Properties

Label 490.4.e.s
Level $490$
Weight $4$
Character orbit 490.e
Analytic conductor $28.911$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,4,Mod(361,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.361");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 490.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.9109359028\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{6} q^{2} + ( - 10 \zeta_{6} + 10) q^{3} + (4 \zeta_{6} - 4) q^{4} - 5 \zeta_{6} q^{5} + 20 q^{6} - 8 q^{8} - 73 \zeta_{6} q^{9} + ( - 10 \zeta_{6} + 10) q^{10} + (53 \zeta_{6} - 53) q^{11} + \cdots + 3869 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 10 q^{3} - 4 q^{4} - 5 q^{5} + 40 q^{6} - 16 q^{8} - 73 q^{9} + 10 q^{10} - 53 q^{11} + 40 q^{12} - 50 q^{13} - 100 q^{15} - 16 q^{16} + 14 q^{17} + 146 q^{18} - 95 q^{19} + 40 q^{20} - 212 q^{22}+ \cdots + 7738 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 + 1.73205i 5.00000 8.66025i −2.00000 + 3.46410i −2.50000 4.33013i 20.0000 0 −8.00000 −36.5000 63.2199i 5.00000 8.66025i
471.1 1.00000 1.73205i 5.00000 + 8.66025i −2.00000 3.46410i −2.50000 + 4.33013i 20.0000 0 −8.00000 −36.5000 + 63.2199i 5.00000 + 8.66025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.4.e.s 2
7.b odd 2 1 70.4.e.b 2
7.c even 3 1 490.4.a.a 1
7.c even 3 1 inner 490.4.e.s 2
7.d odd 6 1 70.4.e.b 2
7.d odd 6 1 490.4.a.h 1
21.c even 2 1 630.4.k.c 2
21.g even 6 1 630.4.k.c 2
28.d even 2 1 560.4.q.g 2
28.f even 6 1 560.4.q.g 2
35.c odd 2 1 350.4.e.d 2
35.f even 4 2 350.4.j.a 4
35.i odd 6 1 350.4.e.d 2
35.i odd 6 1 2450.4.a.v 1
35.j even 6 1 2450.4.a.bq 1
35.k even 12 2 350.4.j.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.4.e.b 2 7.b odd 2 1
70.4.e.b 2 7.d odd 6 1
350.4.e.d 2 35.c odd 2 1
350.4.e.d 2 35.i odd 6 1
350.4.j.a 4 35.f even 4 2
350.4.j.a 4 35.k even 12 2
490.4.a.a 1 7.c even 3 1
490.4.a.h 1 7.d odd 6 1
490.4.e.s 2 1.a even 1 1 trivial
490.4.e.s 2 7.c even 3 1 inner
560.4.q.g 2 28.d even 2 1
560.4.q.g 2 28.f even 6 1
630.4.k.c 2 21.c even 2 1
630.4.k.c 2 21.g even 6 1
2450.4.a.v 1 35.i odd 6 1
2450.4.a.bq 1 35.j even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(490, [\chi])\):

\( T_{3}^{2} - 10T_{3} + 100 \) Copy content Toggle raw display
\( T_{11}^{2} + 53T_{11} + 2809 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$5$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 53T + 2809 \) Copy content Toggle raw display
$13$ \( (T + 25)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 14T + 196 \) Copy content Toggle raw display
$19$ \( T^{2} + 95T + 9025 \) Copy content Toggle raw display
$23$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$29$ \( (T + 206)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 108T + 11664 \) Copy content Toggle raw display
$37$ \( T^{2} - 57T + 3249 \) Copy content Toggle raw display
$41$ \( (T + 243)^{2} \) Copy content Toggle raw display
$43$ \( (T - 434)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 231T + 53361 \) Copy content Toggle raw display
$53$ \( T^{2} + 263T + 69169 \) Copy content Toggle raw display
$59$ \( T^{2} - 24T + 576 \) Copy content Toggle raw display
$61$ \( T^{2} - 116T + 13456 \) Copy content Toggle raw display
$67$ \( T^{2} - 204T + 41616 \) Copy content Toggle raw display
$71$ \( (T - 484)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 692T + 478864 \) Copy content Toggle raw display
$79$ \( T^{2} + 466T + 217156 \) Copy content Toggle raw display
$83$ \( (T + 228)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 362T + 131044 \) Copy content Toggle raw display
$97$ \( (T + 854)^{2} \) Copy content Toggle raw display
show more
show less