Properties

Label 4842.2.a.q.1.2
Level $4842$
Weight $2$
Character 4842.1
Self dual yes
Analytic conductor $38.664$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4842,2,Mod(1,4842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6635646587\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 33x^{6} + 352x^{4} - 18x^{3} - 1229x^{2} + 178x + 108 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1614)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.17461\) of defining polynomial
Character \(\chi\) \(=\) 4842.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -3.17461 q^{5} -4.10776 q^{7} +1.00000 q^{8} -3.17461 q^{10} -5.68264 q^{11} -6.22695 q^{13} -4.10776 q^{14} +1.00000 q^{16} -5.79856 q^{17} +2.64964 q^{19} -3.17461 q^{20} -5.68264 q^{22} +6.44820 q^{23} +5.07816 q^{25} -6.22695 q^{26} -4.10776 q^{28} -3.80603 q^{29} +2.24492 q^{31} +1.00000 q^{32} -5.79856 q^{34} +13.0405 q^{35} +7.14892 q^{37} +2.64964 q^{38} -3.17461 q^{40} -6.53055 q^{41} +6.32900 q^{43} -5.68264 q^{44} +6.44820 q^{46} -3.49047 q^{47} +9.87371 q^{49} +5.07816 q^{50} -6.22695 q^{52} -7.70122 q^{53} +18.0402 q^{55} -4.10776 q^{56} -3.80603 q^{58} -5.61944 q^{59} -6.40288 q^{61} +2.24492 q^{62} +1.00000 q^{64} +19.7682 q^{65} -4.28369 q^{67} -5.79856 q^{68} +13.0405 q^{70} +13.7436 q^{71} -6.85491 q^{73} +7.14892 q^{74} +2.64964 q^{76} +23.3429 q^{77} +8.62991 q^{79} -3.17461 q^{80} -6.53055 q^{82} +2.78811 q^{83} +18.4082 q^{85} +6.32900 q^{86} -5.68264 q^{88} -0.930456 q^{89} +25.5788 q^{91} +6.44820 q^{92} -3.49047 q^{94} -8.41157 q^{95} +6.12189 q^{97} +9.87371 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 9 q^{7} + 8 q^{8} - 8 q^{11} - 3 q^{13} + 9 q^{14} + 8 q^{16} - 8 q^{17} + 18 q^{19} - 8 q^{22} + 10 q^{23} + 26 q^{25} - 3 q^{26} + 9 q^{28} + 9 q^{29} + 18 q^{31} + 8 q^{32}+ \cdots + 29 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.17461 −1.41973 −0.709865 0.704338i \(-0.751244\pi\)
−0.709865 + 0.704338i \(0.751244\pi\)
\(6\) 0 0
\(7\) −4.10776 −1.55259 −0.776294 0.630371i \(-0.782903\pi\)
−0.776294 + 0.630371i \(0.782903\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −3.17461 −1.00390
\(11\) −5.68264 −1.71338 −0.856690 0.515832i \(-0.827483\pi\)
−0.856690 + 0.515832i \(0.827483\pi\)
\(12\) 0 0
\(13\) −6.22695 −1.72705 −0.863523 0.504309i \(-0.831747\pi\)
−0.863523 + 0.504309i \(0.831747\pi\)
\(14\) −4.10776 −1.09785
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −5.79856 −1.40636 −0.703179 0.711013i \(-0.748237\pi\)
−0.703179 + 0.711013i \(0.748237\pi\)
\(18\) 0 0
\(19\) 2.64964 0.607869 0.303934 0.952693i \(-0.401700\pi\)
0.303934 + 0.952693i \(0.401700\pi\)
\(20\) −3.17461 −0.709865
\(21\) 0 0
\(22\) −5.68264 −1.21154
\(23\) 6.44820 1.34454 0.672271 0.740305i \(-0.265319\pi\)
0.672271 + 0.740305i \(0.265319\pi\)
\(24\) 0 0
\(25\) 5.07816 1.01563
\(26\) −6.22695 −1.22121
\(27\) 0 0
\(28\) −4.10776 −0.776294
\(29\) −3.80603 −0.706762 −0.353381 0.935480i \(-0.614968\pi\)
−0.353381 + 0.935480i \(0.614968\pi\)
\(30\) 0 0
\(31\) 2.24492 0.403199 0.201599 0.979468i \(-0.435386\pi\)
0.201599 + 0.979468i \(0.435386\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −5.79856 −0.994445
\(35\) 13.0405 2.20425
\(36\) 0 0
\(37\) 7.14892 1.17528 0.587638 0.809124i \(-0.300058\pi\)
0.587638 + 0.809124i \(0.300058\pi\)
\(38\) 2.64964 0.429828
\(39\) 0 0
\(40\) −3.17461 −0.501950
\(41\) −6.53055 −1.01990 −0.509950 0.860204i \(-0.670336\pi\)
−0.509950 + 0.860204i \(0.670336\pi\)
\(42\) 0 0
\(43\) 6.32900 0.965164 0.482582 0.875851i \(-0.339699\pi\)
0.482582 + 0.875851i \(0.339699\pi\)
\(44\) −5.68264 −0.856690
\(45\) 0 0
\(46\) 6.44820 0.950735
\(47\) −3.49047 −0.509137 −0.254569 0.967055i \(-0.581934\pi\)
−0.254569 + 0.967055i \(0.581934\pi\)
\(48\) 0 0
\(49\) 9.87371 1.41053
\(50\) 5.07816 0.718160
\(51\) 0 0
\(52\) −6.22695 −0.863523
\(53\) −7.70122 −1.05784 −0.528922 0.848670i \(-0.677404\pi\)
−0.528922 + 0.848670i \(0.677404\pi\)
\(54\) 0 0
\(55\) 18.0402 2.43254
\(56\) −4.10776 −0.548923
\(57\) 0 0
\(58\) −3.80603 −0.499756
\(59\) −5.61944 −0.731589 −0.365794 0.930696i \(-0.619203\pi\)
−0.365794 + 0.930696i \(0.619203\pi\)
\(60\) 0 0
\(61\) −6.40288 −0.819805 −0.409902 0.912129i \(-0.634437\pi\)
−0.409902 + 0.912129i \(0.634437\pi\)
\(62\) 2.24492 0.285105
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 19.7682 2.45194
\(66\) 0 0
\(67\) −4.28369 −0.523336 −0.261668 0.965158i \(-0.584273\pi\)
