \(0.196253\pi\)
\(948\) 0 0
\(949\) 10.7082 0.347603
\(950\) −16.1803 −0.524960
\(951\) 0 0
\(952\) −1.00000 −0.0324102
\(953\) −25.3050 −0.819708 −0.409854 0.912151i \(-0.634420\pi\)
−0.409854 + 0.912151i \(0.634420\pi\)
\(954\) 0 0
\(955\) 18.2918 0.591909
\(956\) 19.2705 0.623253
\(957\) 0 0
\(958\) −36.5967 −1.18239
\(959\) −66.1591 −2.13639
\(960\) 0 0
\(961\) 24.8328 0.801059
\(962\) −8.70820 −0.280764
\(963\) 0 0
\(964\) −4.70820 −0.151641
\(965\) −29.7984 −0.959244
\(966\) 0 0
\(967\) 1.85410 0.0596239 0.0298119 0.999556i \(-0.490509\pi\)
0.0298119 + 0.999556i \(0.490509\pi\)
\(968\) 10.9443 0.351762
\(969\) 0 0
\(970\) −45.7771 −1.46981
\(971\) 0.652476 0.0209389 0.0104695 0.999945i \(-0.496667\pi\)
0.0104695 + 0.999945i \(0.496667\pi\)
\(972\) 0 0
\(973\) −44.7426 −1.43438
\(974\) 14.8328 0.475274
\(975\) 0 0
\(976\) −5.47214 −0.175159
\(977\) −31.1459 −0.996446 −0.498223 0.867049i \(-0.666014\pi\)
−0.498223 + 0.867049i \(0.666014\pi\)
\(978\) 0 0
\(979\) −2.31308 −0.0739264
\(980\) 39.5967 1.26487
\(981\) 0 0
\(982\) 6.76393 0.215846
\(983\) 31.4377 1.00271 0.501353 0.865243i \(-0.332836\pi\)
0.501353 + 0.865243i \(0.332836\pi\)
\(984\) 0 0
\(985\) 80.9787 2.58020
\(986\) −0.201626 −0.00642108
\(987\) 0 0
\(988\) −2.00000 −0.0636285
\(989\) 18.4164 0.585608
\(990\) 0 0
\(991\) −16.3820 −0.520390 −0.260195 0.965556i \(-0.583787\pi\)
−0.260195 + 0.965556i \(0.583787\pi\)
\(992\) −7.47214 −0.237241
\(993\) 0 0
\(994\) −41.1246 −1.30439
\(995\) −19.4721 −0.617308
\(996\) 0 0
\(997\) −17.5836 −0.556878 −0.278439 0.960454i \(-0.589817\pi\)
−0.278439 + 0.960454i \(0.589817\pi\)
\(998\) −11.9443 −0.378089
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4842.2.a.f.1.2 2
3.2 odd 2 538.2.a.a.1.2 2
12.11 even 2 4304.2.a.d.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.a.1.2 2 3.2 odd 2
4304.2.a.d.1.1 2 12.11 even 2
4842.2.a.f.1.2 2 1.1 even 1 trivial