Properties

Label 4842.2.a.q.1.4
Level $4842$
Weight $2$
Character 4842.1
Self dual yes
Analytic conductor $38.664$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4842,2,Mod(1,4842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6635646587\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 33x^{6} + 352x^{4} - 18x^{3} - 1229x^{2} + 178x + 108 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1614)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.386375\) of defining polynomial
Character \(\chi\) \(=\) 4842.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -0.386375 q^{5} +2.17487 q^{7} +1.00000 q^{8} -0.386375 q^{10} +2.08072 q^{11} +4.23070 q^{13} +2.17487 q^{14} +1.00000 q^{16} +1.79530 q^{17} +7.85768 q^{19} -0.386375 q^{20} +2.08072 q^{22} +4.06238 q^{23} -4.85071 q^{25} +4.23070 q^{26} +2.17487 q^{28} -6.13152 q^{29} +1.40766 q^{31} +1.00000 q^{32} +1.79530 q^{34} -0.840314 q^{35} -5.65299 q^{37} +7.85768 q^{38} -0.386375 q^{40} -8.47974 q^{41} +8.11821 q^{43} +2.08072 q^{44} +4.06238 q^{46} +2.74687 q^{47} -2.26996 q^{49} -4.85071 q^{50} +4.23070 q^{52} -9.83467 q^{53} -0.803938 q^{55} +2.17487 q^{56} -6.13152 q^{58} +5.01958 q^{59} -0.526805 q^{61} +1.40766 q^{62} +1.00000 q^{64} -1.63463 q^{65} -2.58263 q^{67} +1.79530 q^{68} -0.840314 q^{70} +2.23823 q^{71} -3.05440 q^{73} -5.65299 q^{74} +7.85768 q^{76} +4.52529 q^{77} +2.53118 q^{79} -0.386375 q^{80} -8.47974 q^{82} -5.95111 q^{83} -0.693660 q^{85} +8.11821 q^{86} +2.08072 q^{88} +5.61534 q^{89} +9.20120 q^{91} +4.06238 q^{92} +2.74687 q^{94} -3.03601 q^{95} +4.99827 q^{97} -2.26996 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 9 q^{7} + 8 q^{8} - 8 q^{11} - 3 q^{13} + 9 q^{14} + 8 q^{16} - 8 q^{17} + 18 q^{19} - 8 q^{22} + 10 q^{23} + 26 q^{25} - 3 q^{26} + 9 q^{28} + 9 q^{29} + 18 q^{31} + 8 q^{32}+ \cdots + 29 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −0.386375 −0.172792 −0.0863960 0.996261i \(-0.527535\pi\)
−0.0863960 + 0.996261i \(0.527535\pi\)
\(6\) 0 0
\(7\) 2.17487 0.822022 0.411011 0.911630i \(-0.365176\pi\)
0.411011 + 0.911630i \(0.365176\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −0.386375 −0.122182
\(11\) 2.08072 0.627361 0.313680 0.949529i \(-0.398438\pi\)
0.313680 + 0.949529i \(0.398438\pi\)
\(12\) 0 0
\(13\) 4.23070 1.17338 0.586692 0.809810i \(-0.300430\pi\)
0.586692 + 0.809810i \(0.300430\pi\)
\(14\) 2.17487 0.581258
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.79530 0.435425 0.217713 0.976013i \(-0.430140\pi\)
0.217713 + 0.976013i \(0.430140\pi\)
\(18\) 0 0
\(19\) 7.85768 1.80268 0.901338 0.433116i \(-0.142586\pi\)
0.901338 + 0.433116i \(0.142586\pi\)
\(20\) −0.386375 −0.0863960
\(21\) 0 0
\(22\) 2.08072 0.443611
\(23\) 4.06238 0.847065 0.423532 0.905881i \(-0.360790\pi\)
0.423532 + 0.905881i \(0.360790\pi\)
\(24\) 0 0
\(25\) −4.85071 −0.970143
\(26\) 4.23070 0.829708
\(27\) 0 0
\(28\) 2.17487 0.411011
\(29\) −6.13152 −1.13859 −0.569297 0.822132i \(-0.692785\pi\)
−0.569297 + 0.822132i \(0.692785\pi\)
\(30\) 0 0
\(31\) 1.40766 0.252823 0.126412 0.991978i \(-0.459654\pi\)
0.126412 + 0.991978i \(0.459654\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 1.79530 0.307892
\(35\) −0.840314 −0.142039
\(36\) 0 0
\(37\) −5.65299 −0.929345 −0.464673 0.885483i \(-0.653828\pi\)
−0.464673 + 0.885483i \(0.653828\pi\)
\(38\) 7.85768 1.27468
\(39\) 0 0
\(40\) −0.386375 −0.0610912
\(41\) −8.47974 −1.32431 −0.662156 0.749366i \(-0.730358\pi\)
−0.662156 + 0.749366i \(0.730358\pi\)
\(42\) 0 0
\(43\) 8.11821 1.23802 0.619008 0.785385i \(-0.287535\pi\)
0.619008 + 0.785385i \(0.287535\pi\)
\(44\) 2.08072 0.313680
\(45\) 0 0
\(46\) 4.06238 0.598965
\(47\) 2.74687 0.400673 0.200336 0.979727i \(-0.435797\pi\)
0.200336 + 0.979727i \(0.435797\pi\)
\(48\) 0 0
\(49\) −2.26996 −0.324279
\(50\) −4.85071 −0.685995
\(51\) 0 0
\(52\) 4.23070 0.586692
\(53\) −9.83467 −1.35090 −0.675448 0.737408i \(-0.736050\pi\)
−0.675448 + 0.737408i \(0.736050\pi\)
\(54\) 0 0
\(55\) −0.803938 −0.108403
\(56\) 2.17487 0.290629
\(57\) 0 0
\(58\) −6.13152 −0.805108
\(59\) 5.01958 0.653494 0.326747 0.945112i \(-0.394047\pi\)
0.326747 + 0.945112i \(0.394047\pi\)
\(60\) 0 0
\(61\) −0.526805 −0.0674504 −0.0337252 0.999431i \(-0.510737\pi\)
−0.0337252 + 0.999431i \(0.510737\pi\)
\(62\) 1.40766 0.178773
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.63463 −0.202751
\(66\) 0 0
\(67\) −2.58263 −0.315519 −0.157760 0.987478i \(-0.550427\pi\)
−0.157760 + 0.987478i \(0.550427\pi\)