−0.261668 + 0.965158i \(0.584273\pi\)
\(68\) −5.79856 −0.703179
\(69\) 0 0
\(70\) 13.0405 1.55864
\(71\) 13.7436 1.63106 0.815531 0.578713i \(-0.196445\pi\)
0.815531 + 0.578713i \(0.196445\pi\)
\(72\) 0 0
\(73\) −6.85491 −0.802307 −0.401154 0.916011i \(-0.631391\pi\)
−0.401154 + 0.916011i \(0.631391\pi\)
\(74\) 7.14892 0.831045
\(75\) 0 0
\(76\) 2.64964 0.303934
\(77\) 23.3429 2.66017
\(78\) 0 0
\(79\) 8.62991 0.970941 0.485471 0.874253i \(-0.338648\pi\)
0.485471 + 0.874253i \(0.338648\pi\)
\(80\) −3.17461 −0.354932
\(81\) 0 0
\(82\) −6.53055 −0.721179
\(83\) 2.78811 0.306035 0.153017 0.988223i \(-0.451101\pi\)
0.153017 + 0.988223i \(0.451101\pi\)
\(84\) 0 0
\(85\) 18.4082 1.99665
\(86\) 6.32900 0.682474
\(87\) 0 0
\(88\) −5.68264 −0.605771
\(89\) −0.930456 −0.0986281 −0.0493140 0.998783i \(-0.515704\pi\)
−0.0493140 + 0.998783i \(0.515704\pi\)
\(90\) 0 0
\(91\) 25.5788 2.68139
\(92\) 6.44820 0.672271
\(93\) 0 0
\(94\) −3.49047 −0.360015
\(95\) −8.41157 −0.863009
\(96\) 0 0
\(97\) 6.12189 0.621583 0.310792 0.950478i \(-0.399406\pi\)
0.310792 + 0.950478i \(0.399406\pi\)
\(98\) 9.87371 0.997395
\(99\) 0 0
\(100\) 5.07816 0.507816
\(101\) −0.943820 −0.0939136 −0.0469568 0.998897i \(-0.514952\pi\)
−0.0469568 + 0.998897i \(0.514952\pi\)
\(102\) 0 0
\(103\) 6.25408 0.616233 0.308117 0.951349i \(-0.400301\pi\)
0.308117 + 0.951349i \(0.400301\pi\)
\(104\) −6.22695 −0.610603
\(105\) 0 0
\(106\) −7.70122 −0.748009
\(107\) 14.4252 1.39453 0.697267 0.716811i \(-0.254399\pi\)
0.697267 + 0.716811i \(0.254399\pi\)
\(108\) 0 0
\(109\) −6.31130 −0.604513 −0.302256 0.953227i \(-0.597740\pi\)
−0.302256 + 0.953227i \(0.597740\pi\)
\(110\) 18.0402 1.72006
\(111\) 0 0
\(112\) −4.10776 −0.388147
\(113\) −0.989886 −0.0931206 −0.0465603 0.998915i \(-0.514826\pi\)
−0.0465603 + 0.998915i \(0.514826\pi\)
\(114\) 0 0
\(115\) −20.4705 −1.90889
\(116\) −3.80603 −0.353381
\(117\) 0 0
\(118\) −5.61944 −0.517311
\(119\) 23.8191 2.18349
\(120\) 0 0
\(121\) 21.2924 1.93567
\(122\) −6.40288 −0.579690
\(123\) 0 0
\(124\) 2.24492 0.201599
\(125\) −0.248117 −0.0221922
\(126\) 0 0
\(127\) −11.8381 −1.05046 −0.525230 0.850961i \(-0.676021\pi\)
−0.525230 + 0.850961i \(0.676021\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 19.7682 1.73378
\(131\) −14.1341 −1.23490 −0.617451 0.786609i \(-0.711835\pi\)
−0.617451 + 0.786609i \(0.711835\pi\)
\(132\) 0 0
\(133\) −10.8841 −0.943770
\(134\) −4.28369 −0.370054
\(135\) 0 0
\(136\) −5.79856 −0.497222
\(137\) −14.1532 −1.20919 −0.604596 0.796532i \(-0.706665\pi\)
−0.604596 + 0.796532i \(0.706665\pi\)
\(138\) 0 0
\(139\) −19.4857 −1.65275 −0.826376 0.563118i \(-0.809601\pi\)
−0.826376 + 0.563118i \(0.809601\pi\)
\(140\) 13.0405 1.10213
\(141\) 0 0
\(142\) 13.7436 1.15334
\(143\) 35.3855 2.95909
\(144\) 0 0
\(145\) 12.0827 1.00341
\(146\) −6.85491 −0.567317
\(147\) 0 0
\(148\) 7.14892 0.587638
\(149\) −6.42565 −0.526410 −0.263205 0.964740i \(-0.584780\pi\)
−0.263205 + 0.964740i \(0.584780\pi\)
\(150\) 0 0
\(151\) −9.04131 −0.735771 −0.367886 0.929871i \(-0.619918\pi\)
−0.367886 + 0.929871i \(0.619918\pi\)
\(152\) 2.64964 0.214914
\(153\) 0 0
\(154\) 23.3429 1.88103
\(155\) −7.12674 −0.572433
\(156\) 0 0
\(157\) −9.57094 −0.763844 −0.381922 0.924194i \(-0.624738\pi\)
−0.381922 + 0.924194i \(0.624738\pi\)
\(158\) 8.62991 0.686559
\(159\) 0 0
\(160\) −3.17461 −0.250975
\(161\) −26.4877 −2.08752
\(162\) 0 0
\(163\) 16.7227 1.30983 0.654913 0.755705i \(-0.272705\pi\)
0.654913 + 0.755705i \(0.272705\pi\)
\(164\) −6.53055 −0.509950
\(165\) 0 0
\(166\) 2.78811 0.216399
\(167\) 18.6623 1.44413 0.722067 0.691823i \(-0.243192\pi\)
0.722067 + 0.691823i \(0.243192\pi\)
\(168\) 0 0
\(169\) 25.7750 1.98269
\(170\) 18.4082 1.41184
\(171\) 0 0
\(172\) 6.32900 0.482582
\(173\) −12.0255 −0.914285 −0.457142 0.889394i \(-0.651127\pi\)
−0.457142 + 0.889394i \(0.651127\pi\)
\(174\) 0 0
\(175\) −20.8599 −1.57686
\(176\) −5.68264 −0.428345
\(177\) 0 0
\(178\) −0.930456 −0.0697406
\(179\) −23.4170 −1.75027 −0.875135 0.483878i \(-0.839228\pi\)
−0.875135 + 0.483878i \(0.839228\pi\)
\(180\) 0 0
\(181\) 17.3952 1.29298 0.646489 0.762923i \(-0.276237\pi\)
0.646489 + 0.762923i \(0.276237\pi\)
\(182\) 25.5788 1.89603
\(183\) 0 0
\(184\) 6.44820 0.475367
\(185\) −22.6950 −1.66857
\(186\) 0 0
\(187\) 32.9511 2.40962
\(188\) −3.49047 −0.254569
\(189\) 0 0
\(190\) −8.41157 −0.610239
\(191\) −15.3069 −1.10757 −0.553783 0.832661i \(-0.686816\pi\)
−0.553783 + 0.832661i \(0.686816\pi\)
