Properties

Label 4842.2.a.q.1.8
Level $4842$
Weight $2$
Character 4842.1
Self dual yes
Analytic conductor $38.664$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4842,2,Mod(1,4842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6635646587\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 33x^{6} + 352x^{4} - 18x^{3} - 1229x^{2} + 178x + 108 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1614)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-3.72348\) of defining polynomial
Character \(\chi\) \(=\) 4842.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +3.72348 q^{5} -3.69765 q^{7} +1.00000 q^{8} +3.72348 q^{10} -2.16938 q^{11} -1.78302 q^{13} -3.69765 q^{14} +1.00000 q^{16} +4.84900 q^{17} +6.84350 q^{19} +3.72348 q^{20} -2.16938 q^{22} -0.00549183 q^{23} +8.86432 q^{25} -1.78302 q^{26} -3.69765 q^{28} +8.82870 q^{29} -0.462161 q^{31} +1.00000 q^{32} +4.84900 q^{34} -13.7681 q^{35} -7.69250 q^{37} +6.84350 q^{38} +3.72348 q^{40} +1.22462 q^{41} +3.90914 q^{43} -2.16938 q^{44} -0.00549183 q^{46} -5.57907 q^{47} +6.67264 q^{49} +8.86432 q^{50} -1.78302 q^{52} -4.05603 q^{53} -8.07763 q^{55} -3.69765 q^{56} +8.82870 q^{58} -11.0037 q^{59} +12.9778 q^{61} -0.462161 q^{62} +1.00000 q^{64} -6.63904 q^{65} +11.0632 q^{67} +4.84900 q^{68} -13.7681 q^{70} -3.48703 q^{71} +14.0047 q^{73} -7.69250 q^{74} +6.84350 q^{76} +8.02160 q^{77} +8.36670 q^{79} +3.72348 q^{80} +1.22462 q^{82} -1.08042 q^{83} +18.0551 q^{85} +3.90914 q^{86} -2.16938 q^{88} -7.03265 q^{89} +6.59299 q^{91} -0.00549183 q^{92} -5.57907 q^{94} +25.4817 q^{95} +2.47385 q^{97} +6.67264 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 9 q^{7} + 8 q^{8} - 8 q^{11} - 3 q^{13} + 9 q^{14} + 8 q^{16} - 8 q^{17} + 18 q^{19} - 8 q^{22} + 10 q^{23} + 26 q^{25} - 3 q^{26} + 9 q^{28} + 9 q^{29} + 18 q^{31} + 8 q^{32}+ \cdots + 29 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.72348 1.66519 0.832596 0.553881i \(-0.186854\pi\)
0.832596 + 0.553881i \(0.186854\pi\)
\(6\) 0 0
\(7\) −3.69765 −1.39758 −0.698791 0.715326i \(-0.746278\pi\)
−0.698791 + 0.715326i \(0.746278\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 3.72348 1.17747
\(11\) −2.16938 −0.654091 −0.327046 0.945009i \(-0.606053\pi\)
−0.327046 + 0.945009i \(0.606053\pi\)
\(12\) 0 0
\(13\) −1.78302 −0.494521 −0.247260 0.968949i \(-0.579530\pi\)
−0.247260 + 0.968949i \(0.579530\pi\)
\(14\) −3.69765 −0.988239
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.84900 1.17605 0.588027 0.808841i \(-0.299905\pi\)
0.588027 + 0.808841i \(0.299905\pi\)
\(18\) 0 0
\(19\) 6.84350 1.57001 0.785004 0.619491i \(-0.212661\pi\)
0.785004 + 0.619491i \(0.212661\pi\)
\(20\) 3.72348 0.832596
\(21\) 0 0
\(22\) −2.16938 −0.462512
\(23\) −0.00549183 −0.00114513 −0.000572563 1.00000i \(-0.500182\pi\)
−0.000572563 1.00000i \(0.500182\pi\)
\(24\) 0 0
\(25\) 8.86432 1.77286
\(26\) −1.78302 −0.349679
\(27\) 0 0
\(28\) −3.69765 −0.698791
\(29\) 8.82870 1.63945 0.819725 0.572758i \(-0.194126\pi\)
0.819725 + 0.572758i \(0.194126\pi\)
\(30\) 0 0
\(31\) −0.462161 −0.0830066 −0.0415033 0.999138i \(-0.513215\pi\)
−0.0415033 + 0.999138i \(0.513215\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 4.84900 0.831596
\(35\) −13.7681 −2.32724
\(36\) 0 0
\(37\) −7.69250 −1.26464 −0.632320 0.774708i \(-0.717897\pi\)
−0.632320 + 0.774708i \(0.717897\pi\)
\(38\) 6.84350 1.11016
\(39\) 0 0
\(40\) 3.72348 0.588734
\(41\) 1.22462 0.191254 0.0956269 0.995417i \(-0.469514\pi\)
0.0956269 + 0.995417i \(0.469514\pi\)
\(42\) 0 0
\(43\) 3.90914 0.596139 0.298069 0.954544i \(-0.403657\pi\)
0.298069 + 0.954544i \(0.403657\pi\)
\(44\) −2.16938 −0.327046
\(45\) 0 0
\(46\) −0.00549183 −0.000809726 0
\(47\) −5.57907 −0.813791 −0.406896 0.913475i \(-0.633389\pi\)
−0.406896 + 0.913475i \(0.633389\pi\)
\(48\) 0 0
\(49\) 6.67264 0.953234
\(50\) 8.86432 1.25360
\(51\) 0 0
\(52\) −1.78302 −0.247260
\(53\) −4.05603 −0.557139 −0.278569 0.960416i \(-0.589860\pi\)
−0.278569 + 0.960416i \(0.589860\pi\)
\(54\) 0 0
\(55\) −8.07763 −1.08919
\(56\) −3.69765 −0.494120
\(57\) 0 0
\(58\) 8.82870 1.15927
\(59\) −11.0037 −1.43256 −0.716282 0.697811i \(-0.754158\pi\)
−0.716282 + 0.697811i \(0.754158\pi\)
\(60\) 0 0
\(61\) 12.9778 1.66164 0.830818 0.556544i \(-0.187873\pi\)
0.830818 + 0.556544i \(0.187873\pi\)
\(62\) −0.462161 −0.0586945
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −6.63904 −0.823472
\(66\) 0 0
\(67\) 11.0632 1.35158 0.675790 0.737094i \(-0.263803\pi\)
0.675790 + 0.737094i \(0.263803\pi\)