\(68\) 1.79530 0.217713
\(69\) 0 0
\(70\) −0.840314 −0.100437
\(71\) 2.23823 0.265630 0.132815 0.991141i \(-0.457598\pi\)
0.132815 + 0.991141i \(0.457598\pi\)
\(72\) 0 0
\(73\) −3.05440 −0.357491 −0.178745 0.983895i \(-0.557204\pi\)
−0.178745 + 0.983895i \(0.557204\pi\)
\(74\) −5.65299 −0.657146
\(75\) 0 0
\(76\) 7.85768 0.901338
\(77\) 4.52529 0.515704
\(78\) 0 0
\(79\) 2.53118 0.284780 0.142390 0.989811i \(-0.454521\pi\)
0.142390 + 0.989811i \(0.454521\pi\)
\(80\) −0.386375 −0.0431980
\(81\) 0 0
\(82\) −8.47974 −0.936430
\(83\) −5.95111 −0.653219 −0.326610 0.945159i \(-0.605906\pi\)
−0.326610 + 0.945159i \(0.605906\pi\)
\(84\) 0 0
\(85\) −0.693660 −0.0752380
\(86\) 8.11821 0.875409
\(87\) 0 0
\(88\) 2.08072 0.221805
\(89\) 5.61534 0.595225 0.297613 0.954687i \(-0.403810\pi\)
0.297613 + 0.954687i \(0.403810\pi\)
\(90\) 0 0
\(91\) 9.20120 0.964548
\(92\) 4.06238 0.423532
\(93\) 0 0
\(94\) 2.74687 0.283318
\(95\) −3.03601 −0.311488
\(96\) 0 0
\(97\) 4.99827 0.507498 0.253749 0.967270i \(-0.418336\pi\)
0.253749 + 0.967270i \(0.418336\pi\)
\(98\) −2.26996 −0.229300
\(99\) 0 0
\(100\) −4.85071 −0.485071
\(101\) −4.15185 −0.413125 −0.206562 0.978433i \(-0.566228\pi\)
−0.206562 + 0.978433i \(0.566228\pi\)
\(102\) 0 0
\(103\) 0.906787 0.0893484 0.0446742 0.999002i \(-0.485775\pi\)
0.0446742 + 0.999002i \(0.485775\pi\)
\(104\) 4.23070 0.414854
\(105\) 0 0
\(106\) −9.83467 −0.955228
\(107\) 8.41797 0.813796 0.406898 0.913474i \(-0.366610\pi\)
0.406898 + 0.913474i \(0.366610\pi\)
\(108\) 0 0
\(109\) 15.5055 1.48516 0.742580 0.669758i \(-0.233602\pi\)
0.742580 + 0.669758i \(0.233602\pi\)
\(110\) −0.803938 −0.0766525
\(111\) 0 0
\(112\) 2.17487 0.205506
\(113\) −6.25209 −0.588147 −0.294074 0.955783i \(-0.595011\pi\)
−0.294074 + 0.955783i \(0.595011\pi\)
\(114\) 0 0
\(115\) −1.56960 −0.146366
\(116\) −6.13152 −0.569297
\(117\) 0 0
\(118\) 5.01958 0.462090
\(119\) 3.90455 0.357929
\(120\) 0 0
\(121\) −6.67061 −0.606419
\(122\) −0.526805 −0.0476947
\(123\) 0 0
\(124\) 1.40766 0.126412
\(125\) 3.80607 0.340425
\(126\) 0 0
\(127\) −3.62484 −0.321653 −0.160826 0.986983i \(-0.551416\pi\)
−0.160826 + 0.986983i \(0.551416\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −1.63463 −0.143367
\(131\) 0.359586 0.0314171 0.0157086 0.999877i \(-0.495000\pi\)
0.0157086 + 0.999877i \(0.495000\pi\)
\(132\) 0 0
\(133\) 17.0894 1.48184
\(134\) −2.58263 −0.223106
\(135\) 0 0
\(136\) 1.79530 0.153946
\(137\) 8.02051 0.685238 0.342619 0.939474i \(-0.388686\pi\)
0.342619 + 0.939474i \(0.388686\pi\)
\(138\) 0 0
\(139\) 8.37714 0.710539 0.355270 0.934764i \(-0.384389\pi\)
0.355270 + 0.934764i \(0.384389\pi\)
\(140\) −0.840314 −0.0710195
\(141\) 0 0
\(142\) 2.23823 0.187828
\(143\) 8.80289 0.736135
\(144\) 0 0
\(145\) 2.36907 0.196740
\(146\) −3.05440 −0.252784
\(147\) 0 0
\(148\) −5.65299 −0.464673
\(149\) −1.95478 −0.160142 −0.0800708 0.996789i \(-0.525515\pi\)
−0.0800708 + 0.996789i \(0.525515\pi\)
\(150\) 0 0
\(151\) 9.43437 0.767758 0.383879 0.923383i \(-0.374588\pi\)
0.383879 + 0.923383i \(0.374588\pi\)
\(152\) 7.85768 0.637342
\(153\) 0 0
\(154\) 4.52529 0.364658
\(155\) −0.543885 −0.0436859
\(156\) 0 0
\(157\) 14.2014 1.13339 0.566696 0.823927i \(-0.308221\pi\)
0.566696 + 0.823927i \(0.308221\pi\)
\(158\) 2.53118 0.201370
\(159\) 0 0
\(160\) −0.386375 −0.0305456
\(161\) 8.83514 0.696306
\(162\) 0 0
\(163\) −0.0974752 −0.00763485 −0.00381742 0.999993i \(-0.501215\pi\)
−0.00381742 + 0.999993i \(0.501215\pi\)
\(164\) −8.47974 −0.662156
\(165\) 0 0
\(166\) −5.95111 −0.461896
\(167\) 10.3290 0.799280 0.399640 0.916672i \(-0.369135\pi\)
0.399640 + 0.916672i \(0.369135\pi\)
\(168\) 0 0
\(169\) 4.89879 0.376830
\(170\) −0.693660 −0.0532013
\(171\) 0 0
\(172\) 8.11821 0.619008
\(173\) 2.63105 0.200035 0.100017 0.994986i \(-0.468110\pi\)
0.100017 + 0.994986i \(0.468110\pi\)
\(174\) 0 0
\(175\) −10.5497 −0.797479
\(176\) 2.08072 0.156840
\(177\) 0 0
\(178\) 5.61534 0.420888
\(179\) −12.4561 −0.931010 −0.465505 0.885045i \(-0.654127\pi\)
−0.465505 + 0.885045i \(0.654127\pi\)
\(180\) 0 0
\(181\) 15.3173 1.13852 0.569261 0.822157i \(-0.307229\pi\)
0.569261 + 0.822157i \(0.307229\pi\)
\(182\) 9.20120 0.682038
\(183\) 0 0
\(184\) 4.06238 0.299483
\(185\) 2.18417 0.160584
\(186\) 0 0
\(187\) 3.73552 0.273169
\(188\) 2.74687 0.200336
\(189\) 0 0
\(190\) −3.03601 −0.220255
\(191\) 4.43481 0.320892 0.160446 0.987045i \(-0.448707\pi\)
0.160446 + 0.987045i \(0.448707\pi\)
\(192\) 0 0