\(192\) 0 0
\(193\) −4.91872 −0.354057 −0.177028 0.984206i \(-0.556648\pi\)
−0.177028 + 0.984206i \(0.556648\pi\)
\(194\) 6.12189 0.439526
\(195\) 0 0
\(196\) 9.87371 0.705265
\(197\) 4.81884 0.343328 0.171664 0.985156i \(-0.445086\pi\)
0.171664 + 0.985156i \(0.445086\pi\)
\(198\) 0 0
\(199\) −25.2725 −1.79152 −0.895760 0.444538i \(-0.853368\pi\)
−0.895760 + 0.444538i \(0.853368\pi\)
\(200\) 5.07816 0.359080
\(201\) 0 0
\(202\) −0.943820 −0.0664070
\(203\) 15.6343 1.09731
\(204\) 0 0
\(205\) 20.7320 1.44798
\(206\) 6.25408 0.435743
\(207\) 0 0
\(208\) −6.22695 −0.431762
\(209\) −15.0569 −1.04151
\(210\) 0 0
\(211\) −26.6369 −1.83376 −0.916879 0.399164i \(-0.869300\pi\)
−0.916879 + 0.399164i \(0.869300\pi\)
\(212\) −7.70122 −0.528922
\(213\) 0 0
\(214\) 14.4252 0.986085
\(215\) −20.0921 −1.37027
\(216\) 0 0
\(217\) −9.22158 −0.626002
\(218\) −6.31130 −0.427455
\(219\) 0 0
\(220\) 18.0402 1.21627
\(221\) 36.1074 2.42884
\(222\) 0 0
\(223\) −14.2328 −0.953101 −0.476551 0.879147i \(-0.658113\pi\)
−0.476551 + 0.879147i \(0.658113\pi\)
\(224\) −4.10776 −0.274461
\(225\) 0 0
\(226\) −0.989886 −0.0658462
\(227\) −12.1549 −0.806752 −0.403376 0.915034i \(-0.632163\pi\)
−0.403376 + 0.915034i \(0.632163\pi\)
\(228\) 0 0
\(229\) 22.1427 1.46323 0.731614 0.681719i \(-0.238767\pi\)
0.731614 + 0.681719i \(0.238767\pi\)
\(230\) −20.4705 −1.34979
\(231\) 0 0
\(232\) −3.80603 −0.249878
\(233\) 26.0939 1.70947 0.854733 0.519068i \(-0.173721\pi\)
0.854733 + 0.519068i \(0.173721\pi\)
\(234\) 0 0
\(235\) 11.0809 0.722837
\(236\) −5.61944 −0.365794
\(237\) 0 0
\(238\) 23.8191 1.54396
\(239\) 8.53022 0.551774 0.275887 0.961190i \(-0.411028\pi\)
0.275887 + 0.961190i \(0.411028\pi\)
\(240\) 0 0
\(241\) −6.10413 −0.393202 −0.196601 0.980484i \(-0.562990\pi\)
−0.196601 + 0.980484i \(0.562990\pi\)
\(242\) 21.2924 1.36873
\(243\) 0 0
\(244\) −6.40288 −0.409902
\(245\) −31.3452 −2.00257
\(246\) 0 0
\(247\) −16.4992 −1.04982
\(248\) 2.24492 0.142552
\(249\) 0 0
\(250\) −0.248117 −0.0156923
\(251\) 14.9750 0.945212 0.472606 0.881274i \(-0.343313\pi\)
0.472606 + 0.881274i \(0.343313\pi\)
\(252\) 0 0
\(253\) −36.6428 −2.30371
\(254\) −11.8381 −0.742787
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −5.54581 −0.345938 −0.172969 0.984927i \(-0.555336\pi\)
−0.172969 + 0.984927i \(0.555336\pi\)
\(258\) 0 0
\(259\) −29.3661 −1.82472
\(260\) 19.7682 1.22597
\(261\) 0 0
\(262\) −14.1341 −0.873208
\(263\) −18.6570 −1.15044 −0.575219 0.818000i \(-0.695083\pi\)
−0.575219 + 0.818000i \(0.695083\pi\)
\(264\) 0 0
\(265\) 24.4484 1.50185
\(266\) −10.8841 −0.667346
\(267\) 0 0
\(268\) −4.28369 −0.261668
\(269\) 1.00000 0.0609711
\(270\) 0 0
\(271\) 10.1487 0.616491 0.308245 0.951307i \(-0.400258\pi\)
0.308245 + 0.951307i \(0.400258\pi\)
\(272\) −5.79856 −0.351589
\(273\) 0 0
\(274\) −14.1532 −0.855028
\(275\) −28.8573 −1.74016
\(276\) 0 0
\(277\) 21.7072 1.30426 0.652129 0.758108i \(-0.273876\pi\)
0.652129 + 0.758108i \(0.273876\pi\)
\(278\) −19.4857 −1.16867
\(279\) 0 0
\(280\) 13.0405 0.779322
\(281\) 28.4931 1.69975 0.849877 0.526982i \(-0.176676\pi\)
0.849877 + 0.526982i \(0.176676\pi\)
\(282\) 0 0
\(283\) −16.2627 −0.966717 −0.483359 0.875422i \(-0.660583\pi\)
−0.483359 + 0.875422i \(0.660583\pi\)
\(284\) 13.7436 0.815531
\(285\) 0 0
\(286\) 35.3855 2.09239
\(287\) 26.8259 1.58349
\(288\) 0 0
\(289\) 16.6233 0.977840
\(290\) 12.0827 0.709518
\(291\) 0 0
\(292\) −6.85491 −0.401154
\(293\) −2.48839 −0.145374 −0.0726868 0.997355i \(-0.523157\pi\)
−0.0726868 + 0.997355i \(0.523157\pi\)
\(294\) 0 0
\(295\) 17.8395 1.03866
\(296\) 7.14892 0.415523
\(297\) 0 0
\(298\) −6.42565 −0.372228
\(299\) −40.1526 −2.32209
\(300\) 0 0
\(301\) −25.9980 −1.49850
\(302\) −9.04131 −0.520269
\(303\) 0 0
\(304\) 2.64964 0.151967
\(305\) 20.3267 1.16390
\(306\) 0 0
\(307\) 4.92490 0.281079 0.140539 0.990075i \(-0.455116\pi\)
0.140539 + 0.990075i \(0.455116\pi\)
\(308\) 23.3429 1.33009
\(309\) 0 0
\(310\) −7.12674 −0.404771
\(311\) 26.4492 1.49980 0.749899 0.661552i \(-0.230102\pi\)
0.749899 + 0.661552i \(0.230102\pi\)
\(312\) 0 0
\(313\) −20.8073 −1.17610 −0.588048 0.808826i \(-0.700104\pi\)
−0.588048 + 0.808826i \(0.700104\pi\)
\(314\) −9.57094 −0.540120
\(315\) 0 0
\(316\) 8.62991 0.485471
\(317\) 26.7500 1.50243 0.751215 0.660057i \(-0.229468\pi\)
0.751215 + 0.660057i \(0.229468\pi\)
\(318\) 0 0
\(319\) 21.6283 1.21095
\(320\) −3.17461 −0.177466
\(321\) 0 0
\(322\) −26.4877 −1.47610