\(68\) 4.84900 0.588027
\(69\) 0 0
\(70\) −13.7681 −1.64561
\(71\) −3.48703 −0.413834 −0.206917 0.978358i \(-0.566343\pi\)
−0.206917 + 0.978358i \(0.566343\pi\)
\(72\) 0 0
\(73\) 14.0047 1.63912 0.819561 0.572992i \(-0.194218\pi\)
0.819561 + 0.572992i \(0.194218\pi\)
\(74\) −7.69250 −0.894235
\(75\) 0 0
\(76\) 6.84350 0.785004
\(77\) 8.02160 0.914146
\(78\) 0 0
\(79\) 8.36670 0.941328 0.470664 0.882313i \(-0.344014\pi\)
0.470664 + 0.882313i \(0.344014\pi\)
\(80\) 3.72348 0.416298
\(81\) 0 0
\(82\) 1.22462 0.135237
\(83\) −1.08042 −0.118591 −0.0592957 0.998240i \(-0.518886\pi\)
−0.0592957 + 0.998240i \(0.518886\pi\)
\(84\) 0 0
\(85\) 18.0551 1.95836
\(86\) 3.90914 0.421534
\(87\) 0 0
\(88\) −2.16938 −0.231256
\(89\) −7.03265 −0.745460 −0.372730 0.927940i \(-0.621578\pi\)
−0.372730 + 0.927940i \(0.621578\pi\)
\(90\) 0 0
\(91\) 6.59299 0.691133
\(92\) −0.00549183 −0.000572563 0
\(93\) 0 0
\(94\) −5.57907 −0.575437
\(95\) 25.4817 2.61436
\(96\) 0 0
\(97\) 2.47385 0.251181 0.125591 0.992082i \(-0.459917\pi\)
0.125591 + 0.992082i \(0.459917\pi\)
\(98\) 6.67264 0.674038
\(99\) 0 0
\(100\) 8.86432 0.886432
\(101\) 6.48513 0.645294 0.322647 0.946519i \(-0.395427\pi\)
0.322647 + 0.946519i \(0.395427\pi\)
\(102\) 0 0
\(103\) −4.89650 −0.482466 −0.241233 0.970467i \(-0.577552\pi\)
−0.241233 + 0.970467i \(0.577552\pi\)
\(104\) −1.78302 −0.174839
\(105\) 0 0
\(106\) −4.05603 −0.393957
\(107\) 8.77191 0.848013 0.424006 0.905659i \(-0.360623\pi\)
0.424006 + 0.905659i \(0.360623\pi\)
\(108\) 0 0
\(109\) 12.5009 1.19737 0.598686 0.800984i \(-0.295690\pi\)
0.598686 + 0.800984i \(0.295690\pi\)
\(110\) −8.07763 −0.770172
\(111\) 0 0
\(112\) −3.69765 −0.349395
\(113\) 3.42504 0.322201 0.161100 0.986938i \(-0.448496\pi\)
0.161100 + 0.986938i \(0.448496\pi\)
\(114\) 0 0
\(115\) −0.0204487 −0.00190685
\(116\) 8.82870 0.819725
\(117\) 0 0
\(118\) −11.0037 −1.01298
\(119\) −17.9299 −1.64363
\(120\) 0 0
\(121\) −6.29381 −0.572165
\(122\) 12.9778 1.17495
\(123\) 0 0
\(124\) −0.462161 −0.0415033
\(125\) 14.3887 1.28697
\(126\) 0 0
\(127\) 10.5276 0.934171 0.467086 0.884212i \(-0.345304\pi\)
0.467086 + 0.884212i \(0.345304\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −6.63904 −0.582282
\(131\) −7.26762 −0.634975 −0.317488 0.948262i \(-0.602839\pi\)
−0.317488 + 0.948262i \(0.602839\pi\)
\(132\) 0 0
\(133\) −25.3049 −2.19421
\(134\) 11.0632 0.955711
\(135\) 0 0
\(136\) 4.84900 0.415798
\(137\) 20.9183 1.78717 0.893587 0.448890i \(-0.148180\pi\)
0.893587 + 0.448890i \(0.148180\pi\)
\(138\) 0 0
\(139\) −14.2845 −1.21160 −0.605799 0.795618i \(-0.707146\pi\)
−0.605799 + 0.795618i \(0.707146\pi\)
\(140\) −13.7681 −1.16362
\(141\) 0 0
\(142\) −3.48703 −0.292625
\(143\) 3.86804 0.323462
\(144\) 0 0
\(145\) 32.8735 2.73000
\(146\) 14.0047 1.15903
\(147\) 0 0
\(148\) −7.69250 −0.632320
\(149\) −1.74043 −0.142582 −0.0712908 0.997456i \(-0.522712\pi\)
−0.0712908 + 0.997456i \(0.522712\pi\)
\(150\) 0 0
\(151\) 7.47417 0.608239 0.304120 0.952634i \(-0.401638\pi\)
0.304120 + 0.952634i \(0.401638\pi\)
\(152\) 6.84350 0.555082
\(153\) 0 0
\(154\) 8.02160 0.646399
\(155\) −1.72085 −0.138222
\(156\) 0 0
\(157\) −2.01958 −0.161180 −0.0805900 0.996747i \(-0.525680\pi\)
−0.0805900 + 0.996747i \(0.525680\pi\)
\(158\) 8.36670 0.665619
\(159\) 0 0
\(160\) 3.72348 0.294367
\(161\) 0.0203069 0.00160041
\(162\) 0 0
\(163\) 9.21937 0.722117 0.361058 0.932543i \(-0.382416\pi\)
0.361058 + 0.932543i \(0.382416\pi\)
\(164\) 1.22462 0.0956269
\(165\) 0 0
\(166\) −1.08042 −0.0838568
\(167\) 16.3353 1.26406 0.632030 0.774944i \(-0.282222\pi\)
0.632030 + 0.774944i \(0.282222\pi\)
\(168\) 0 0
\(169\) −9.82084 −0.755449
\(170\) 18.0551 1.38477
\(171\) 0 0
\(172\) 3.90914 0.298069
\(173\) 1.93443 0.147072 0.0735359 0.997293i \(-0.476572\pi\)
0.0735359 + 0.997293i \(0.476572\pi\)
\(174\) 0 0
\(175\) −32.7772 −2.47772
\(176\) −2.16938 −0.163523
\(177\) 0 0
\(178\) −7.03265 −0.527120
\(179\) −6.75844 −0.505149 −0.252575 0.967577i \(-0.581277\pi\)
−0.252575 + 0.967577i \(0.581277\pi\)
\(180\) 0 0
\(181\) −3.88998 −0.289140 −0.144570 0.989495i \(-0.546180\pi\)
−0.144570 + 0.989495i \(0.546180\pi\)
\(182\) 6.59299 0.488705
\(183\) 0 0
\(184\) −0.00549183 −0.000404863 0
\(185\) −28.6429 −2.10587
\(186\) 0 0
\(187\) −10.5193 −0.769247
\(188\) −5.57907 −0.406896
\(189\) 0 0
\(190\) 25.4817 1.84863
\(191\) −22.3826 −1.61955 −0.809775 0.586740i \(-0.800411\pi\)
−0.809775 + 0.586740i \(0.800411\pi\)
\(192\) 0 0