\(193\) −4.69578 −0.338010 −0.169005 0.985615i \(-0.554055\pi\)
−0.169005 + 0.985615i \(0.554055\pi\)
\(194\) 4.99827 0.358855
\(195\) 0 0
\(196\) −2.26996 −0.162140
\(197\) 4.93353 0.351500 0.175750 0.984435i \(-0.443765\pi\)
0.175750 + 0.984435i \(0.443765\pi\)
\(198\) 0 0
\(199\) −19.3169 −1.36934 −0.684671 0.728853i \(-0.740054\pi\)
−0.684671 + 0.728853i \(0.740054\pi\)
\(200\) −4.85071 −0.342997
\(201\) 0 0
\(202\) −4.15185 −0.292123
\(203\) −13.3352 −0.935950
\(204\) 0 0
\(205\) 3.27636 0.228831
\(206\) 0.906787 0.0631788
\(207\) 0 0
\(208\) 4.23070 0.293346
\(209\) 16.3496 1.13093
\(210\) 0 0
\(211\) 1.23621 0.0851040 0.0425520 0.999094i \(-0.486451\pi\)
0.0425520 + 0.999094i \(0.486451\pi\)
\(212\) −9.83467 −0.675448
\(213\) 0 0
\(214\) 8.41797 0.575441
\(215\) −3.13667 −0.213919
\(216\) 0 0
\(217\) 3.06147 0.207826
\(218\) 15.5055 1.05017
\(219\) 0 0
\(220\) −0.803938 −0.0542015
\(221\) 7.59538 0.510921
\(222\) 0 0
\(223\) 13.4472 0.900489 0.450244 0.892905i \(-0.351337\pi\)
0.450244 + 0.892905i \(0.351337\pi\)
\(224\) 2.17487 0.145314
\(225\) 0 0
\(226\) −6.25209 −0.415883
\(227\) −17.3344 −1.15053 −0.575263 0.817968i \(-0.695100\pi\)
−0.575263 + 0.817968i \(0.695100\pi\)
\(228\) 0 0
\(229\) −24.9415 −1.64818 −0.824090 0.566459i \(-0.808313\pi\)
−0.824090 + 0.566459i \(0.808313\pi\)
\(230\) −1.56960 −0.103496
\(231\) 0 0
\(232\) −6.13152 −0.402554
\(233\) −18.0979 −1.18563 −0.592816 0.805338i \(-0.701984\pi\)
−0.592816 + 0.805338i \(0.701984\pi\)
\(234\) 0 0
\(235\) −1.06132 −0.0692331
\(236\) 5.01958 0.326747
\(237\) 0 0
\(238\) 3.90455 0.253094
\(239\) −14.6655 −0.948633 −0.474317 0.880354i \(-0.657305\pi\)
−0.474317 + 0.880354i \(0.657305\pi\)
\(240\) 0 0
\(241\) −0.0577845 −0.00372223 −0.00186111 0.999998i \(-0.500592\pi\)
−0.00186111 + 0.999998i \(0.500592\pi\)
\(242\) −6.67061 −0.428803
\(243\) 0 0
\(244\) −0.526805 −0.0337252
\(245\) 0.877054 0.0560329
\(246\) 0 0
\(247\) 33.2435 2.11523
\(248\) 1.40766 0.0893865
\(249\) 0 0
\(250\) 3.80607 0.240717
\(251\) 24.5122 1.54720 0.773599 0.633675i \(-0.218454\pi\)
0.773599 + 0.633675i \(0.218454\pi\)
\(252\) 0 0
\(253\) 8.45268 0.531415
\(254\) −3.62484 −0.227443
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 2.99285 0.186689 0.0933445 0.995634i \(-0.470244\pi\)
0.0933445 + 0.995634i \(0.470244\pi\)
\(258\) 0 0
\(259\) −12.2945 −0.763943
\(260\) −1.63463 −0.101376
\(261\) 0 0
\(262\) 0.359586 0.0222153
\(263\) −22.6403 −1.39606 −0.698031 0.716068i \(-0.745940\pi\)
−0.698031 + 0.716068i \(0.745940\pi\)
\(264\) 0 0
\(265\) 3.79987 0.233424
\(266\) 17.0894 1.04782
\(267\) 0 0
\(268\) −2.58263 −0.157760
\(269\) 1.00000 0.0609711
\(270\) 0 0
\(271\) −0.615051 −0.0373617 −0.0186808 0.999825i \(-0.505947\pi\)
−0.0186808 + 0.999825i \(0.505947\pi\)
\(272\) 1.79530 0.108856
\(273\) 0 0
\(274\) 8.02051 0.484537
\(275\) −10.0930 −0.608629
\(276\) 0 0
\(277\) −4.21492 −0.253250 −0.126625 0.991951i \(-0.540414\pi\)
−0.126625 + 0.991951i \(0.540414\pi\)
\(278\) 8.37714 0.502427
\(279\) 0 0
\(280\) −0.840314 −0.0502184
\(281\) 2.85454 0.170288 0.0851439 0.996369i \(-0.472865\pi\)
0.0851439 + 0.996369i \(0.472865\pi\)
\(282\) 0 0
\(283\) −28.2027 −1.67647 −0.838237 0.545306i \(-0.816413\pi\)
−0.838237 + 0.545306i \(0.816413\pi\)
\(284\) 2.23823 0.132815
\(285\) 0 0
\(286\) 8.80289 0.520526
\(287\) −18.4423 −1.08861
\(288\) 0 0
\(289\) −13.7769 −0.810405
\(290\) 2.36907 0.139116
\(291\) 0 0
\(292\) −3.05440 −0.178745
\(293\) 6.52394 0.381133 0.190566 0.981674i \(-0.438968\pi\)
0.190566 + 0.981674i \(0.438968\pi\)
\(294\) 0 0
\(295\) −1.93944 −0.112919
\(296\) −5.65299 −0.328573
\(297\) 0 0
\(298\) −1.95478 −0.113237
\(299\) 17.1867 0.993933
\(300\) 0 0
\(301\) 17.6560 1.01768
\(302\) 9.43437 0.542887
\(303\) 0 0
\(304\) 7.85768 0.450669
\(305\) 0.203544 0.0116549
\(306\) 0 0
\(307\) −22.8518 −1.30422 −0.652111 0.758123i \(-0.726116\pi\)
−0.652111 + 0.758123i \(0.726116\pi\)
\(308\) 4.52529 0.257852
\(309\) 0 0
\(310\) −0.543885 −0.0308906
\(311\) 16.4962 0.935412 0.467706 0.883884i \(-0.345081\pi\)
0.467706 + 0.883884i \(0.345081\pi\)
\(312\) 0 0
\(313\) −1.78952 −0.101149 −0.0505747 0.998720i \(-0.516105\pi\)
−0.0505747 + 0.998720i \(0.516105\pi\)
\(314\) 14.2014 0.801429
\(315\) 0 0
\(316\) 2.53118 0.142390
\(317\) −5.57591 −0.313174 −0.156587 0.987664i \(-0.550049\pi\)
−0.156587 + 0.987664i \(0.550049\pi\)
\(318\) 0 0
\(319\) −12.7580 −0.714309
\(320\) −0.386375 −0.0215990
\(321\) 0 0
\(322\) 8.83514 0.492363
\(323\) 14.1069 0.784930
\(324\) 0 0