\(323\) −15.3641 −0.854880
\(324\) 0 0
\(325\) −31.6214 −1.75404
\(326\) 16.7227 0.926186
\(327\) 0 0
\(328\) −6.53055 −0.360589
\(329\) 14.3380 0.790481
\(330\) 0 0
\(331\) −20.8203 −1.14439 −0.572193 0.820119i \(-0.693907\pi\)
−0.572193 + 0.820119i \(0.693907\pi\)
\(332\) 2.78811 0.153017
\(333\) 0 0
\(334\) 18.6623 1.02116
\(335\) 13.5990 0.742995
\(336\) 0 0
\(337\) −15.9020 −0.866238 −0.433119 0.901337i \(-0.642587\pi\)
−0.433119 + 0.901337i \(0.642587\pi\)
\(338\) 25.7750 1.40197
\(339\) 0 0
\(340\) 18.4082 0.998323
\(341\) −12.7570 −0.690833
\(342\) 0 0
\(343\) −11.8045 −0.637384
\(344\) 6.32900 0.341237
\(345\) 0 0
\(346\) −12.0255 −0.646497
\(347\) 5.82986 0.312963 0.156482 0.987681i \(-0.449985\pi\)
0.156482 + 0.987681i \(0.449985\pi\)
\(348\) 0 0
\(349\) 17.4102 0.931948 0.465974 0.884798i \(-0.345704\pi\)
0.465974 + 0.884798i \(0.345704\pi\)
\(350\) −20.8599 −1.11501
\(351\) 0 0
\(352\) −5.68264 −0.302886
\(353\) 6.12122 0.325800 0.162900 0.986643i \(-0.447915\pi\)
0.162900 + 0.986643i \(0.447915\pi\)
\(354\) 0 0
\(355\) −43.6305 −2.31567
\(356\) −0.930456 −0.0493140
\(357\) 0 0
\(358\) −23.4170 −1.23763
\(359\) 20.4757 1.08067 0.540333 0.841451i \(-0.318298\pi\)
0.540333 + 0.841451i \(0.318298\pi\)
\(360\) 0 0
\(361\) −11.9794 −0.630496
\(362\) 17.3952 0.914274
\(363\) 0 0
\(364\) 25.5788 1.34070
\(365\) 21.7617 1.13906
\(366\) 0 0
\(367\) 33.9483 1.77209 0.886043 0.463603i \(-0.153444\pi\)
0.886043 + 0.463603i \(0.153444\pi\)
\(368\) 6.44820 0.336135
\(369\) 0 0
\(370\) −22.6950 −1.17986
\(371\) 31.6348 1.64240
\(372\) 0 0
\(373\) 18.5917 0.962644 0.481322 0.876544i \(-0.340157\pi\)
0.481322 + 0.876544i \(0.340157\pi\)
\(374\) 32.9511 1.70386
\(375\) 0 0
\(376\) −3.49047 −0.180007
\(377\) 23.7000 1.22061
\(378\) 0 0
\(379\) 26.0647 1.33885 0.669427 0.742878i \(-0.266540\pi\)
0.669427 + 0.742878i \(0.266540\pi\)
\(380\) −8.41157 −0.431504
\(381\) 0 0
\(382\) −15.3069 −0.783168
\(383\) 7.56172 0.386386 0.193193 0.981161i \(-0.438116\pi\)
0.193193 + 0.981161i \(0.438116\pi\)
\(384\) 0 0
\(385\) −74.1047 −3.77673
\(386\) −4.91872 −0.250356
\(387\) 0 0
\(388\) 6.12189 0.310792
\(389\) −28.7906 −1.45974 −0.729870 0.683586i \(-0.760419\pi\)
−0.729870 + 0.683586i \(0.760419\pi\)
\(390\) 0 0
\(391\) −37.3902 −1.89091
\(392\) 9.87371 0.498698
\(393\) 0 0
\(394\) 4.81884 0.242769
\(395\) −27.3966 −1.37847
\(396\) 0 0
\(397\) 32.7879 1.64558 0.822789 0.568347i \(-0.192417\pi\)
0.822789 + 0.568347i \(0.192417\pi\)
\(398\) −25.2725 −1.26680
\(399\) 0 0
\(400\) 5.07816 0.253908
\(401\) 9.95075 0.496917 0.248458 0.968643i \(-0.420076\pi\)
0.248458 + 0.968643i \(0.420076\pi\)
\(402\) 0 0
\(403\) −13.9790 −0.696343
\(404\) −0.943820 −0.0469568
\(405\) 0 0
\(406\) 15.6343 0.775915
\(407\) −40.6247 −2.01369
\(408\) 0 0
\(409\) 6.24500 0.308795 0.154398 0.988009i \(-0.450656\pi\)
0.154398 + 0.988009i \(0.450656\pi\)
\(410\) 20.7320 1.02388
\(411\) 0 0
\(412\) 6.25408 0.308117
\(413\) 23.0833 1.13586
\(414\) 0 0
\(415\) −8.85117 −0.434487
\(416\) −6.22695 −0.305302
\(417\) 0 0
\(418\) −15.0569 −0.736459
\(419\) 3.51883 0.171906 0.0859531 0.996299i \(-0.472606\pi\)
0.0859531 + 0.996299i \(0.472606\pi\)
\(420\) 0 0
\(421\) 8.99561 0.438419 0.219210 0.975678i \(-0.429652\pi\)
0.219210 + 0.975678i \(0.429652\pi\)
\(422\) −26.6369 −1.29666
\(423\) 0 0
\(424\) −7.70122 −0.374004
\(425\) −29.4460 −1.42834
\(426\) 0 0
\(427\) 26.3015 1.27282
\(428\) 14.4252 0.697267
\(429\) 0 0
\(430\) −20.0921 −0.968929
\(431\) 19.6263 0.945364 0.472682 0.881233i \(-0.343286\pi\)
0.472682 + 0.881233i \(0.343286\pi\)
\(432\) 0 0
\(433\) −26.1058 −1.25456 −0.627282 0.778792i \(-0.715833\pi\)
−0.627282 + 0.778792i \(0.715833\pi\)
\(434\) −9.22158 −0.442650
\(435\) 0 0
\(436\) −6.31130 −0.302256
\(437\) 17.0854 0.817305
\(438\) 0 0
\(439\) −12.1949 −0.582030 −0.291015 0.956718i \(-0.593993\pi\)
−0.291015 + 0.956718i \(0.593993\pi\)
\(440\) 18.0402 0.860031
\(441\) 0 0
\(442\) 36.1074 1.71745
\(443\) −3.86811 −0.183779 −0.0918896 0.995769i \(-0.529291\pi\)
−0.0918896 + 0.995769i \(0.529291\pi\)
\(444\) 0 0
\(445\) 2.95383 0.140025
\(446\) −14.2328 −0.673944
\(447\) 0 0
\(448\) −4.10776 −0.194074
\(449\) 37.2923 1.75993 0.879966 0.475037i \(-0.157565\pi\)
0.879966 + 0.475037i \(0.157565\pi\)
\(450\) 0 0
\(451\) 37.1108 1.74748
\(452\) −0.989886 −0.0465603
\(453\) 0 0
\(454\) −12.1549 −0.570460
\(455\) −81.2029 −3.80685
\(456\) 0 0
\(457\) 20.9622 0.980572 0.490286 0.871562i \(-0.336892\pi\)
