Properties

Label 4851.2.a.j
Level $4851$
Weight $2$
Character orbit 4851.a
Self dual yes
Analytic conductor $38.735$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4851,2,Mod(1,4851)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4851, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4851.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4851 = 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4851.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.7354300205\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{4} - q^{5} + q^{11} + 4 q^{13} + 4 q^{16} + 2 q^{17} + 6 q^{19} + 2 q^{20} + 5 q^{23} - 4 q^{25} - 10 q^{29} - q^{31} - 5 q^{37} - 2 q^{41} - 8 q^{43} - 2 q^{44} + 8 q^{47} - 8 q^{52} + 6 q^{53}+ \cdots + 5 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 −2.00000 −1.00000 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4851.2.a.j 1
3.b odd 2 1 539.2.a.c 1
7.b odd 2 1 693.2.a.c 1
12.b even 2 1 8624.2.a.a 1
21.c even 2 1 77.2.a.a 1
21.g even 6 2 539.2.e.f 2
21.h odd 6 2 539.2.e.c 2
33.d even 2 1 5929.2.a.f 1
77.b even 2 1 7623.2.a.j 1
84.h odd 2 1 1232.2.a.l 1
105.g even 2 1 1925.2.a.h 1
105.k odd 4 2 1925.2.b.e 2
168.e odd 2 1 4928.2.a.a 1
168.i even 2 1 4928.2.a.bj 1
231.h odd 2 1 847.2.a.b 1
231.r odd 10 4 847.2.f.h 4
231.u even 10 4 847.2.f.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
77.2.a.a 1 21.c even 2 1
539.2.a.c 1 3.b odd 2 1
539.2.e.c 2 21.h odd 6 2
539.2.e.f 2 21.g even 6 2
693.2.a.c 1 7.b odd 2 1
847.2.a.b 1 231.h odd 2 1
847.2.f.h 4 231.r odd 10 4
847.2.f.i 4 231.u even 10 4
1232.2.a.l 1 84.h odd 2 1
1925.2.a.h 1 105.g even 2 1
1925.2.b.e 2 105.k odd 4 2
4851.2.a.j 1 1.a even 1 1 trivial
4928.2.a.a 1 168.e odd 2 1
4928.2.a.bj 1 168.i even 2 1
5929.2.a.f 1 33.d even 2 1
7623.2.a.j 1 77.b even 2 1
8624.2.a.a 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4851))\):

\( T_{2} \) Copy content Toggle raw display
\( T_{5} + 1 \) Copy content Toggle raw display
\( T_{13} - 4 \) Copy content Toggle raw display
\( T_{17} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T - 4 \) Copy content Toggle raw display
$17$ \( T - 2 \) Copy content Toggle raw display
$19$ \( T - 6 \) Copy content Toggle raw display
$23$ \( T - 5 \) Copy content Toggle raw display
$29$ \( T + 10 \) Copy content Toggle raw display
$31$ \( T + 1 \) Copy content Toggle raw display
$37$ \( T + 5 \) Copy content Toggle raw display
$41$ \( T + 2 \) Copy content Toggle raw display
$43$ \( T + 8 \) Copy content Toggle raw display
$47$ \( T - 8 \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T - 3 \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T + 3 \) Copy content Toggle raw display
$71$ \( T + 1 \) Copy content Toggle raw display
$73$ \( T + 10 \) Copy content Toggle raw display
$79$ \( T - 6 \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T + 15 \) Copy content Toggle raw display
$97$ \( T - 5 \) Copy content Toggle raw display
show more
show less