\(325\) −20.5219 −1.13835
\(326\) −0.0974752 −0.00539865
\(327\) 0 0
\(328\) −8.47974 −0.468215
\(329\) 5.97408 0.329362
\(330\) 0 0
\(331\) −27.6569 −1.52016 −0.760080 0.649829i \(-0.774840\pi\)
−0.760080 + 0.649829i \(0.774840\pi\)
\(332\) −5.95111 −0.326610
\(333\) 0 0
\(334\) 10.3290 0.565176
\(335\) 0.997865 0.0545192
\(336\) 0 0
\(337\) 17.2086 0.937412 0.468706 0.883354i \(-0.344720\pi\)
0.468706 + 0.883354i \(0.344720\pi\)
\(338\) 4.89879 0.266459
\(339\) 0 0
\(340\) −0.693660 −0.0376190
\(341\) 2.92895 0.158611
\(342\) 0 0
\(343\) −20.1609 −1.08859
\(344\) 8.11821 0.437705
\(345\) 0 0
\(346\) 2.63105 0.141446
\(347\) 26.4564 1.42026 0.710128 0.704073i \(-0.248637\pi\)
0.710128 + 0.704073i \(0.248637\pi\)
\(348\) 0 0
\(349\) −2.31155 −0.123734 −0.0618671 0.998084i \(-0.519705\pi\)
−0.0618671 + 0.998084i \(0.519705\pi\)
\(350\) −10.5497 −0.563903
\(351\) 0 0
\(352\) 2.08072 0.110903
\(353\) 6.16551 0.328157 0.164079 0.986447i \(-0.447535\pi\)
0.164079 + 0.986447i \(0.447535\pi\)
\(354\) 0 0
\(355\) −0.864797 −0.0458987
\(356\) 5.61534 0.297613
\(357\) 0 0
\(358\) −12.4561 −0.658323
\(359\) 23.8004 1.25614 0.628068 0.778158i \(-0.283846\pi\)
0.628068 + 0.778158i \(0.283846\pi\)
\(360\) 0 0
\(361\) 42.7432 2.24964
\(362\) 15.3173 0.805057
\(363\) 0 0
\(364\) 9.20120 0.482274
\(365\) 1.18014 0.0617716
\(366\) 0 0
\(367\) −37.6968 −1.96776 −0.983879 0.178836i \(-0.942767\pi\)
−0.983879 + 0.178836i \(0.942767\pi\)
\(368\) 4.06238 0.211766
\(369\) 0 0
\(370\) 2.18417 0.113550
\(371\) −21.3891 −1.11047
\(372\) 0 0
\(373\) −9.78397 −0.506595 −0.253297 0.967388i \(-0.581515\pi\)
−0.253297 + 0.967388i \(0.581515\pi\)
\(374\) 3.73552 0.193159
\(375\) 0 0
\(376\) 2.74687 0.141659
\(377\) −25.9406 −1.33601
\(378\) 0 0
\(379\) 14.3303 0.736099 0.368050 0.929806i \(-0.380026\pi\)
0.368050 + 0.929806i \(0.380026\pi\)
\(380\) −3.03601 −0.155744
\(381\) 0 0
\(382\) 4.43481 0.226905
\(383\) 23.7847 1.21534 0.607671 0.794189i \(-0.292104\pi\)
0.607671 + 0.794189i \(0.292104\pi\)
\(384\) 0 0
\(385\) −1.74846 −0.0891096
\(386\) −4.69578 −0.239009
\(387\) 0 0
\(388\) 4.99827 0.253749
\(389\) 8.41143 0.426476 0.213238 0.977000i \(-0.431599\pi\)
0.213238 + 0.977000i \(0.431599\pi\)
\(390\) 0 0
\(391\) 7.29321 0.368833
\(392\) −2.26996 −0.114650
\(393\) 0 0
\(394\) 4.93353 0.248548
\(395\) −0.977983 −0.0492077
\(396\) 0 0
\(397\) −4.79537 −0.240673 −0.120336 0.992733i \(-0.538397\pi\)
−0.120336 + 0.992733i \(0.538397\pi\)
\(398\) −19.3169 −0.968270
\(399\) 0 0
\(400\) −4.85071 −0.242536
\(401\) −16.2879 −0.813380 −0.406690 0.913566i \(-0.633317\pi\)
−0.406690 + 0.913566i \(0.633317\pi\)
\(402\) 0 0
\(403\) 5.95538 0.296659
\(404\) −4.15185 −0.206562
\(405\) 0 0
\(406\) −13.3352 −0.661817
\(407\) −11.7623 −0.583035
\(408\) 0 0
\(409\) 5.13956 0.254135 0.127067 0.991894i \(-0.459444\pi\)
0.127067 + 0.991894i \(0.459444\pi\)
\(410\) 3.27636 0.161808
\(411\) 0 0
\(412\) 0.906787 0.0446742
\(413\) 10.9169 0.537187
\(414\) 0 0
\(415\) 2.29936 0.112871
\(416\) 4.23070 0.207427
\(417\) 0 0
\(418\) 16.3496 0.799687
\(419\) 6.07355 0.296713 0.148356 0.988934i \(-0.452602\pi\)
0.148356 + 0.988934i \(0.452602\pi\)
\(420\) 0 0
\(421\) −35.2344 −1.71722 −0.858610 0.512630i \(-0.828671\pi\)
−0.858610 + 0.512630i \(0.828671\pi\)
\(422\) 1.23621 0.0601776
\(423\) 0 0
\(424\) −9.83467 −0.477614
\(425\) −8.70850 −0.422424
\(426\) 0 0
\(427\) −1.14573 −0.0554458
\(428\) 8.41797 0.406898
\(429\) 0 0
\(430\) −3.13667 −0.151264
\(431\) 25.3935 1.22316 0.611580 0.791183i \(-0.290534\pi\)
0.611580 + 0.791183i \(0.290534\pi\)
\(432\) 0 0
\(433\) −30.3331 −1.45772 −0.728858 0.684664i \(-0.759949\pi\)
−0.728858 + 0.684664i \(0.759949\pi\)
\(434\) 3.06147 0.146955
\(435\) 0 0
\(436\) 15.5055 0.742580
\(437\) 31.9209 1.52698
\(438\) 0 0
\(439\) 10.6888 0.510148 0.255074 0.966922i \(-0.417900\pi\)
0.255074 + 0.966922i \(0.417900\pi\)
\(440\) −0.803938 −0.0383262
\(441\) 0 0
\(442\) 7.59538 0.361276
\(443\) −3.86159 −0.183470 −0.0917348 0.995783i \(-0.529241\pi\)
−0.0917348 + 0.995783i \(0.529241\pi\)
\(444\) 0 0
\(445\) −2.16963 −0.102850
\(446\) 13.4472 0.636742
\(447\) 0 0
\(448\) 2.17487 0.102753
\(449\) 3.93355 0.185636 0.0928179 0.995683i \(-0.470413\pi\)
0.0928179 + 0.995683i \(0.470413\pi\)
\(450\) 0 0
\(451\) −17.6440 −0.830821
\(452\) −6.25209 −0.294074
\(453\) 0 0
\(454\) −17.3344 −0.813545
\(455\) −3.55511 −0.166666
\(456\) 0 0
\(457\) −18.4341 −0.862311 −0.431156 0.902278i \(-0.641894\pi\)