0.490286 + 0.871562i \(0.336892\pi\)
\(458\) 22.1427 1.03466
\(459\) 0 0
\(460\) −20.4705 −0.954443
\(461\) −26.5604 −1.23704 −0.618520 0.785769i \(-0.712267\pi\)
−0.618520 + 0.785769i \(0.712267\pi\)
\(462\) 0 0
\(463\) −35.9385 −1.67020 −0.835101 0.550097i \(-0.814591\pi\)
−0.835101 + 0.550097i \(0.814591\pi\)
\(464\) −3.80603 −0.176690
\(465\) 0 0
\(466\) 26.0939 1.20877
\(467\) 26.4519 1.22405 0.612023 0.790840i \(-0.290356\pi\)
0.612023 + 0.790840i \(0.290356\pi\)
\(468\) 0 0
\(469\) 17.5964 0.812525
\(470\) 11.0809 0.511123
\(471\) 0 0
\(472\) −5.61944 −0.258656
\(473\) −35.9654 −1.65369
\(474\) 0 0
\(475\) 13.4553 0.617370
\(476\) 23.8191 1.09175
\(477\) 0 0
\(478\) 8.53022 0.390163
\(479\) 39.6800 1.81303 0.906513 0.422177i \(-0.138734\pi\)
0.906513 + 0.422177i \(0.138734\pi\)
\(480\) 0 0
\(481\) −44.5160 −2.02976
\(482\) −6.10413 −0.278036
\(483\) 0 0
\(484\) 21.2924 0.967836
\(485\) −19.4346 −0.882480
\(486\) 0 0
\(487\) −20.1443 −0.912824 −0.456412 0.889768i \(-0.650866\pi\)
−0.456412 + 0.889768i \(0.650866\pi\)
\(488\) −6.40288 −0.289845
\(489\) 0 0
\(490\) −31.3452 −1.41603
\(491\) 7.53330 0.339973 0.169986 0.985446i \(-0.445628\pi\)
0.169986 + 0.985446i \(0.445628\pi\)
\(492\) 0 0
\(493\) 22.0695 0.993959
\(494\) −16.4992 −0.742333
\(495\) 0 0
\(496\) 2.24492 0.100800
\(497\) −56.4553 −2.53237
\(498\) 0 0
\(499\) −36.3914 −1.62910 −0.814551 0.580092i \(-0.803017\pi\)
−0.814551 + 0.580092i \(0.803017\pi\)
\(500\) −0.248117 −0.0110961
\(501\) 0 0
\(502\) 14.9750 0.668366
\(503\) 26.0667 1.16226 0.581128 0.813812i \(-0.302611\pi\)
0.581128 + 0.813812i \(0.302611\pi\)
\(504\) 0 0
\(505\) 2.99626 0.133332
\(506\) −36.6428 −1.62897
\(507\) 0 0
\(508\) −11.8381 −0.525230
\(509\) −16.2672 −0.721030 −0.360515 0.932754i \(-0.617399\pi\)
−0.360515 + 0.932754i \(0.617399\pi\)
\(510\) 0 0
\(511\) 28.1584 1.24565
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −5.54581 −0.244615
\(515\) −19.8543 −0.874884
\(516\) 0 0
\(517\) 19.8351 0.872346
\(518\) −29.3661 −1.29027
\(519\) 0 0
\(520\) 19.7682 0.866891
\(521\) 30.2303 1.32441 0.662207 0.749321i \(-0.269620\pi\)
0.662207 + 0.749321i \(0.269620\pi\)
\(522\) 0 0
\(523\) −21.0812 −0.921819 −0.460909 0.887447i \(-0.652477\pi\)
−0.460909 + 0.887447i \(0.652477\pi\)
\(524\) −14.1341 −0.617451
\(525\) 0 0
\(526\) −18.6570 −0.813482
\(527\) −13.0173 −0.567042
\(528\) 0 0
\(529\) 18.5792 0.807793
\(530\) 24.4484 1.06197
\(531\) 0 0
\(532\) −10.8841 −0.471885
\(533\) 40.6654 1.76142
\(534\) 0 0
\(535\) −45.7943 −1.97986
\(536\) −4.28369 −0.185027
\(537\) 0 0
\(538\) 1.00000 0.0431131
\(539\) −56.1087 −2.41677
\(540\) 0 0
\(541\) −31.4624 −1.35268 −0.676338 0.736592i \(-0.736434\pi\)
−0.676338 + 0.736592i \(0.736434\pi\)
\(542\) 10.1487 0.435925
\(543\) 0 0
\(544\) −5.79856 −0.248611
\(545\) 20.0359 0.858244
\(546\) 0 0
\(547\) 17.0027 0.726981 0.363491 0.931598i \(-0.381585\pi\)
0.363491 + 0.931598i \(0.381585\pi\)
\(548\) −14.1532 −0.604596
\(549\) 0 0
\(550\) −28.8573 −1.23048
\(551\) −10.0846 −0.429618
\(552\) 0 0
\(553\) −35.4496 −1.50747
\(554\) 21.7072 0.922250
\(555\) 0 0
\(556\) −19.4857 −0.826376
\(557\) 19.9617 0.845803 0.422902 0.906176i \(-0.361012\pi\)
0.422902 + 0.906176i \(0.361012\pi\)
\(558\) 0 0
\(559\) −39.4104 −1.66688
\(560\) 13.0405 0.551064
\(561\) 0 0
\(562\) 28.4931 1.20191
\(563\) 7.86403 0.331429 0.165715 0.986174i \(-0.447007\pi\)
0.165715 + 0.986174i \(0.447007\pi\)
\(564\) 0 0
\(565\) 3.14250 0.132206
\(566\) −16.2627 −0.683572
\(567\) 0 0
\(568\) 13.7436 0.576668
\(569\) −5.29975 −0.222177 −0.111089 0.993811i \(-0.535434\pi\)
−0.111089 + 0.993811i \(0.535434\pi\)
\(570\) 0 0
\(571\) −27.4951 −1.15064 −0.575318 0.817930i \(-0.695122\pi\)
−0.575318 + 0.817930i \(0.695122\pi\)
\(572\) 35.3855 1.47954
\(573\) 0 0
\(574\) 26.8259 1.11969
\(575\) 32.7450 1.36556
\(576\) 0 0
\(577\) −3.74977 −0.156105 −0.0780525 0.996949i \(-0.524870\pi\)
−0.0780525 + 0.996949i \(0.524870\pi\)
\(578\) 16.6233 0.691438
\(579\) 0 0
\(580\) 12.0827 0.501705
\(581\) −11.4529 −0.475146
\(582\) 0 0
\(583\) 43.7633 1.81249
\(584\) −6.85491 −0.283658
\(585\) 0 0
\(586\) −2.48839 −0.102795
\(587\) −8.94970 −0.369394 −0.184697 0.982796i \(-0.559130\pi\)
−0.184697 + 0.982796i \(0.559130\pi\)
\(588\) 0 0
\(589\) 5.94821 0.245092
\(590\) 17.8395 0.734442
\(591\) 0 0
\(592\) 7.14892 0.293819
\(593\) −16.6627 −0.684255 −0.342127 0.939654i \(-0.611147\pi\)