\(193\) −18.6907 −1.34539 −0.672695 0.739920i \(-0.734863\pi\)
−0.672695 + 0.739920i \(0.734863\pi\)
\(194\) 2.47385 0.177612
\(195\) 0 0
\(196\) 6.67264 0.476617
\(197\) −3.01518 −0.214823 −0.107411 0.994215i \(-0.534256\pi\)
−0.107411 + 0.994215i \(0.534256\pi\)
\(198\) 0 0
\(199\) 10.3713 0.735204 0.367602 0.929983i \(-0.380179\pi\)
0.367602 + 0.929983i \(0.380179\pi\)
\(200\) 8.86432 0.626802
\(201\) 0 0
\(202\) 6.48513 0.456292
\(203\) −32.6455 −2.29126
\(204\) 0 0
\(205\) 4.55985 0.318474
\(206\) −4.89650 −0.341155
\(207\) 0 0
\(208\) −1.78302 −0.123630
\(209\) −14.8461 −1.02693
\(210\) 0 0
\(211\) −24.5601 −1.69079 −0.845395 0.534141i \(-0.820635\pi\)
−0.845395 + 0.534141i \(0.820635\pi\)
\(212\) −4.05603 −0.278569
\(213\) 0 0
\(214\) 8.77191 0.599636
\(215\) 14.5556 0.992685
\(216\) 0 0
\(217\) 1.70891 0.116008
\(218\) 12.5009 0.846670
\(219\) 0 0
\(220\) −8.07763 −0.544594
\(221\) −8.64586 −0.581583
\(222\) 0 0
\(223\) 24.7890 1.66000 0.829999 0.557766i \(-0.188341\pi\)
0.829999 + 0.557766i \(0.188341\pi\)
\(224\) −3.69765 −0.247060
\(225\) 0 0
\(226\) 3.42504 0.227830
\(227\) 10.2299 0.678980 0.339490 0.940610i \(-0.389746\pi\)
0.339490 + 0.940610i \(0.389746\pi\)
\(228\) 0 0
\(229\) 15.9880 1.05652 0.528258 0.849084i \(-0.322845\pi\)
0.528258 + 0.849084i \(0.322845\pi\)
\(230\) −0.0204487 −0.00134835
\(231\) 0 0
\(232\) 8.82870 0.579633
\(233\) −13.0383 −0.854169 −0.427085 0.904212i \(-0.640459\pi\)
−0.427085 + 0.904212i \(0.640459\pi\)
\(234\) 0 0
\(235\) −20.7736 −1.35512
\(236\) −11.0037 −0.716282
\(237\) 0 0
\(238\) −17.9299 −1.16222
\(239\) −21.8996 −1.41657 −0.708285 0.705927i \(-0.750531\pi\)
−0.708285 + 0.705927i \(0.750531\pi\)
\(240\) 0 0
\(241\) −27.1588 −1.74945 −0.874726 0.484618i \(-0.838959\pi\)
−0.874726 + 0.484618i \(0.838959\pi\)
\(242\) −6.29381 −0.404581
\(243\) 0 0
\(244\) 12.9778 0.830818
\(245\) 24.8455 1.58732
\(246\) 0 0
\(247\) −12.2021 −0.776401
\(248\) −0.462161 −0.0293473
\(249\) 0 0
\(250\) 14.3887 0.910022
\(251\) −5.86677 −0.370307 −0.185154 0.982710i \(-0.559278\pi\)
−0.185154 + 0.982710i \(0.559278\pi\)
\(252\) 0 0
\(253\) 0.0119138 0.000749016 0
\(254\) 10.5276 0.660559
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 23.8923 1.49036 0.745180 0.666864i \(-0.232364\pi\)
0.745180 + 0.666864i \(0.232364\pi\)
\(258\) 0 0
\(259\) 28.4442 1.76744
\(260\) −6.63904 −0.411736
\(261\) 0 0
\(262\) −7.26762 −0.448995
\(263\) 19.3456 1.19290 0.596452 0.802649i \(-0.296577\pi\)
0.596452 + 0.802649i \(0.296577\pi\)
\(264\) 0 0
\(265\) −15.1026 −0.927743
\(266\) −25.3049 −1.55154
\(267\) 0 0
\(268\) 11.0632 0.675790
\(269\) 1.00000 0.0609711
\(270\) 0 0
\(271\) −21.6428 −1.31470 −0.657352 0.753583i \(-0.728324\pi\)
−0.657352 + 0.753583i \(0.728324\pi\)
\(272\) 4.84900 0.294014
\(273\) 0 0
\(274\) 20.9183 1.26372
\(275\) −19.2300 −1.15961
\(276\) 0 0
\(277\) 23.8215 1.43129 0.715647 0.698462i \(-0.246132\pi\)
0.715647 + 0.698462i \(0.246132\pi\)
\(278\) −14.2845 −0.856729
\(279\) 0 0
\(280\) −13.7681 −0.822804
\(281\) −24.9995 −1.49134 −0.745672 0.666313i \(-0.767871\pi\)
−0.745672 + 0.666313i \(0.767871\pi\)
\(282\) 0 0
\(283\) −12.8336 −0.762879 −0.381439 0.924394i \(-0.624572\pi\)
−0.381439 + 0.924394i \(0.624572\pi\)
\(284\) −3.48703 −0.206917
\(285\) 0 0
\(286\) 3.86804 0.228722
\(287\) −4.52822 −0.267293
\(288\) 0 0
\(289\) 6.51277 0.383104
\(290\) 32.8735 1.93040
\(291\) 0 0
\(292\) 14.0047 0.819561
\(293\) −2.32243 −0.135678 −0.0678388 0.997696i \(-0.521610\pi\)
−0.0678388 + 0.997696i \(0.521610\pi\)
\(294\) 0 0
\(295\) −40.9722 −2.38549
\(296\) −7.69250 −0.447118
\(297\) 0 0
\(298\) −1.74043 −0.100820
\(299\) 0.00979204 0.000566288 0
\(300\) 0 0
\(301\) −14.4547 −0.833152
\(302\) 7.47417 0.430090
\(303\) 0 0
\(304\) 6.84350 0.392502
\(305\) 48.3226 2.76694
\(306\) 0 0
\(307\) 18.6636 1.06519 0.532595 0.846370i \(-0.321217\pi\)
0.532595 + 0.846370i \(0.321217\pi\)
\(308\) 8.02160 0.457073
\(309\) 0 0
\(310\) −1.72085 −0.0977376
\(311\) 19.4077 1.10051 0.550256 0.834996i \(-0.314530\pi\)
0.550256 + 0.834996i \(0.314530\pi\)
\(312\) 0 0
\(313\) 9.22747 0.521567 0.260784 0.965397i \(-0.416019\pi\)
0.260784 + 0.965397i \(0.416019\pi\)
\(314\) −2.01958 −0.113971
\(315\) 0 0
\(316\) 8.36670 0.470664
\(317\) −26.7021 −1.49974 −0.749869 0.661586i \(-0.769884\pi\)
−0.749869 + 0.661586i \(0.769884\pi\)
\(318\) 0 0
\(319\) −19.1528 −1.07235
\(320\) 3.72348 0.208149
\(321\) 0 0
\(322\) 0.0203069 0.00113166
\(323\) 33.1841 1.84641
\(324\) 0 0