−0.431156 + 0.902278i \(0.641894\pi\)
\(458\) −24.9415 −1.16544
\(459\) 0 0
\(460\) −1.56960 −0.0731831
\(461\) 4.61243 0.214822 0.107411 0.994215i \(-0.465744\pi\)
0.107411 + 0.994215i \(0.465744\pi\)
\(462\) 0 0
\(463\) −11.2551 −0.523067 −0.261533 0.965194i \(-0.584228\pi\)
−0.261533 + 0.965194i \(0.584228\pi\)
\(464\) −6.13152 −0.284649
\(465\) 0 0
\(466\) −18.0979 −0.838368
\(467\) 20.1395 0.931946 0.465973 0.884799i \(-0.345704\pi\)
0.465973 + 0.884799i \(0.345704\pi\)
\(468\) 0 0
\(469\) −5.61689 −0.259364
\(470\) −1.06132 −0.0489552
\(471\) 0 0
\(472\) 5.01958 0.231045
\(473\) 16.8917 0.776682
\(474\) 0 0
\(475\) −38.1154 −1.74885
\(476\) 3.90455 0.178965
\(477\) 0 0
\(478\) −14.6655 −0.670785
\(479\) −16.0705 −0.734278 −0.367139 0.930166i \(-0.619663\pi\)
−0.367139 + 0.930166i \(0.619663\pi\)
\(480\) 0 0
\(481\) −23.9161 −1.09048
\(482\) −0.0577845 −0.00263201
\(483\) 0 0
\(484\) −6.67061 −0.303209
\(485\) −1.93121 −0.0876916
\(486\) 0 0
\(487\) −36.7241 −1.66413 −0.832064 0.554679i \(-0.812841\pi\)
−0.832064 + 0.554679i \(0.812841\pi\)
\(488\) −0.526805 −0.0238473
\(489\) 0 0
\(490\) 0.877054 0.0396213
\(491\) 29.1923 1.31743 0.658716 0.752392i \(-0.271100\pi\)
0.658716 + 0.752392i \(0.271100\pi\)
\(492\) 0 0
\(493\) −11.0079 −0.495773
\(494\) 33.2435 1.49569
\(495\) 0 0
\(496\) 1.40766 0.0632058
\(497\) 4.86786 0.218353
\(498\) 0 0
\(499\) 28.9874 1.29766 0.648828 0.760935i \(-0.275259\pi\)
0.648828 + 0.760935i \(0.275259\pi\)
\(500\) 3.80607 0.170213
\(501\) 0 0
\(502\) 24.5122 1.09403
\(503\) 42.8530 1.91072 0.955361 0.295440i \(-0.0954663\pi\)
0.955361 + 0.295440i \(0.0954663\pi\)
\(504\) 0 0
\(505\) 1.60417 0.0713847
\(506\) 8.45268 0.375767
\(507\) 0 0
\(508\) −3.62484 −0.160826
\(509\) 6.93676 0.307466 0.153733 0.988112i \(-0.450870\pi\)
0.153733 + 0.988112i \(0.450870\pi\)
\(510\) 0 0
\(511\) −6.64292 −0.293866
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 2.99285 0.132009
\(515\) −0.350360 −0.0154387
\(516\) 0 0
\(517\) 5.71547 0.251366
\(518\) −12.2945 −0.540189
\(519\) 0 0
\(520\) −1.63463 −0.0716835
\(521\) −22.8021 −0.998977 −0.499489 0.866320i \(-0.666479\pi\)
−0.499489 + 0.866320i \(0.666479\pi\)
\(522\) 0 0
\(523\) −5.50512 −0.240722 −0.120361 0.992730i \(-0.538405\pi\)
−0.120361 + 0.992730i \(0.538405\pi\)
\(524\) 0.359586 0.0157086
\(525\) 0 0
\(526\) −22.6403 −0.987164
\(527\) 2.52718 0.110086
\(528\) 0 0
\(529\) −6.49706 −0.282481
\(530\) 3.79987 0.165056
\(531\) 0 0
\(532\) 17.0894 0.740920
\(533\) −35.8752 −1.55393
\(534\) 0 0
\(535\) −3.25249 −0.140618
\(536\) −2.58263 −0.111553
\(537\) 0 0
\(538\) 1.00000 0.0431131
\(539\) −4.72314 −0.203440
\(540\) 0 0
\(541\) 21.7806 0.936423 0.468212 0.883616i \(-0.344899\pi\)
0.468212 + 0.883616i \(0.344899\pi\)
\(542\) −0.615051 −0.0264187
\(543\) 0 0
\(544\) 1.79530 0.0769730
\(545\) −5.99094 −0.256624
\(546\) 0 0
\(547\) 12.0368 0.514655 0.257327 0.966324i \(-0.417158\pi\)
0.257327 + 0.966324i \(0.417158\pi\)
\(548\) 8.02051 0.342619
\(549\) 0 0
\(550\) −10.0930 −0.430366
\(551\) −48.1795 −2.05252
\(552\) 0 0
\(553\) 5.50497 0.234095
\(554\) −4.21492 −0.179075
\(555\) 0 0
\(556\) 8.37714 0.355270
\(557\) −24.2067 −1.02567 −0.512835 0.858487i \(-0.671405\pi\)
−0.512835 + 0.858487i \(0.671405\pi\)
\(558\) 0 0
\(559\) 34.3457 1.45267
\(560\) −0.840314 −0.0355097
\(561\) 0 0
\(562\) 2.85454 0.120412
\(563\) 39.3050 1.65651 0.828253 0.560354i \(-0.189335\pi\)
0.828253 + 0.560354i \(0.189335\pi\)
\(564\) 0 0
\(565\) 2.41565 0.101627
\(566\) −28.2027 −1.18545
\(567\) 0 0
\(568\) 2.23823 0.0939142
\(569\) −17.2522 −0.723249 −0.361624 0.932324i \(-0.617778\pi\)
−0.361624 + 0.932324i \(0.617778\pi\)
\(570\) 0 0
\(571\) −25.0795 −1.04954 −0.524772 0.851243i \(-0.675850\pi\)
−0.524772 + 0.851243i \(0.675850\pi\)
\(572\) 8.80289 0.368067
\(573\) 0 0
\(574\) −18.4423 −0.769766
\(575\) −19.7054 −0.821774
\(576\) 0 0
\(577\) 40.9505 1.70479 0.852397 0.522895i \(-0.175148\pi\)
0.852397 + 0.522895i \(0.175148\pi\)
\(578\) −13.7769 −0.573043
\(579\) 0 0
\(580\) 2.36907 0.0983701
\(581\) −12.9429 −0.536961
\(582\) 0 0
\(583\) −20.4632 −0.847499
\(584\) −3.05440 −0.126392
\(585\) 0 0
\(586\) 6.52394 0.269502
\(587\) −9.21317 −0.380268 −0.190134 0.981758i \(-0.560892\pi\)
−0.190134 + 0.981758i \(0.560892\pi\)
\(588\) 0 0
\(589\) 11.0609 0.455758
\(590\) −1.93944 −0.0798455
\(591\) 0 0
\(592\) −5.65299 −0.232336
\(593\) 9.46289 0.388594 0.194297 0.980943i \(-0.437757\pi\)
0.194297 + 0.980943i \(0.437757\pi\)