−0.342127 + 0.939654i \(0.611147\pi\)
\(594\) 0 0
\(595\) −75.6164 −3.09997
\(596\) −6.42565 −0.263205
\(597\) 0 0
\(598\) −40.1526 −1.64196
\(599\) −25.3367 −1.03523 −0.517615 0.855614i \(-0.673180\pi\)
−0.517615 + 0.855614i \(0.673180\pi\)
\(600\) 0 0
\(601\) −24.0671 −0.981719 −0.490859 0.871239i \(-0.663317\pi\)
−0.490859 + 0.871239i \(0.663317\pi\)
\(602\) −25.9980 −1.05960
\(603\) 0 0
\(604\) −9.04131 −0.367886
\(605\) −67.5950 −2.74813
\(606\) 0 0
\(607\) 19.8247 0.804658 0.402329 0.915495i \(-0.368201\pi\)
0.402329 + 0.915495i \(0.368201\pi\)
\(608\) 2.64964 0.107457
\(609\) 0 0
\(610\) 20.3267 0.823002
\(611\) 21.7350 0.879304
\(612\) 0 0
\(613\) −7.63056 −0.308195 −0.154098 0.988056i \(-0.549247\pi\)
−0.154098 + 0.988056i \(0.549247\pi\)
\(614\) 4.92490 0.198753
\(615\) 0 0
\(616\) 23.3429 0.940513
\(617\) 24.7901 0.998014 0.499007 0.866598i \(-0.333698\pi\)
0.499007 + 0.866598i \(0.333698\pi\)
\(618\) 0 0
\(619\) −22.5092 −0.904722 −0.452361 0.891835i \(-0.649418\pi\)
−0.452361 + 0.891835i \(0.649418\pi\)
\(620\) −7.12674 −0.286217
\(621\) 0 0
\(622\) 26.4492 1.06052
\(623\) 3.82209 0.153129
\(624\) 0 0
\(625\) −24.6031 −0.984124
\(626\) −20.8073 −0.831626
\(627\) 0 0
\(628\) −9.57094 −0.381922
\(629\) −41.4534 −1.65286
\(630\) 0 0
\(631\) 34.5121 1.37391 0.686953 0.726702i \(-0.258948\pi\)
0.686953 + 0.726702i \(0.258948\pi\)
\(632\) 8.62991 0.343280
\(633\) 0 0
\(634\) 26.7500 1.06238
\(635\) 37.5813 1.49137
\(636\) 0 0
\(637\) −61.4831 −2.43605
\(638\) 21.6283 0.856272
\(639\) 0 0
\(640\) −3.17461 −0.125488
\(641\) −5.98465 −0.236379 −0.118190 0.992991i \(-0.537709\pi\)
−0.118190 + 0.992991i \(0.537709\pi\)
\(642\) 0 0
\(643\) 41.7247 1.64546 0.822730 0.568432i \(-0.192450\pi\)
0.822730 + 0.568432i \(0.192450\pi\)
\(644\) −26.4877 −1.04376
\(645\) 0 0
\(646\) −15.3641 −0.604492
\(647\) −44.2771 −1.74071 −0.870357 0.492421i \(-0.836112\pi\)
−0.870357 + 0.492421i \(0.836112\pi\)
\(648\) 0 0
\(649\) 31.9332 1.25349
\(650\) −31.6214 −1.24030
\(651\) 0 0
\(652\) 16.7227 0.654913
\(653\) −0.719353 −0.0281505 −0.0140752 0.999901i \(-0.504480\pi\)
−0.0140752 + 0.999901i \(0.504480\pi\)
\(654\) 0 0
\(655\) 44.8703 1.75323
\(656\) −6.53055 −0.254975
\(657\) 0 0
\(658\) 14.3380 0.558954
\(659\) −45.8118 −1.78457 −0.892287 0.451469i \(-0.850900\pi\)
−0.892287 + 0.451469i \(0.850900\pi\)
\(660\) 0 0
\(661\) 8.24122 0.320546 0.160273 0.987073i \(-0.448762\pi\)
0.160273 + 0.987073i \(0.448762\pi\)
\(662\) −20.8203 −0.809202
\(663\) 0 0
\(664\) 2.78811 0.108200
\(665\) 34.5527 1.33990
\(666\) 0 0
\(667\) −24.5420 −0.950271
\(668\) 18.6623 0.722067
\(669\) 0 0
\(670\) 13.5990 0.525377
\(671\) 36.3853 1.40464
\(672\) 0 0
\(673\) −8.63428 −0.332827 −0.166413 0.986056i \(-0.553219\pi\)
−0.166413 + 0.986056i \(0.553219\pi\)
\(674\) −15.9020 −0.612522
\(675\) 0 0
\(676\) 25.7750 0.991344
\(677\) −19.4130 −0.746102 −0.373051 0.927811i \(-0.621688\pi\)
−0.373051 + 0.927811i \(0.621688\pi\)
\(678\) 0 0
\(679\) −25.1473 −0.965063
\(680\) 18.4082 0.705921
\(681\) 0 0
\(682\) −12.7570 −0.488493
\(683\) 36.8946 1.41173 0.705866 0.708345i \(-0.250558\pi\)
0.705866 + 0.708345i \(0.250558\pi\)
\(684\) 0 0
\(685\) 44.9310 1.71673
\(686\) −11.8045 −0.450699
\(687\) 0 0
\(688\) 6.32900 0.241291
\(689\) 47.9551 1.82695
\(690\) 0 0
\(691\) 17.6603 0.671829 0.335915 0.941892i \(-0.390955\pi\)
0.335915 + 0.941892i \(0.390955\pi\)
\(692\) −12.0255 −0.457142
\(693\) 0 0
\(694\) 5.82986 0.221298
\(695\) 61.8594 2.34646
\(696\) 0 0
\(697\) 37.8678 1.43434
\(698\) 17.4102 0.658987
\(699\) 0 0
\(700\) −20.8599 −0.788429
\(701\) 40.6474 1.53523 0.767616 0.640910i \(-0.221443\pi\)
0.767616 + 0.640910i \(0.221443\pi\)
\(702\) 0 0
\(703\) 18.9421 0.714413
\(704\) −5.68264 −0.214173
\(705\) 0 0
\(706\) 6.12122 0.230375
\(707\) 3.87699 0.145809
\(708\) 0 0
\(709\) −39.2019 −1.47226 −0.736129 0.676842i \(-0.763348\pi\)
−0.736129 + 0.676842i \(0.763348\pi\)
\(710\) −43.6305 −1.63742
\(711\) 0 0
\(712\) −0.930456 −0.0348703
\(713\) 14.4757 0.542118
\(714\) 0 0
\(715\) −112.335 −4.20110
\(716\) −23.4170 −0.875135
\(717\) 0 0
\(718\) 20.4757 0.764147
\(719\) −34.0762 −1.27083 −0.635414 0.772172i \(-0.719170\pi\)
−0.635414 + 0.772172i \(0.719170\pi\)
\(720\) 0 0
\(721\) −25.6903 −0.956756
\(722\) −11.9794 −0.445828
\(723\) 0 0
\(724\) 17.3952 0.646489
\(725\) −19.3276 −0.717809
\(726\) 0 0
\(727\) 4.96114 0.183998 0.0919992 0.995759i \(-0.470674\pi\)
0.0919992 + 0.995759i \(0.470674\pi\)