\(325\) −15.8053 −0.876718
\(326\) 9.21937 0.510614
\(327\) 0 0
\(328\) 1.22462 0.0676184
\(329\) 20.6295 1.13734
\(330\) 0 0
\(331\) −18.6211 −1.02351 −0.511753 0.859133i \(-0.671004\pi\)
−0.511753 + 0.859133i \(0.671004\pi\)
\(332\) −1.08042 −0.0592957
\(333\) 0 0
\(334\) 16.3353 0.893826
\(335\) 41.1935 2.25064
\(336\) 0 0
\(337\) −22.3970 −1.22004 −0.610021 0.792385i \(-0.708839\pi\)
−0.610021 + 0.792385i \(0.708839\pi\)
\(338\) −9.82084 −0.534183
\(339\) 0 0
\(340\) 18.0551 0.979178
\(341\) 1.00260 0.0542939
\(342\) 0 0
\(343\) 1.21046 0.0653588
\(344\) 3.90914 0.210767
\(345\) 0 0
\(346\) 1.93443 0.103996
\(347\) −8.34172 −0.447807 −0.223903 0.974611i \(-0.571880\pi\)
−0.223903 + 0.974611i \(0.571880\pi\)
\(348\) 0 0
\(349\) 18.1802 0.973166 0.486583 0.873634i \(-0.338243\pi\)
0.486583 + 0.873634i \(0.338243\pi\)
\(350\) −32.7772 −1.75201
\(351\) 0 0
\(352\) −2.16938 −0.115628
\(353\) −6.16109 −0.327922 −0.163961 0.986467i \(-0.552427\pi\)
−0.163961 + 0.986467i \(0.552427\pi\)
\(354\) 0 0
\(355\) −12.9839 −0.689113
\(356\) −7.03265 −0.372730
\(357\) 0 0
\(358\) −6.75844 −0.357195
\(359\) −1.80036 −0.0950191 −0.0475096 0.998871i \(-0.515128\pi\)
−0.0475096 + 0.998871i \(0.515128\pi\)
\(360\) 0 0
\(361\) 27.8336 1.46492
\(362\) −3.88998 −0.204453
\(363\) 0 0
\(364\) 6.59299 0.345567
\(365\) 52.1461 2.72945
\(366\) 0 0
\(367\) 8.75146 0.456823 0.228411 0.973565i \(-0.426647\pi\)
0.228411 + 0.973565i \(0.426647\pi\)
\(368\) −0.00549183 −0.000286281 0
\(369\) 0 0
\(370\) −28.6429 −1.48907
\(371\) 14.9978 0.778647
\(372\) 0 0
\(373\) −17.7211 −0.917564 −0.458782 0.888549i \(-0.651714\pi\)
−0.458782 + 0.888549i \(0.651714\pi\)
\(374\) −10.5193 −0.543940
\(375\) 0 0
\(376\) −5.57907 −0.287719
\(377\) −15.7418 −0.810742
\(378\) 0 0
\(379\) −36.4211 −1.87082 −0.935412 0.353559i \(-0.884971\pi\)
−0.935412 + 0.353559i \(0.884971\pi\)
\(380\) 25.4817 1.30718
\(381\) 0 0
\(382\) −22.3826 −1.14520
\(383\) −32.9376 −1.68303 −0.841515 0.540233i \(-0.818336\pi\)
−0.841515 + 0.540233i \(0.818336\pi\)
\(384\) 0 0
\(385\) 29.8683 1.52223
\(386\) −18.6907 −0.951334
\(387\) 0 0
\(388\) 2.47385 0.125591
\(389\) −8.36791 −0.424270 −0.212135 0.977240i \(-0.568042\pi\)
−0.212135 + 0.977240i \(0.568042\pi\)
\(390\) 0 0
\(391\) −0.0266298 −0.00134673
\(392\) 6.67264 0.337019
\(393\) 0 0
\(394\) −3.01518 −0.151903
\(395\) 31.1533 1.56749
\(396\) 0 0
\(397\) 22.6515 1.13685 0.568423 0.822737i \(-0.307554\pi\)
0.568423 + 0.822737i \(0.307554\pi\)
\(398\) 10.3713 0.519868
\(399\) 0 0
\(400\) 8.86432 0.443216
\(401\) 5.29174 0.264257 0.132128 0.991233i \(-0.457819\pi\)
0.132128 + 0.991233i \(0.457819\pi\)
\(402\) 0 0
\(403\) 0.824042 0.0410485
\(404\) 6.48513 0.322647
\(405\) 0 0
\(406\) −32.6455 −1.62017
\(407\) 16.6879 0.827190
\(408\) 0 0
\(409\) −15.0093 −0.742163 −0.371082 0.928600i \(-0.621013\pi\)
−0.371082 + 0.928600i \(0.621013\pi\)
\(410\) 4.55985 0.225195
\(411\) 0 0
\(412\) −4.89650 −0.241233
\(413\) 40.6880 2.00213
\(414\) 0 0
\(415\) −4.02292 −0.197478
\(416\) −1.78302 −0.0874197
\(417\) 0 0
\(418\) −14.8461 −0.726148
\(419\) −37.8003 −1.84666 −0.923332 0.384002i \(-0.874545\pi\)
−0.923332 + 0.384002i \(0.874545\pi\)
\(420\) 0 0
\(421\) 29.6392 1.44453 0.722263 0.691618i \(-0.243102\pi\)
0.722263 + 0.691618i \(0.243102\pi\)
\(422\) −24.5601 −1.19557
\(423\) 0 0
\(424\) −4.05603 −0.196978
\(425\) 42.9830 2.08498
\(426\) 0 0
\(427\) −47.9874 −2.32227
\(428\) 8.77191 0.424006
\(429\) 0 0
\(430\) 14.5556 0.701934
\(431\) 3.66080 0.176335 0.0881673 0.996106i \(-0.471899\pi\)
0.0881673 + 0.996106i \(0.471899\pi\)
\(432\) 0 0
\(433\) 14.0744 0.676374 0.338187 0.941079i \(-0.390186\pi\)
0.338187 + 0.941079i \(0.390186\pi\)
\(434\) 1.70891 0.0820304
\(435\) 0 0
\(436\) 12.5009 0.598686
\(437\) −0.0375833 −0.00179785
\(438\) 0 0
\(439\) −15.3969 −0.734853 −0.367426 0.930053i \(-0.619761\pi\)
−0.367426 + 0.930053i \(0.619761\pi\)
\(440\) −8.07763 −0.385086
\(441\) 0 0
\(442\) −8.64586 −0.411241
\(443\) 17.8950 0.850215 0.425108 0.905143i \(-0.360236\pi\)
0.425108 + 0.905143i \(0.360236\pi\)
\(444\) 0 0
\(445\) −26.1860 −1.24133
\(446\) 24.7890 1.17380
\(447\) 0 0
\(448\) −3.69765 −0.174698
\(449\) −23.2268 −1.09614 −0.548071 0.836432i \(-0.684638\pi\)
−0.548071 + 0.836432i \(0.684638\pi\)
\(450\) 0 0
\(451\) −2.65666 −0.125097
\(452\) 3.42504 0.161100
\(453\) 0 0
\(454\) 10.2299 0.480111
\(455\) 24.5489 1.15087
\(456\) 0 0
\(457\) −0.553089 −0.0258724 −0.0129362 0.999916i \(-0.504118\pi\)