\(594\) 0 0
\(595\) −1.50862 −0.0618473
\(596\) −1.95478 −0.0800708
\(597\) 0 0
\(598\) 17.1867 0.702816
\(599\) −16.6993 −0.682315 −0.341157 0.940006i \(-0.610819\pi\)
−0.341157 + 0.940006i \(0.610819\pi\)
\(600\) 0 0
\(601\) 44.4943 1.81496 0.907479 0.420097i \(-0.138004\pi\)
0.907479 + 0.420097i \(0.138004\pi\)
\(602\) 17.6560 0.719606
\(603\) 0 0
\(604\) 9.43437 0.383879
\(605\) 2.57735 0.104784
\(606\) 0 0
\(607\) −27.0420 −1.09760 −0.548801 0.835953i \(-0.684915\pi\)
−0.548801 + 0.835953i \(0.684915\pi\)
\(608\) 7.85768 0.318671
\(609\) 0 0
\(610\) 0.203544 0.00824126
\(611\) 11.6212 0.470143
\(612\) 0 0
\(613\) −7.52962 −0.304118 −0.152059 0.988371i \(-0.548590\pi\)
−0.152059 + 0.988371i \(0.548590\pi\)
\(614\) −22.8518 −0.922224
\(615\) 0 0
\(616\) 4.52529 0.182329
\(617\) −25.0161 −1.00711 −0.503555 0.863963i \(-0.667975\pi\)
−0.503555 + 0.863963i \(0.667975\pi\)
\(618\) 0 0
\(619\) 0.146043 0.00586997 0.00293499 0.999996i \(-0.499066\pi\)
0.00293499 + 0.999996i \(0.499066\pi\)
\(620\) −0.543885 −0.0218429
\(621\) 0 0
\(622\) 16.4962 0.661437
\(623\) 12.2126 0.489288
\(624\) 0 0
\(625\) 22.7830 0.911320
\(626\) −1.78952 −0.0715235
\(627\) 0 0
\(628\) 14.2014 0.566696
\(629\) −10.1488 −0.404660
\(630\) 0 0
\(631\) −17.2298 −0.685908 −0.342954 0.939352i \(-0.611428\pi\)
−0.342954 + 0.939352i \(0.611428\pi\)
\(632\) 2.53118 0.100685
\(633\) 0 0
\(634\) −5.57591 −0.221448
\(635\) 1.40055 0.0555790
\(636\) 0 0
\(637\) −9.60349 −0.380504
\(638\) −12.7580 −0.505093
\(639\) 0 0
\(640\) −0.386375 −0.0152728
\(641\) −27.4878 −1.08570 −0.542852 0.839828i \(-0.682656\pi\)
−0.542852 + 0.839828i \(0.682656\pi\)
\(642\) 0 0
\(643\) −9.36764 −0.369423 −0.184712 0.982793i \(-0.559135\pi\)
−0.184712 + 0.982793i \(0.559135\pi\)
\(644\) 8.83514 0.348153
\(645\) 0 0
\(646\) 14.1069 0.555030
\(647\) −10.0619 −0.395574 −0.197787 0.980245i \(-0.563375\pi\)
−0.197787 + 0.980245i \(0.563375\pi\)
\(648\) 0 0
\(649\) 10.4443 0.409976
\(650\) −20.5219 −0.804935
\(651\) 0 0
\(652\) −0.0974752 −0.00381742
\(653\) 29.0482 1.13675 0.568373 0.822771i \(-0.307573\pi\)
0.568373 + 0.822771i \(0.307573\pi\)
\(654\) 0 0
\(655\) −0.138935 −0.00542863
\(656\) −8.47974 −0.331078
\(657\) 0 0
\(658\) 5.97408 0.232894
\(659\) −34.5012 −1.34398 −0.671989 0.740561i \(-0.734560\pi\)
−0.671989 + 0.740561i \(0.734560\pi\)
\(660\) 0 0
\(661\) −19.5744 −0.761358 −0.380679 0.924707i \(-0.624310\pi\)
−0.380679 + 0.924707i \(0.624310\pi\)
\(662\) −27.6569 −1.07492
\(663\) 0 0
\(664\) −5.95111 −0.230948
\(665\) −6.60292 −0.256050
\(666\) 0 0
\(667\) −24.9086 −0.964464
\(668\) 10.3290 0.399640
\(669\) 0 0
\(670\) 0.997865 0.0385509
\(671\) −1.09613 −0.0423157
\(672\) 0 0
\(673\) 18.4387 0.710758 0.355379 0.934722i \(-0.384352\pi\)
0.355379 + 0.934722i \(0.384352\pi\)
\(674\) 17.2086 0.662850
\(675\) 0 0
\(676\) 4.89879 0.188415
\(677\) −6.59421 −0.253436 −0.126718 0.991939i \(-0.540444\pi\)
−0.126718 + 0.991939i \(0.540444\pi\)
\(678\) 0 0
\(679\) 10.8706 0.417174
\(680\) −0.693660 −0.0266006
\(681\) 0 0
\(682\) 2.92895 0.112155
\(683\) −21.4509 −0.820795 −0.410397 0.911907i \(-0.634610\pi\)
−0.410397 + 0.911907i \(0.634610\pi\)
\(684\) 0 0
\(685\) −3.09892 −0.118404
\(686\) −20.1609 −0.769747
\(687\) 0 0
\(688\) 8.11821 0.309504
\(689\) −41.6075 −1.58512
\(690\) 0 0
\(691\) −17.6165 −0.670164 −0.335082 0.942189i \(-0.608764\pi\)
−0.335082 + 0.942189i \(0.608764\pi\)
\(692\) 2.63105 0.100017
\(693\) 0 0
\(694\) 26.4564 1.00427
\(695\) −3.23671 −0.122776
\(696\) 0 0
\(697\) −15.2237 −0.576639
\(698\) −2.31155 −0.0874933
\(699\) 0 0
\(700\) −10.5497 −0.398740
\(701\) −24.4735 −0.924353 −0.462176 0.886788i \(-0.652931\pi\)
−0.462176 + 0.886788i \(0.652931\pi\)
\(702\) 0 0
\(703\) −44.4194 −1.67531
\(704\) 2.08072 0.0784201
\(705\) 0 0
\(706\) 6.16551 0.232042
\(707\) −9.02973 −0.339598
\(708\) 0 0
\(709\) 0.934758 0.0351056 0.0175528 0.999846i \(-0.494412\pi\)
0.0175528 + 0.999846i \(0.494412\pi\)
\(710\) −0.864797 −0.0324553
\(711\) 0 0
\(712\) 5.61534 0.210444
\(713\) 5.71845 0.214158
\(714\) 0 0
\(715\) −3.40122 −0.127198
\(716\) −12.4561 −0.465505
\(717\) 0 0
\(718\) 23.8004 0.888223
\(719\) 21.0007 0.783195 0.391597 0.920137i \(-0.371923\pi\)
0.391597 + 0.920137i \(0.371923\pi\)
\(720\) 0 0
\(721\) 1.97214 0.0734463
\(722\) 42.7432 1.59074
\(723\) 0 0
\(724\) 15.3173 0.569261
\(725\) 29.7423 1.10460
\(726\) 0 0
\(727\) −7.99152 −0.296389 −0.148195 0.988958i \(-0.547346\pi\)
−0.148195 + 0.988958i \(0.547346\pi\)