\(728\) 25.5788 0.948015
\(729\) 0 0
\(730\) 21.7617 0.805436
\(731\) −36.6991 −1.35737
\(732\) 0 0
\(733\) 38.4899 1.42166 0.710828 0.703366i \(-0.248320\pi\)
0.710828 + 0.703366i \(0.248320\pi\)
\(734\) 33.9483 1.25305
\(735\) 0 0
\(736\) 6.44820 0.237684
\(737\) 24.3427 0.896673
\(738\) 0 0
\(739\) −16.6642 −0.613001 −0.306501 0.951870i \(-0.599158\pi\)
−0.306501 + 0.951870i \(0.599158\pi\)
\(740\) −22.6950 −0.834286
\(741\) 0 0
\(742\) 31.6348 1.16135
\(743\) 11.3693 0.417099 0.208549 0.978012i \(-0.433126\pi\)
0.208549 + 0.978012i \(0.433126\pi\)
\(744\) 0 0
\(745\) 20.3990 0.747360
\(746\) 18.5917 0.680692
\(747\) 0 0
\(748\) 32.9511 1.20481
\(749\) −59.2552 −2.16514
\(750\) 0 0
\(751\) −6.87518 −0.250879 −0.125439 0.992101i \(-0.540034\pi\)
−0.125439 + 0.992101i \(0.540034\pi\)
\(752\) −3.49047 −0.127284
\(753\) 0 0
\(754\) 23.7000 0.863102
\(755\) 28.7026 1.04460
\(756\) 0 0
\(757\) −8.44955 −0.307104 −0.153552 0.988141i \(-0.549071\pi\)
−0.153552 + 0.988141i \(0.549071\pi\)
\(758\) 26.0647 0.946713
\(759\) 0 0
\(760\) −8.41157 −0.305120
\(761\) 12.8529 0.465918 0.232959 0.972487i \(-0.425159\pi\)
0.232959 + 0.972487i \(0.425159\pi\)
\(762\) 0 0
\(763\) 25.9253 0.938559
\(764\) −15.3069 −0.553783
\(765\) 0 0
\(766\) 7.56172 0.273216
\(767\) 34.9920 1.26349
\(768\) 0 0
\(769\) 19.7023 0.710482 0.355241 0.934775i \(-0.384399\pi\)
0.355241 + 0.934775i \(0.384399\pi\)
\(770\) −74.1047 −2.67055
\(771\) 0 0
\(772\) −4.91872 −0.177028
\(773\) −48.1533 −1.73195 −0.865976 0.500085i \(-0.833302\pi\)
−0.865976 + 0.500085i \(0.833302\pi\)
\(774\) 0 0
\(775\) 11.4000 0.409501
\(776\) 6.12189 0.219763
\(777\) 0 0
\(778\) −28.7906 −1.03219
\(779\) −17.3036 −0.619966
\(780\) 0 0
\(781\) −78.0998 −2.79463
\(782\) −37.3902 −1.33707
\(783\) 0 0
\(784\) 9.87371 0.352633
\(785\) 30.3840 1.08445
\(786\) 0 0
\(787\) 25.6145 0.913060 0.456530 0.889708i \(-0.349092\pi\)
0.456530 + 0.889708i \(0.349092\pi\)
\(788\) 4.81884 0.171664
\(789\) 0 0
\(790\) −27.3966 −0.974728
\(791\) 4.06622 0.144578
\(792\) 0 0
\(793\) 39.8704 1.41584
\(794\) 32.7879 1.16360
\(795\) 0 0
\(796\) −25.2725 −0.895760
\(797\) 37.2446 1.31927 0.659636 0.751585i \(-0.270710\pi\)
0.659636 + 0.751585i \(0.270710\pi\)
\(798\) 0 0
\(799\) 20.2397 0.716029
\(800\) 5.07816 0.179540
\(801\) 0 0
\(802\) 9.95075 0.351373
\(803\) 38.9540 1.37466
\(804\) 0 0
\(805\) 84.0880 2.96371
\(806\) −13.9790 −0.492389
\(807\) 0 0
\(808\) −0.943820 −0.0332035
\(809\) −34.8028 −1.22360 −0.611800 0.791012i \(-0.709554\pi\)
−0.611800 + 0.791012i \(0.709554\pi\)
\(810\) 0 0
\(811\) −16.4324 −0.577019 −0.288509 0.957477i \(-0.593160\pi\)
−0.288509 + 0.957477i \(0.593160\pi\)
\(812\) 15.6343 0.548655
\(813\) 0 0
\(814\) −40.6247 −1.42390
\(815\) −53.0882 −1.85960
\(816\) 0 0
\(817\) 16.7696 0.586693
\(818\) 6.24500 0.218351
\(819\) 0 0
\(820\) 20.7320 0.723991
\(821\) −28.0742 −0.979795 −0.489898 0.871780i \(-0.662966\pi\)
−0.489898 + 0.871780i \(0.662966\pi\)
\(822\) 0 0
\(823\) 16.7051 0.582304 0.291152 0.956677i \(-0.405962\pi\)
0.291152 + 0.956677i \(0.405962\pi\)
\(824\) 6.25408 0.217871
\(825\) 0 0
\(826\) 23.0833 0.803172
\(827\) −54.9525 −1.91089 −0.955444 0.295174i \(-0.904622\pi\)
−0.955444 + 0.295174i \(0.904622\pi\)
\(828\) 0 0
\(829\) −16.4205 −0.570309 −0.285155 0.958482i \(-0.592045\pi\)
−0.285155 + 0.958482i \(0.592045\pi\)
\(830\) −8.85117 −0.307229
\(831\) 0 0
\(832\) −6.22695 −0.215881
\(833\) −57.2533 −1.98371
\(834\) 0 0
\(835\) −59.2456 −2.05028
\(836\) −15.0569 −0.520755
\(837\) 0 0
\(838\) 3.51883 0.121556
\(839\) 23.6615 0.816886 0.408443 0.912784i \(-0.366072\pi\)
0.408443 + 0.912784i \(0.366072\pi\)
\(840\) 0 0
\(841\) −14.5142 −0.500488
\(842\) 8.99561 0.310009
\(843\) 0 0
\(844\) −26.6369 −0.916879
\(845\) −81.8255 −2.81488
\(846\) 0 0
\(847\) −87.4640 −3.00530
\(848\) −7.70122 −0.264461
\(849\) 0 0
\(850\) −29.4460 −1.00999
\(851\) 46.0977 1.58021
\(852\) 0 0
\(853\) −29.2190 −1.00044 −0.500220 0.865898i \(-0.666748\pi\)
−0.500220 + 0.865898i \(0.666748\pi\)
\(854\) 26.3015 0.900019
\(855\) 0 0
\(856\) 14.4252 0.493042
\(857\) −31.1311 −1.06342 −0.531709 0.846927i \(-0.678450\pi\)
−0.531709 + 0.846927i \(0.678450\pi\)
\(858\) 0 0
\(859\) −11.6168 −0.396361 −0.198181 0.980166i \(-0.563503\pi\)
−0.198181 + 0.980166i \(0.563503\pi\)
\(860\) −20.0921 −0.685136
\(861\) 0 0
\(862\) 19.6263 0.668473
\(863\) 25.2723 0.860278 0.430139 0.902763i \(-0.358465\pi\)