−0.0129362 + 0.999916i \(0.504118\pi\)
\(458\) 15.9880 0.747070
\(459\) 0 0
\(460\) −0.0204487 −0.000953426 0
\(461\) −26.4326 −1.23109 −0.615544 0.788103i \(-0.711064\pi\)
−0.615544 + 0.788103i \(0.711064\pi\)
\(462\) 0 0
\(463\) 3.39737 0.157889 0.0789446 0.996879i \(-0.474845\pi\)
0.0789446 + 0.996879i \(0.474845\pi\)
\(464\) 8.82870 0.409862
\(465\) 0 0
\(466\) −13.0383 −0.603989
\(467\) −14.5812 −0.674739 −0.337370 0.941372i \(-0.609537\pi\)
−0.337370 + 0.941372i \(0.609537\pi\)
\(468\) 0 0
\(469\) −40.9077 −1.88894
\(470\) −20.7736 −0.958213
\(471\) 0 0
\(472\) −11.0037 −0.506488
\(473\) −8.48040 −0.389929
\(474\) 0 0
\(475\) 60.6630 2.78341
\(476\) −17.9299 −0.821816
\(477\) 0 0
\(478\) −21.8996 −1.00167
\(479\) −41.3750 −1.89047 −0.945236 0.326386i \(-0.894169\pi\)
−0.945236 + 0.326386i \(0.894169\pi\)
\(480\) 0 0
\(481\) 13.7159 0.625390
\(482\) −27.1588 −1.23705
\(483\) 0 0
\(484\) −6.29381 −0.286082
\(485\) 9.21133 0.418265
\(486\) 0 0
\(487\) 27.7547 1.25769 0.628844 0.777532i \(-0.283529\pi\)
0.628844 + 0.777532i \(0.283529\pi\)
\(488\) 12.9778 0.587477
\(489\) 0 0
\(490\) 24.8455 1.12240
\(491\) −28.7642 −1.29811 −0.649054 0.760742i \(-0.724835\pi\)
−0.649054 + 0.760742i \(0.724835\pi\)
\(492\) 0 0
\(493\) 42.8104 1.92808
\(494\) −12.2021 −0.548999
\(495\) 0 0
\(496\) −0.462161 −0.0207516
\(497\) 12.8938 0.578367
\(498\) 0 0
\(499\) 32.0457 1.43456 0.717281 0.696784i \(-0.245386\pi\)
0.717281 + 0.696784i \(0.245386\pi\)
\(500\) 14.3887 0.643483
\(501\) 0 0
\(502\) −5.86677 −0.261847
\(503\) −29.7110 −1.32475 −0.662373 0.749174i \(-0.730451\pi\)
−0.662373 + 0.749174i \(0.730451\pi\)
\(504\) 0 0
\(505\) 24.1473 1.07454
\(506\) 0.0119138 0.000529634 0
\(507\) 0 0
\(508\) 10.5276 0.467086
\(509\) 41.7898 1.85230 0.926150 0.377156i \(-0.123098\pi\)
0.926150 + 0.377156i \(0.123098\pi\)
\(510\) 0 0
\(511\) −51.7844 −2.29081
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 23.8923 1.05384
\(515\) −18.2320 −0.803398
\(516\) 0 0
\(517\) 12.1031 0.532294
\(518\) 28.4442 1.24977
\(519\) 0 0
\(520\) −6.63904 −0.291141
\(521\) −1.80228 −0.0789594 −0.0394797 0.999220i \(-0.512570\pi\)
−0.0394797 + 0.999220i \(0.512570\pi\)
\(522\) 0 0
\(523\) −2.65984 −0.116307 −0.0581533 0.998308i \(-0.518521\pi\)
−0.0581533 + 0.998308i \(0.518521\pi\)
\(524\) −7.26762 −0.317488
\(525\) 0 0
\(526\) 19.3456 0.843510
\(527\) −2.24102 −0.0976202
\(528\) 0 0
\(529\) −23.0000 −0.999999
\(530\) −15.1026 −0.656013
\(531\) 0 0
\(532\) −25.3049 −1.09711
\(533\) −2.18352 −0.0945789
\(534\) 0 0
\(535\) 32.6621 1.41210
\(536\) 11.0632 0.477856
\(537\) 0 0
\(538\) 1.00000 0.0431131
\(539\) −14.4755 −0.623502
\(540\) 0 0
\(541\) −35.0400 −1.50649 −0.753243 0.657742i \(-0.771512\pi\)
−0.753243 + 0.657742i \(0.771512\pi\)
\(542\) −21.6428 −0.929637
\(543\) 0 0
\(544\) 4.84900 0.207899
\(545\) 46.5470 1.99385
\(546\) 0 0
\(547\) −40.2366 −1.72039 −0.860196 0.509964i \(-0.829659\pi\)
−0.860196 + 0.509964i \(0.829659\pi\)
\(548\) 20.9183 0.893587
\(549\) 0 0
\(550\) −19.2300 −0.819971
\(551\) 60.4193 2.57395
\(552\) 0 0
\(553\) −30.9372 −1.31558
\(554\) 23.8215 1.01208
\(555\) 0 0
\(556\) −14.2845 −0.605799
\(557\) 13.5515 0.574197 0.287098 0.957901i \(-0.407309\pi\)
0.287098 + 0.957901i \(0.407309\pi\)
\(558\) 0 0
\(559\) −6.97008 −0.294803
\(560\) −13.7681 −0.581810
\(561\) 0 0
\(562\) −24.9995 −1.05454
\(563\) 2.88000 0.121378 0.0606888 0.998157i \(-0.480670\pi\)
0.0606888 + 0.998157i \(0.480670\pi\)
\(564\) 0 0
\(565\) 12.7531 0.536526
\(566\) −12.8336 −0.539437
\(567\) 0 0
\(568\) −3.48703 −0.146313
\(569\) −14.6555 −0.614392 −0.307196 0.951646i \(-0.599391\pi\)
−0.307196 + 0.951646i \(0.599391\pi\)
\(570\) 0 0
\(571\) −27.8159 −1.16406 −0.582030 0.813167i \(-0.697742\pi\)
−0.582030 + 0.813167i \(0.697742\pi\)
\(572\) 3.86804 0.161731
\(573\) 0 0
\(574\) −4.52822 −0.189004
\(575\) −0.0486813 −0.00203015
\(576\) 0 0
\(577\) 14.1066 0.587266 0.293633 0.955918i \(-0.405136\pi\)
0.293633 + 0.955918i \(0.405136\pi\)
\(578\) 6.51277 0.270895
\(579\) 0 0
\(580\) 32.8735 1.36500
\(581\) 3.99502 0.165741
\(582\) 0 0
\(583\) 8.79905 0.364420
\(584\) 14.0047 0.579517
\(585\) 0 0
\(586\) −2.32243 −0.0959385
\(587\) 22.0377 0.909594 0.454797 0.890595i \(-0.349712\pi\)
0.454797 + 0.890595i \(0.349712\pi\)
\(588\) 0 0
\(589\) −3.16280 −0.130321
\(590\) −40.9722 −1.68680
\(591\) 0 0
\(592\) −7.69250 −0.316160
\(593\) −33.5598 −1.37813 −0.689067 0.724698i \(-0.741979\pi\)
−0.689067 + 0.724698i \(0.741979\pi\)
\(594\) 0 0