\(728\) 9.20120 0.341019
\(729\) 0 0
\(730\) 1.18014 0.0436791
\(731\) 14.5747 0.539063
\(732\) 0 0
\(733\) 15.5065 0.572745 0.286372 0.958118i \(-0.407551\pi\)
0.286372 + 0.958118i \(0.407551\pi\)
\(734\) −37.6968 −1.39141
\(735\) 0 0
\(736\) 4.06238 0.149741
\(737\) −5.37374 −0.197944
\(738\) 0 0
\(739\) 22.7579 0.837162 0.418581 0.908179i \(-0.362528\pi\)
0.418581 + 0.908179i \(0.362528\pi\)
\(740\) 2.18417 0.0802918
\(741\) 0 0
\(742\) −21.3891 −0.785218
\(743\) 42.6471 1.56457 0.782285 0.622921i \(-0.214054\pi\)
0.782285 + 0.622921i \(0.214054\pi\)
\(744\) 0 0
\(745\) 0.755277 0.0276712
\(746\) −9.78397 −0.358217
\(747\) 0 0
\(748\) 3.73552 0.136584
\(749\) 18.3080 0.668958
\(750\) 0 0
\(751\) 18.1698 0.663025 0.331512 0.943451i \(-0.392441\pi\)
0.331512 + 0.943451i \(0.392441\pi\)
\(752\) 2.74687 0.100168
\(753\) 0 0
\(754\) −25.9406 −0.944701
\(755\) −3.64520 −0.132663
\(756\) 0 0
\(757\) −17.0878 −0.621065 −0.310532 0.950563i \(-0.600507\pi\)
−0.310532 + 0.950563i \(0.600507\pi\)
\(758\) 14.3303 0.520501
\(759\) 0 0
\(760\) −3.03601 −0.110128
\(761\) −28.3484 −1.02763 −0.513815 0.857901i \(-0.671768\pi\)
−0.513815 + 0.857901i \(0.671768\pi\)
\(762\) 0 0
\(763\) 33.7224 1.22083
\(764\) 4.43481 0.160446
\(765\) 0 0
\(766\) 23.7847 0.859376
\(767\) 21.2363 0.766800
\(768\) 0 0
\(769\) −30.5696 −1.10237 −0.551184 0.834384i \(-0.685824\pi\)
−0.551184 + 0.834384i \(0.685824\pi\)
\(770\) −1.74846 −0.0630100
\(771\) 0 0
\(772\) −4.69578 −0.169005
\(773\) −9.69200 −0.348597 −0.174299 0.984693i \(-0.555766\pi\)
−0.174299 + 0.984693i \(0.555766\pi\)
\(774\) 0 0
\(775\) −6.82816 −0.245275
\(776\) 4.99827 0.179427
\(777\) 0 0
\(778\) 8.41143 0.301564
\(779\) −66.6311 −2.38731
\(780\) 0 0
\(781\) 4.65714 0.166646
\(782\) 7.29321 0.260804
\(783\) 0 0
\(784\) −2.26996 −0.0810698
\(785\) −5.48705 −0.195841
\(786\) 0 0
\(787\) −37.7666 −1.34623 −0.673117 0.739536i \(-0.735045\pi\)
−0.673117 + 0.739536i \(0.735045\pi\)
\(788\) 4.93353 0.175750
\(789\) 0 0
\(790\) −0.977983 −0.0347951
\(791\) −13.5975 −0.483470
\(792\) 0 0
\(793\) −2.22875 −0.0791453
\(794\) −4.79537 −0.170181
\(795\) 0 0
\(796\) −19.3169 −0.684671
\(797\) −41.6753 −1.47621 −0.738107 0.674684i \(-0.764280\pi\)
−0.738107 + 0.674684i \(0.764280\pi\)
\(798\) 0 0
\(799\) 4.93147 0.174463
\(800\) −4.85071 −0.171499
\(801\) 0 0
\(802\) −16.2879 −0.575146
\(803\) −6.35536 −0.224276
\(804\) 0 0
\(805\) −3.41367 −0.120316
\(806\) 5.95538 0.209769
\(807\) 0 0
\(808\) −4.15185 −0.146062
\(809\) −28.2635 −0.993691 −0.496845 0.867839i \(-0.665508\pi\)
−0.496845 + 0.867839i \(0.665508\pi\)
\(810\) 0 0
\(811\) 42.7084 1.49969 0.749847 0.661611i \(-0.230127\pi\)
0.749847 + 0.661611i \(0.230127\pi\)
\(812\) −13.3352 −0.467975
\(813\) 0 0
\(814\) −11.7623 −0.412268
\(815\) 0.0376620 0.00131924
\(816\) 0 0
\(817\) 63.7903 2.23174
\(818\) 5.13956 0.179701
\(819\) 0 0
\(820\) 3.27636 0.114415
\(821\) 26.1422 0.912370 0.456185 0.889885i \(-0.349216\pi\)
0.456185 + 0.889885i \(0.349216\pi\)
\(822\) 0 0
\(823\) 14.9839 0.522307 0.261153 0.965297i \(-0.415897\pi\)
0.261153 + 0.965297i \(0.415897\pi\)
\(824\) 0.906787 0.0315894
\(825\) 0 0
\(826\) 10.9169 0.379848
\(827\) 10.9582 0.381053 0.190527 0.981682i \(-0.438980\pi\)
0.190527 + 0.981682i \(0.438980\pi\)
\(828\) 0 0
\(829\) 42.1685 1.46457 0.732287 0.680996i \(-0.238453\pi\)
0.732287 + 0.680996i \(0.238453\pi\)
\(830\) 2.29936 0.0798119
\(831\) 0 0
\(832\) 4.23070 0.146673
\(833\) −4.07526 −0.141199
\(834\) 0 0
\(835\) −3.99086 −0.138109
\(836\) 16.3496 0.565464
\(837\) 0 0
\(838\) 6.07355 0.209807
\(839\) −43.2210 −1.49216 −0.746078 0.665859i \(-0.768065\pi\)
−0.746078 + 0.665859i \(0.768065\pi\)
\(840\) 0 0
\(841\) 8.59553 0.296398
\(842\) −35.2344 −1.21426
\(843\) 0 0
\(844\) 1.23621 0.0425520
\(845\) −1.89277 −0.0651133
\(846\) 0 0
\(847\) −14.5077 −0.498490
\(848\) −9.83467 −0.337724
\(849\) 0 0
\(850\) −8.70850 −0.298699
\(851\) −22.9646 −0.787216
\(852\) 0 0
\(853\) 9.53071 0.326325 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(854\) −1.14573 −0.0392061
\(855\) 0 0
\(856\) 8.41797 0.287720
\(857\) 30.8695 1.05448 0.527240 0.849716i \(-0.323227\pi\)
0.527240 + 0.849716i \(0.323227\pi\)
\(858\) 0 0
\(859\) −25.0554 −0.854879 −0.427440 0.904044i \(-0.640584\pi\)
−0.427440 + 0.904044i \(0.640584\pi\)
\(860\) −3.13667 −0.106960
\(861\) 0 0
\(862\) 25.3935 0.864905
\(863\) −29.0959 −0.990435 −0.495218 0.868769i \(-0.664912\pi\)
−0.495218 + 0.868769i \(0.664912\pi\)