0.430139 + 0.902763i \(0.358465\pi\)
\(864\) 0 0
\(865\) 38.1764 1.29804
\(866\) −26.1058 −0.887111
\(867\) 0 0
\(868\) −9.22158 −0.313001
\(869\) −49.0407 −1.66359
\(870\) 0 0
\(871\) 26.6743 0.903825
\(872\) −6.31130 −0.213727
\(873\) 0 0
\(874\) 17.0854 0.577922
\(875\) 1.01920 0.0344554
\(876\) 0 0
\(877\) 41.5382 1.40265 0.701323 0.712843i \(-0.252593\pi\)
0.701323 + 0.712843i \(0.252593\pi\)
\(878\) −12.1949 −0.411558
\(879\) 0 0
\(880\) 18.0402 0.608134
\(881\) 53.4725 1.80153 0.900766 0.434304i \(-0.143006\pi\)
0.900766 + 0.434304i \(0.143006\pi\)
\(882\) 0 0
\(883\) 44.6264 1.50180 0.750899 0.660417i \(-0.229620\pi\)
0.750899 + 0.660417i \(0.229620\pi\)
\(884\) 36.1074 1.21442
\(885\) 0 0
\(886\) −3.86811 −0.129952
\(887\) 52.1674 1.75161 0.875805 0.482666i \(-0.160331\pi\)
0.875805 + 0.482666i \(0.160331\pi\)
\(888\) 0 0
\(889\) 48.6280 1.63093
\(890\) 2.95383 0.0990128
\(891\) 0 0
\(892\) −14.2328 −0.476551
\(893\) −9.24848 −0.309489
\(894\) 0 0
\(895\) 74.3399 2.48491
\(896\) −4.10776 −0.137231
\(897\) 0 0
\(898\) 37.2923 1.24446
\(899\) −8.54421 −0.284965
\(900\) 0 0
\(901\) 44.6560 1.48771
\(902\) 37.1108 1.23565
\(903\) 0 0
\(904\) −0.989886 −0.0329231
\(905\) −55.2231 −1.83568
\(906\) 0 0
\(907\) −41.1364 −1.36591 −0.682957 0.730459i \(-0.739306\pi\)
−0.682957 + 0.730459i \(0.739306\pi\)
\(908\) −12.1549 −0.403376
\(909\) 0 0
\(910\) −81.2029 −2.69185
\(911\) 2.10324 0.0696834 0.0348417 0.999393i \(-0.488907\pi\)
0.0348417 + 0.999393i \(0.488907\pi\)
\(912\) 0 0
\(913\) −15.8438 −0.524354
\(914\) 20.9622 0.693369
\(915\) 0 0
\(916\) 22.1427 0.731614
\(917\) 58.0595 1.91730
\(918\) 0 0
\(919\) 9.72272 0.320723 0.160361 0.987058i \(-0.448734\pi\)
0.160361 + 0.987058i \(0.448734\pi\)
\(920\) −20.4705 −0.674893
\(921\) 0 0
\(922\) −26.5604 −0.874720
\(923\) −85.5806 −2.81692
\(924\) 0 0
\(925\) 36.3033 1.19365
\(926\) −35.9385 −1.18101
\(927\) 0 0
\(928\) −3.80603 −0.124939
\(929\) −16.8016 −0.551242 −0.275621 0.961266i \(-0.588883\pi\)
−0.275621 + 0.961266i \(0.588883\pi\)
\(930\) 0 0
\(931\) 26.1618 0.857417
\(932\) 26.0939 0.854733
\(933\) 0 0
\(934\) 26.4519 0.865531
\(935\) −104.607 −3.42101
\(936\) 0 0
\(937\) −3.05335 −0.0997487 −0.0498743 0.998756i \(-0.515882\pi\)
−0.0498743 + 0.998756i \(0.515882\pi\)
\(938\) 17.5964 0.574542
\(939\) 0 0
\(940\) 11.0809 0.361419
\(941\) 17.8006 0.580284 0.290142 0.956984i \(-0.406298\pi\)
0.290142 + 0.956984i \(0.406298\pi\)
\(942\) 0 0
\(943\) −42.1103 −1.37130
\(944\) −5.61944 −0.182897
\(945\) 0 0
\(946\) −35.9654 −1.16934
\(947\) −36.0571 −1.17170 −0.585849 0.810420i \(-0.699239\pi\)
−0.585849 + 0.810420i \(0.699239\pi\)
\(948\) 0 0
\(949\) 42.6852 1.38562
\(950\) 13.4553 0.436547
\(951\) 0 0
\(952\) 23.8191 0.771982
\(953\) 41.9663 1.35942 0.679711 0.733480i \(-0.262105\pi\)
0.679711 + 0.733480i \(0.262105\pi\)
\(954\) 0 0
\(955\) 48.5934 1.57244
\(956\) 8.53022 0.275887
\(957\) 0 0
\(958\) 39.6800 1.28200
\(959\) 58.1381 1.87738
\(960\) 0 0
\(961\) −25.9604 −0.837431
\(962\) −44.5160 −1.43525
\(963\) 0 0
\(964\) −6.10413 −0.196601
\(965\) 15.6150 0.502665
\(966\) 0 0
\(967\) 19.4429 0.625242 0.312621 0.949878i \(-0.398793\pi\)
0.312621 + 0.949878i \(0.398793\pi\)
\(968\) 21.2924 0.684363
\(969\) 0 0
\(970\) −19.4346 −0.624008
\(971\) 2.98629 0.0958346 0.0479173 0.998851i \(-0.484742\pi\)
0.0479173 + 0.998851i \(0.484742\pi\)
\(972\) 0 0
\(973\) 80.0425 2.56604
\(974\) −20.1443 −0.645464
\(975\) 0 0
\(976\) −6.40288 −0.204951
\(977\) 16.4922 0.527632 0.263816 0.964573i \(-0.415019\pi\)
0.263816 + 0.964573i \(0.415019\pi\)
\(978\) 0 0
\(979\) 5.28744 0.168987
\(980\) −31.3452 −1.00129
\(981\) 0 0
\(982\) 7.53330 0.240397
\(983\) 50.6696 1.61611 0.808054 0.589108i \(-0.200521\pi\)
0.808054 + 0.589108i \(0.200521\pi\)
\(984\) 0 0
\(985\) −15.2979 −0.487433
\(986\) 22.0695 0.702835
\(987\) 0 0
\(988\) −16.4992 −0.524909
\(989\) 40.8107 1.29770
\(990\) 0 0
\(991\) −32.1081 −1.01995 −0.509974 0.860190i \(-0.670345\pi\)
−0.509974 + 0.860190i \(0.670345\pi\)
\(992\) 2.24492 0.0712762
\(993\) 0 0
\(994\) −56.4553 −1.79065
\(995\) 80.2304 2.54347
\(996\) 0 0
\(997\) −9.48574 −0.300416 −0.150208 0.988654i \(-0.547994\pi\)
−0.150208 + 0.988654i \(0.547994\pi\)
\(998\) −36.3914 −1.15195
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4842.2.a.q.1.2 8
3.2 odd 2 1614.2.a.i.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1614.2.a.i.1.7 8 3.2 odd 2
4842.2.a.q.1.2 8 1.1 even 1 trivial