\(595\) −66.7617 −2.73696
\(596\) −1.74043 −0.0712908
\(597\) 0 0
\(598\) 0.00979204 0.000400426 0
\(599\) 17.5125 0.715541 0.357770 0.933810i \(-0.383537\pi\)
0.357770 + 0.933810i \(0.383537\pi\)
\(600\) 0 0
\(601\) 29.5189 1.20410 0.602051 0.798458i \(-0.294350\pi\)
0.602051 + 0.798458i \(0.294350\pi\)
\(602\) −14.4547 −0.589128
\(603\) 0 0
\(604\) 7.47417 0.304120
\(605\) −23.4349 −0.952764
\(606\) 0 0
\(607\) 30.5165 1.23862 0.619312 0.785145i \(-0.287412\pi\)
0.619312 + 0.785145i \(0.287412\pi\)
\(608\) 6.84350 0.277541
\(609\) 0 0
\(610\) 48.3226 1.95652
\(611\) 9.94759 0.402437
\(612\) 0 0
\(613\) −13.4372 −0.542725 −0.271363 0.962477i \(-0.587474\pi\)
−0.271363 + 0.962477i \(0.587474\pi\)
\(614\) 18.6636 0.753203
\(615\) 0 0
\(616\) 8.02160 0.323199
\(617\) −48.4723 −1.95142 −0.975710 0.219067i \(-0.929699\pi\)
−0.975710 + 0.219067i \(0.929699\pi\)
\(618\) 0 0
\(619\) −28.1728 −1.13236 −0.566180 0.824281i \(-0.691579\pi\)
−0.566180 + 0.824281i \(0.691579\pi\)
\(620\) −1.72085 −0.0691109
\(621\) 0 0
\(622\) 19.4077 0.778180
\(623\) 26.0043 1.04184
\(624\) 0 0
\(625\) 9.25453 0.370181
\(626\) 9.22747 0.368804
\(627\) 0 0
\(628\) −2.01958 −0.0805900
\(629\) −37.3009 −1.48728
\(630\) 0 0
\(631\) 15.1117 0.601589 0.300794 0.953689i \(-0.402748\pi\)
0.300794 + 0.953689i \(0.402748\pi\)
\(632\) 8.36670 0.332810
\(633\) 0 0
\(634\) −26.7021 −1.06047
\(635\) 39.1992 1.55557
\(636\) 0 0
\(637\) −11.8974 −0.471394
\(638\) −19.1528 −0.758266
\(639\) 0 0
\(640\) 3.72348 0.147184
\(641\) −15.8943 −0.627786 −0.313893 0.949458i \(-0.601633\pi\)
−0.313893 + 0.949458i \(0.601633\pi\)
\(642\) 0 0
\(643\) −35.0377 −1.38175 −0.690875 0.722974i \(-0.742775\pi\)
−0.690875 + 0.722974i \(0.742775\pi\)
\(644\) 0.0203069 0.000800203 0
\(645\) 0 0
\(646\) 33.1841 1.30561
\(647\) −19.8670 −0.781054 −0.390527 0.920592i \(-0.627707\pi\)
−0.390527 + 0.920592i \(0.627707\pi\)
\(648\) 0 0
\(649\) 23.8712 0.937028
\(650\) −15.8053 −0.619933
\(651\) 0 0
\(652\) 9.21937 0.361058
\(653\) −9.98929 −0.390911 −0.195455 0.980713i \(-0.562619\pi\)
−0.195455 + 0.980713i \(0.562619\pi\)
\(654\) 0 0
\(655\) −27.0609 −1.05736
\(656\) 1.22462 0.0478134
\(657\) 0 0
\(658\) 20.6295 0.804220
\(659\) 25.3834 0.988796 0.494398 0.869236i \(-0.335389\pi\)
0.494398 + 0.869236i \(0.335389\pi\)
\(660\) 0 0
\(661\) −0.0919517 −0.00357651 −0.00178825 0.999998i \(-0.500569\pi\)
−0.00178825 + 0.999998i \(0.500569\pi\)
\(662\) −18.6211 −0.723728
\(663\) 0 0
\(664\) −1.08042 −0.0419284
\(665\) −94.2224 −3.65379
\(666\) 0 0
\(667\) −0.0484857 −0.00187737
\(668\) 16.3353 0.632030
\(669\) 0 0
\(670\) 41.1935 1.59144
\(671\) −28.1537 −1.08686
\(672\) 0 0
\(673\) 20.7844 0.801181 0.400591 0.916257i \(-0.368805\pi\)
0.400591 + 0.916257i \(0.368805\pi\)
\(674\) −22.3970 −0.862700
\(675\) 0 0
\(676\) −9.82084 −0.377725
\(677\) 6.38739 0.245487 0.122744 0.992438i \(-0.460831\pi\)
0.122744 + 0.992438i \(0.460831\pi\)
\(678\) 0 0
\(679\) −9.14743 −0.351046
\(680\) 18.0551 0.692383
\(681\) 0 0
\(682\) 1.00260 0.0383916
\(683\) 11.9773 0.458300 0.229150 0.973391i \(-0.426405\pi\)
0.229150 + 0.973391i \(0.426405\pi\)
\(684\) 0 0
\(685\) 77.8890 2.97599
\(686\) 1.21046 0.0462157
\(687\) 0 0
\(688\) 3.90914 0.149035
\(689\) 7.23198 0.275517
\(690\) 0 0
\(691\) −14.6174 −0.556071 −0.278035 0.960571i \(-0.589683\pi\)
−0.278035 + 0.960571i \(0.589683\pi\)
\(692\) 1.93443 0.0735359
\(693\) 0 0
\(694\) −8.34172 −0.316647
\(695\) −53.1882 −2.01754
\(696\) 0 0
\(697\) 5.93818 0.224925
\(698\) 18.1802 0.688132
\(699\) 0 0
\(700\) −32.7772 −1.23886
\(701\) 6.98645 0.263875 0.131937 0.991258i \(-0.457880\pi\)
0.131937 + 0.991258i \(0.457880\pi\)
\(702\) 0 0
\(703\) −52.6437 −1.98549
\(704\) −2.16938 −0.0817614
\(705\) 0 0
\(706\) −6.16109 −0.231876
\(707\) −23.9798 −0.901851
\(708\) 0 0
\(709\) 37.5538 1.41036 0.705182 0.709027i \(-0.250865\pi\)
0.705182 + 0.709027i \(0.250865\pi\)
\(710\) −12.9839 −0.487277
\(711\) 0 0
\(712\) −7.03265 −0.263560
\(713\) 0.00253811 9.50529e−5 0
\(714\) 0 0
\(715\) 14.4026 0.538626
\(716\) −6.75844 −0.252575
\(717\) 0 0
\(718\) −1.80036 −0.0671887
\(719\) 13.4033 0.499860 0.249930 0.968264i \(-0.419592\pi\)
0.249930 + 0.968264i \(0.419592\pi\)
\(720\) 0 0
\(721\) 18.1055 0.674286
\(722\) 27.8336 1.03586
\(723\) 0 0
\(724\) −3.88998 −0.144570
\(725\) 78.2604 2.90652
\(726\) 0 0
\(727\) 21.7956 0.808356 0.404178 0.914680i \(-0.367558\pi\)
0.404178 + 0.914680i \(0.367558\pi\)
\(728\) 6.59299 0.244352
\(729\) 0 0