\(864\) 0 0
\(865\) −1.01657 −0.0345644
\(866\) −30.3331 −1.03076
\(867\) 0 0
\(868\) 3.06147 0.103913
\(869\) 5.26667 0.178660
\(870\) 0 0
\(871\) −10.9263 −0.370225
\(872\) 15.5055 0.525083
\(873\) 0 0
\(874\) 31.9209 1.07974
\(875\) 8.27769 0.279837
\(876\) 0 0
\(877\) −56.6609 −1.91330 −0.956651 0.291238i \(-0.905933\pi\)
−0.956651 + 0.291238i \(0.905933\pi\)
\(878\) 10.6888 0.360729
\(879\) 0 0
\(880\) −0.803938 −0.0271007
\(881\) −37.8256 −1.27438 −0.637188 0.770708i \(-0.719903\pi\)
−0.637188 + 0.770708i \(0.719903\pi\)
\(882\) 0 0
\(883\) −2.51756 −0.0847225 −0.0423613 0.999102i \(-0.513488\pi\)
−0.0423613 + 0.999102i \(0.513488\pi\)
\(884\) 7.59538 0.255460
\(885\) 0 0
\(886\) −3.86159 −0.129733
\(887\) −22.2716 −0.747806 −0.373903 0.927468i \(-0.621981\pi\)
−0.373903 + 0.927468i \(0.621981\pi\)
\(888\) 0 0
\(889\) −7.88354 −0.264406
\(890\) −2.16963 −0.0727261
\(891\) 0 0
\(892\) 13.4472 0.450244
\(893\) 21.5841 0.722283
\(894\) 0 0
\(895\) 4.81271 0.160871
\(896\) 2.17487 0.0726572
\(897\) 0 0
\(898\) 3.93355 0.131264
\(899\) −8.63110 −0.287863
\(900\) 0 0
\(901\) −17.6562 −0.588214
\(902\) −17.6440 −0.587479
\(903\) 0 0
\(904\) −6.25209 −0.207941
\(905\) −5.91820 −0.196728
\(906\) 0 0
\(907\) 12.7169 0.422256 0.211128 0.977458i \(-0.432286\pi\)
0.211128 + 0.977458i \(0.432286\pi\)
\(908\) −17.3344 −0.575263
\(909\) 0 0
\(910\) −3.55511 −0.117851
\(911\) 54.6544 1.81078 0.905391 0.424579i \(-0.139578\pi\)
0.905391 + 0.424579i \(0.139578\pi\)
\(912\) 0 0
\(913\) −12.3826 −0.409804
\(914\) −18.4341 −0.609746
\(915\) 0 0
\(916\) −24.9415 −0.824090
\(917\) 0.782051 0.0258256
\(918\) 0 0
\(919\) −21.0761 −0.695237 −0.347618 0.937636i \(-0.613010\pi\)
−0.347618 + 0.937636i \(0.613010\pi\)
\(920\) −1.56960 −0.0517482
\(921\) 0 0
\(922\) 4.61243 0.151902
\(923\) 9.46929 0.311685
\(924\) 0 0
\(925\) 27.4210 0.901598
\(926\) −11.2551 −0.369864
\(927\) 0 0
\(928\) −6.13152 −0.201277
\(929\) 0.720989 0.0236549 0.0118274 0.999930i \(-0.496235\pi\)
0.0118274 + 0.999930i \(0.496235\pi\)
\(930\) 0 0
\(931\) −17.8366 −0.584571
\(932\) −18.0979 −0.592816
\(933\) 0 0
\(934\) 20.1395 0.658985
\(935\) −1.44331 −0.0472014
\(936\) 0 0
\(937\) 17.9047 0.584920 0.292460 0.956278i \(-0.405526\pi\)
0.292460 + 0.956278i \(0.405526\pi\)
\(938\) −5.61689 −0.183398
\(939\) 0 0
\(940\) −1.06132 −0.0346165
\(941\) −14.2034 −0.463019 −0.231509 0.972833i \(-0.574366\pi\)
−0.231509 + 0.972833i \(0.574366\pi\)
\(942\) 0 0
\(943\) −34.4479 −1.12178
\(944\) 5.01958 0.163374
\(945\) 0 0
\(946\) 16.8917 0.549197
\(947\) 25.5050 0.828800 0.414400 0.910095i \(-0.363991\pi\)
0.414400 + 0.910095i \(0.363991\pi\)
\(948\) 0 0
\(949\) −12.9223 −0.419474
\(950\) −38.1154 −1.23663
\(951\) 0 0
\(952\) 3.90455 0.126547
\(953\) 31.9636 1.03540 0.517702 0.855561i \(-0.326788\pi\)
0.517702 + 0.855561i \(0.326788\pi\)
\(954\) 0 0
\(955\) −1.71350 −0.0554475
\(956\) −14.6655 −0.474317
\(957\) 0 0
\(958\) −16.0705 −0.519213
\(959\) 17.4435 0.563281
\(960\) 0 0
\(961\) −29.0185 −0.936080
\(962\) −23.9161 −0.771085
\(963\) 0 0
\(964\) −0.0577845 −0.00186111
\(965\) 1.81433 0.0584054
\(966\) 0 0
\(967\) 18.3313 0.589495 0.294748 0.955575i \(-0.404764\pi\)
0.294748 + 0.955575i \(0.404764\pi\)
\(968\) −6.67061 −0.214401
\(969\) 0 0
\(970\) −1.93121 −0.0620073
\(971\) −10.0164 −0.321441 −0.160720 0.987000i \(-0.551382\pi\)
−0.160720 + 0.987000i \(0.551382\pi\)
\(972\) 0 0
\(973\) 18.2192 0.584079
\(974\) −36.7241 −1.17672
\(975\) 0 0
\(976\) −0.526805 −0.0168626
\(977\) −30.4337 −0.973662 −0.486831 0.873496i \(-0.661847\pi\)
−0.486831 + 0.873496i \(0.661847\pi\)
\(978\) 0 0
\(979\) 11.6840 0.373421
\(980\) 0.877054 0.0280165
\(981\) 0 0
\(982\) 29.1923 0.931565
\(983\) −29.9963 −0.956735 −0.478367 0.878160i \(-0.658771\pi\)
−0.478367 + 0.878160i \(0.658771\pi\)
\(984\) 0 0
\(985\) −1.90619 −0.0607363
\(986\) −11.0079 −0.350564
\(987\) 0 0
\(988\) 33.2435 1.05762
\(989\) 32.9793 1.04868
\(990\) 0 0
\(991\) −11.8038 −0.374960 −0.187480 0.982268i \(-0.560032\pi\)
−0.187480 + 0.982268i \(0.560032\pi\)
\(992\) 1.40766 0.0446933
\(993\) 0 0
\(994\) 4.86786 0.154399
\(995\) 7.46358 0.236611
\(996\) 0 0
\(997\) −47.4659 −1.50326 −0.751631 0.659584i \(-0.770732\pi\)
−0.751631 + 0.659584i \(0.770732\pi\)
\(998\) 28.9874 0.917581
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4842.2.a.q.1.4 8
3.2 odd 2 1614.2.a.i.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1614.2.a.i.1.5 8 3.2 odd 2
4842.2.a.q.1.4 8 1.1 even 1 trivial