\(730\) 52.1461 1.93001
\(731\) 18.9554 0.701091
\(732\) 0 0
\(733\) 0.583668 0.0215583 0.0107791 0.999942i \(-0.496569\pi\)
0.0107791 + 0.999942i \(0.496569\pi\)
\(734\) 8.75146 0.323022
\(735\) 0 0
\(736\) −0.00549183 −0.000202431 0
\(737\) −24.0001 −0.884057
\(738\) 0 0
\(739\) 33.8863 1.24653 0.623264 0.782011i \(-0.285806\pi\)
0.623264 + 0.782011i \(0.285806\pi\)
\(740\) −28.6429 −1.05293
\(741\) 0 0
\(742\) 14.9978 0.550586
\(743\) 3.84358 0.141007 0.0705036 0.997512i \(-0.477539\pi\)
0.0705036 + 0.997512i \(0.477539\pi\)
\(744\) 0 0
\(745\) −6.48046 −0.237426
\(746\) −17.7211 −0.648816
\(747\) 0 0
\(748\) −10.5193 −0.384623
\(749\) −32.4355 −1.18517
\(750\) 0 0
\(751\) −18.6019 −0.678791 −0.339396 0.940644i \(-0.610223\pi\)
−0.339396 + 0.940644i \(0.610223\pi\)
\(752\) −5.57907 −0.203448
\(753\) 0 0
\(754\) −15.7418 −0.573281
\(755\) 27.8299 1.01284
\(756\) 0 0
\(757\) −43.1574 −1.56858 −0.784291 0.620393i \(-0.786973\pi\)
−0.784291 + 0.620393i \(0.786973\pi\)
\(758\) −36.4211 −1.32287
\(759\) 0 0
\(760\) 25.4817 0.924317
\(761\) −2.44728 −0.0887139 −0.0443570 0.999016i \(-0.514124\pi\)
−0.0443570 + 0.999016i \(0.514124\pi\)
\(762\) 0 0
\(763\) −46.2241 −1.67343
\(764\) −22.3826 −0.809775
\(765\) 0 0
\(766\) −32.9376 −1.19008
\(767\) 19.6199 0.708433
\(768\) 0 0
\(769\) 50.6095 1.82503 0.912513 0.409048i \(-0.134139\pi\)
0.912513 + 0.409048i \(0.134139\pi\)
\(770\) 29.8683 1.07638
\(771\) 0 0
\(772\) −18.6907 −0.672695
\(773\) 0.217769 0.00783260 0.00391630 0.999992i \(-0.498753\pi\)
0.00391630 + 0.999992i \(0.498753\pi\)
\(774\) 0 0
\(775\) −4.09674 −0.147159
\(776\) 2.47385 0.0888060
\(777\) 0 0
\(778\) −8.36791 −0.300004
\(779\) 8.38070 0.300270
\(780\) 0 0
\(781\) 7.56468 0.270685
\(782\) −0.0266298 −0.000952281 0
\(783\) 0 0
\(784\) 6.67264 0.238309
\(785\) −7.51987 −0.268396
\(786\) 0 0
\(787\) −11.9639 −0.426468 −0.213234 0.977001i \(-0.568400\pi\)
−0.213234 + 0.977001i \(0.568400\pi\)
\(788\) −3.01518 −0.107411
\(789\) 0 0
\(790\) 31.1533 1.10838
\(791\) −12.6646 −0.450302
\(792\) 0 0
\(793\) −23.1397 −0.821713
\(794\) 22.6515 0.803871
\(795\) 0 0
\(796\) 10.3713 0.367602
\(797\) −2.42030 −0.0857315 −0.0428658 0.999081i \(-0.513649\pi\)
−0.0428658 + 0.999081i \(0.513649\pi\)
\(798\) 0 0
\(799\) −27.0529 −0.957063
\(800\) 8.86432 0.313401
\(801\) 0 0
\(802\) 5.29174 0.186858
\(803\) −30.3814 −1.07213
\(804\) 0 0
\(805\) 0.0756123 0.00266498
\(806\) 0.824042 0.0290256
\(807\) 0 0
\(808\) 6.48513 0.228146
\(809\) −2.37249 −0.0834122 −0.0417061 0.999130i \(-0.513279\pi\)
−0.0417061 + 0.999130i \(0.513279\pi\)
\(810\) 0 0
\(811\) 33.2511 1.16760 0.583802 0.811896i \(-0.301565\pi\)
0.583802 + 0.811896i \(0.301565\pi\)
\(812\) −32.6455 −1.14563
\(813\) 0 0
\(814\) 16.6879 0.584911
\(815\) 34.3282 1.20246
\(816\) 0 0
\(817\) 26.7522 0.935942
\(818\) −15.0093 −0.524789
\(819\) 0 0
\(820\) 4.55985 0.159237
\(821\) 56.6425 1.97684 0.988419 0.151752i \(-0.0484914\pi\)
0.988419 + 0.151752i \(0.0484914\pi\)
\(822\) 0 0
\(823\) −15.2584 −0.531873 −0.265937 0.963991i \(-0.585681\pi\)
−0.265937 + 0.963991i \(0.585681\pi\)
\(824\) −4.89650 −0.170577
\(825\) 0 0
\(826\) 40.6880 1.41572
\(827\) −20.9250 −0.727632 −0.363816 0.931471i \(-0.618526\pi\)
−0.363816 + 0.931471i \(0.618526\pi\)
\(828\) 0 0
\(829\) 44.2289 1.53613 0.768066 0.640371i \(-0.221219\pi\)
0.768066 + 0.640371i \(0.221219\pi\)
\(830\) −4.02292 −0.139638
\(831\) 0 0
\(832\) −1.78302 −0.0618151
\(833\) 32.3556 1.12106
\(834\) 0 0
\(835\) 60.8240 2.10490
\(836\) −14.8461 −0.513464
\(837\) 0 0
\(838\) −37.8003 −1.30579
\(839\) −18.8567 −0.651007 −0.325503 0.945541i \(-0.605534\pi\)
−0.325503 + 0.945541i \(0.605534\pi\)
\(840\) 0 0
\(841\) 48.9460 1.68779
\(842\) 29.6392 1.02143
\(843\) 0 0
\(844\) −24.5601 −0.845395
\(845\) −36.5677 −1.25797
\(846\) 0 0
\(847\) 23.2723 0.799647
\(848\) −4.05603 −0.139285
\(849\) 0 0
\(850\) 42.9830 1.47431
\(851\) 0.0422459 0.00144817
\(852\) 0 0
\(853\) 46.6652 1.59779 0.798893 0.601474i \(-0.205419\pi\)
0.798893 + 0.601474i \(0.205419\pi\)
\(854\) −47.9874 −1.64209
\(855\) 0 0
\(856\) 8.77191 0.299818
\(857\) −48.3193 −1.65056 −0.825278 0.564726i \(-0.808982\pi\)
−0.825278 + 0.564726i \(0.808982\pi\)
\(858\) 0 0
\(859\) −29.5664 −1.00879 −0.504396 0.863472i \(-0.668285\pi\)
−0.504396 + 0.863472i \(0.668285\pi\)
\(860\) 14.5556 0.496342
\(861\) 0 0
\(862\) 3.66080 0.124687
\(863\) 40.7507 1.38717 0.693585 0.720375i \(-0.256030\pi\)
0.693585 + 0.720375i \(0.256030\pi\)
\(864\) 0 0
\(865\) 7.20281 0.244903
\(866\) 14.0744 0.478269
\(867\) 0 0
\(868\) 1.70891 0.0580042
\(869\) −18.1505 −0.615714
\(870\) 0 0
\(871\) −19.7258 −0.668384
\(872\) 12.5009 0.423335
\(873\) 0 0
\(874\) −0.0375833 −0.00127128
\(875\) −53.2045 −1.79864
\(876\) 0 0
\(877\) −38.1412 −1.28794 −0.643968 0.765053i \(-0.722713\pi\)
−0.643968 + 0.765053i \(0.722713\pi\)
\(878\) −15.3969 −0.519619
\(879\) 0 0
\(880\) −8.07763 −0.272297
\(881\) −42.4945 −1.43168 −0.715839 0.698266i \(-0.753955\pi\)
−0.715839 + 0.698266i \(0.753955\pi\)
\(882\) 0 0
\(883\) 37.8722 1.27450 0.637250 0.770657i \(-0.280072\pi\)
0.637250 + 0.770657i \(0.280072\pi\)
\(884\) −8.64586 −0.290792
\(885\) 0 0
\(886\) 17.8950 0.601193
\(887\) −22.6121 −0.759242 −0.379621 0.925142i \(-0.623946\pi\)
−0.379621 + 0.925142i \(0.623946\pi\)
\(888\) 0 0
\(889\) −38.9273 −1.30558
\(890\) −26.1860 −0.877755
\(891\) 0 0
\(892\) 24.7890 0.829999
\(893\) −38.1804 −1.27766
\(894\) 0 0
\(895\) −25.1649 −0.841171
\(896\) −3.69765 −0.123530
\(897\) 0 0
\(898\) −23.2268 −0.775090
\(899\) −4.08028 −0.136085
\(900\) 0 0
\(901\) −19.6677 −0.655225
\(902\) −2.65666 −0.0884572
\(903\) 0 0
\(904\) 3.42504 0.113915
\(905\) −14.4843 −0.481474
\(906\) 0 0
\(907\) 33.0529 1.09750 0.548752 0.835985i \(-0.315103\pi\)
0.548752 + 0.835985i \(0.315103\pi\)
\(908\) 10.2299 0.339490
\(909\) 0 0
\(910\) 24.5489 0.813787
\(911\) 24.7088 0.818639 0.409319 0.912391i \(-0.365766\pi\)
0.409319 + 0.912391i \(0.365766\pi\)
\(912\) 0 0
\(913\) 2.34384 0.0775697
\(914\) −0.553089 −0.0182946
\(915\) 0 0
\(916\) 15.9880 0.528258
\(917\) 26.8731 0.887429
\(918\) 0 0
\(919\) −24.2103 −0.798623 −0.399311 0.916815i \(-0.630751\pi\)
−0.399311 + 0.916815i \(0.630751\pi\)
\(920\) −0.0204487 −0.000674174 0
\(921\) 0 0
\(922\) −26.4326 −0.870510
\(923\) 6.21744 0.204650
\(924\) 0 0
\(925\) −68.1888 −2.24203
\(926\) 3.39737 0.111645
\(927\) 0 0
\(928\) 8.82870 0.289816
\(929\) −22.9565 −0.753179 −0.376590 0.926380i \(-0.622903\pi\)
−0.376590 + 0.926380i \(0.622903\pi\)
\(930\) 0 0
\(931\) 45.6642 1.49659
\(932\) −13.0383 −0.427085
\(933\) 0 0
\(934\) −14.5812 −0.477113
\(935\) −39.1684 −1.28094
\(936\) 0 0
\(937\) 3.01896 0.0986253 0.0493126 0.998783i \(-0.484297\pi\)
0.0493126 + 0.998783i \(0.484297\pi\)
\(938\) −40.9077 −1.33568
\(939\) 0 0
\(940\) −20.7736 −0.677559
\(941\) 19.2308 0.626906 0.313453 0.949604i \(-0.398514\pi\)
0.313453 + 0.949604i \(0.398514\pi\)
\(942\) 0 0
\(943\) −0.00672541 −0.000219009 0
\(944\) −11.0037 −0.358141
\(945\) 0 0
\(946\) −8.48040 −0.275721
\(947\) −19.2407 −0.625237 −0.312619 0.949879i \(-0.601206\pi\)
−0.312619 + 0.949879i \(0.601206\pi\)
\(948\) 0 0
\(949\) −24.9706 −0.810579
\(950\) 60.6630 1.96817
\(951\) 0 0
\(952\) −17.9299 −0.581112
\(953\) 3.75904 0.121767 0.0608837 0.998145i \(-0.480608\pi\)
0.0608837 + 0.998145i \(0.480608\pi\)
\(954\) 0 0
\(955\) −83.3413 −2.69686
\(956\) −21.8996 −0.708285
\(957\) 0 0
\(958\) −41.3750 −1.33677
\(959\) −77.3488 −2.49772
\(960\) 0 0
\(961\) −30.7864 −0.993110
\(962\) 13.7159 0.442218
\(963\) 0 0
\(964\) −27.1588 −0.874726
\(965\) −69.5946 −2.24033
\(966\) 0 0
\(967\) −4.34893 −0.139852 −0.0699261 0.997552i \(-0.522276\pi\)
−0.0699261 + 0.997552i \(0.522276\pi\)
\(968\) −6.29381 −0.202291
\(969\) 0 0
\(970\) 9.21133 0.295758
\(971\) 7.50521 0.240854 0.120427 0.992722i \(-0.461574\pi\)
0.120427 + 0.992722i \(0.461574\pi\)
\(972\) 0 0
\(973\) 52.8192 1.69331
\(974\) 27.7547 0.889319
\(975\) 0 0
\(976\) 12.9778 0.415409
\(977\) −9.96282 −0.318739 −0.159369 0.987219i \(-0.550946\pi\)
−0.159369 + 0.987219i \(0.550946\pi\)
\(978\) 0 0
\(979\) 15.2565 0.487599
\(980\) 24.8455 0.793659
\(981\) 0 0
\(982\) −28.7642 −0.917902
\(983\) 0.659591 0.0210377 0.0105188 0.999945i \(-0.496652\pi\)
0.0105188 + 0.999945i \(0.496652\pi\)
\(984\) 0 0
\(985\) −11.2270 −0.357721
\(986\) 42.8104 1.36336
\(987\) 0 0
\(988\) −12.2021 −0.388201
\(989\) −0.0214683 −0.000682653 0
\(990\) 0 0
\(991\) −53.1280 −1.68767 −0.843833 0.536605i \(-0.819706\pi\)
−0.843833 + 0.536605i \(0.819706\pi\)
\(992\) −0.462161 −0.0146736
\(993\) 0 0
\(994\) 12.8938 0.408967
\(995\) 38.6175 1.22426
\(996\) 0 0
\(997\) −13.2729 −0.420358 −0.210179 0.977663i \(-0.567405\pi\)
−0.210179 + 0.977663i \(0.567405\pi\)
\(998\) 32.0457 1.01439
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4842.2.a.q.1.8 8
3.2 odd 2 1614.2.a.i.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1614.2.a.i.1.1 8 3.2 odd 2
4842.2.a.q.1.8 8 1.1 even 1 trivial