Properties

Label 490.6.a.i.1.1
Level $490$
Weight $6$
Character 490.1
Self dual yes
Analytic conductor $78.588$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,6,Mod(1,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 490.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.5880717084\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 490.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +23.0000 q^{3} +16.0000 q^{4} -25.0000 q^{5} -92.0000 q^{6} -64.0000 q^{8} +286.000 q^{9} +100.000 q^{10} +555.000 q^{11} +368.000 q^{12} +241.000 q^{13} -575.000 q^{15} +256.000 q^{16} +1491.00 q^{17} -1144.00 q^{18} +2038.00 q^{19} -400.000 q^{20} -2220.00 q^{22} -1230.00 q^{23} -1472.00 q^{24} +625.000 q^{25} -964.000 q^{26} +989.000 q^{27} -5001.00 q^{29} +2300.00 q^{30} -5696.00 q^{31} -1024.00 q^{32} +12765.0 q^{33} -5964.00 q^{34} +4576.00 q^{36} -5602.00 q^{37} -8152.00 q^{38} +5543.00 q^{39} +1600.00 q^{40} +2424.00 q^{41} +602.000 q^{43} +8880.00 q^{44} -7150.00 q^{45} +4920.00 q^{46} +23163.0 q^{47} +5888.00 q^{48} -2500.00 q^{50} +34293.0 q^{51} +3856.00 q^{52} -25296.0 q^{53} -3956.00 q^{54} -13875.0 q^{55} +46874.0 q^{57} +20004.0 q^{58} -5724.00 q^{59} -9200.00 q^{60} +36112.0 q^{61} +22784.0 q^{62} +4096.00 q^{64} -6025.00 q^{65} -51060.0 q^{66} +66104.0 q^{67} +23856.0 q^{68} -28290.0 q^{69} +16080.0 q^{71} -18304.0 q^{72} +80482.0 q^{73} +22408.0 q^{74} +14375.0 q^{75} +32608.0 q^{76} -22172.0 q^{78} -64147.0 q^{79} -6400.00 q^{80} -46751.0 q^{81} -9696.00 q^{82} +106284. q^{83} -37275.0 q^{85} -2408.00 q^{86} -115023. q^{87} -35520.0 q^{88} +71676.0 q^{89} +28600.0 q^{90} -19680.0 q^{92} -131008. q^{93} -92652.0 q^{94} -50950.0 q^{95} -23552.0 q^{96} -151025. q^{97} +158730. q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 23.0000 1.47545 0.737725 0.675101i \(-0.235900\pi\)
0.737725 + 0.675101i \(0.235900\pi\)
\(4\) 16.0000 0.500000
\(5\) −25.0000 −0.447214
\(6\) −92.0000 −1.04330
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) 286.000 1.17695
\(10\) 100.000 0.316228
\(11\) 555.000 1.38297 0.691483 0.722393i \(-0.256958\pi\)
0.691483 + 0.722393i \(0.256958\pi\)
\(12\) 368.000 0.737725
\(13\) 241.000 0.395511 0.197756 0.980251i \(-0.436635\pi\)
0.197756 + 0.980251i \(0.436635\pi\)
\(14\) 0 0
\(15\) −575.000 −0.659842
\(16\) 256.000 0.250000
\(17\) 1491.00 1.25128 0.625641 0.780111i \(-0.284837\pi\)
0.625641 + 0.780111i \(0.284837\pi\)
\(18\) −1144.00 −0.832233
\(19\) 2038.00 1.29515 0.647575 0.762002i \(-0.275783\pi\)
0.647575 + 0.762002i \(0.275783\pi\)
\(20\) −400.000 −0.223607
\(21\) 0 0
\(22\) −2220.00 −0.977904
\(23\) −1230.00 −0.484826 −0.242413 0.970173i \(-0.577939\pi\)
−0.242413 + 0.970173i \(0.577939\pi\)
\(24\) −1472.00 −0.521651
\(25\) 625.000 0.200000
\(26\) −964.000 −0.279669
\(27\) 989.000 0.261088
\(28\) 0 0
\(29\) −5001.00 −1.10424 −0.552118 0.833766i \(-0.686180\pi\)
−0.552118 + 0.833766i \(0.686180\pi\)
\(30\) 2300.00 0.466578
\(31\) −5696.00 −1.06455 −0.532275 0.846572i \(-0.678663\pi\)
−0.532275 + 0.846572i \(0.678663\pi\)
\(32\) −1024.00 −0.176777
\(33\) 12765.0 2.04050
\(34\) −5964.00 −0.884790
\(35\) 0 0
\(36\) 4576.00 0.588477
\(37\) −5602.00 −0.672727 −0.336363 0.941732i \(-0.609197\pi\)
−0.336363 + 0.941732i \(0.609197\pi\)
\(38\) −8152.00 −0.915810
\(39\) 5543.00 0.583557
\(40\) 1600.00 0.158114
\(41\) 2424.00 0.225202 0.112601 0.993640i \(-0.464082\pi\)
0.112601 + 0.993640i \(0.464082\pi\)
\(42\) 0 0
\(43\) 602.000 0.0496507 0.0248253 0.999692i \(-0.492097\pi\)
0.0248253 + 0.999692i \(0.492097\pi\)
\(44\) 8880.00 0.691483
\(45\) −7150.00 −0.526350
\(46\) 4920.00 0.342823
\(47\) 23163.0 1.52950 0.764751 0.644326i \(-0.222862\pi\)
0.764751 + 0.644326i \(0.222862\pi\)
\(48\) 5888.00 0.368863
\(49\) 0 0
\(50\) −2500.00 −0.141421
\(51\) 34293.0 1.84621
\(52\) 3856.00 0.197756
\(53\) −25296.0 −1.23698 −0.618489 0.785793i \(-0.712255\pi\)
−0.618489 + 0.785793i \(0.712255\pi\)
\(54\) −3956.00 −0.184617
\(55\) −13875.0 −0.618481
\(56\) 0 0
\(57\) 46874.0 1.91093
\(58\) 20004.0 0.780813
\(59\) −5724.00 −0.214077 −0.107038 0.994255i \(-0.534137\pi\)
−0.107038 + 0.994255i \(0.534137\pi\)
\(60\) −9200.00 −0.329921
\(61\) 36112.0 1.24259 0.621294 0.783578i \(-0.286607\pi\)
0.621294 + 0.783578i \(0.286607\pi\)
\(62\) 22784.0 0.752750
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −6025.00 −0.176878
\(66\) −51060.0 −1.44285
\(67\) 66104.0 1.79904 0.899520 0.436880i \(-0.143917\pi\)
0.899520 + 0.436880i \(0.143917\pi\)
\(68\) 23856.0 0.625641
\(69\) −28290.0 −0.715336
\(70\) 0 0
\(71\) 16080.0 0.378565 0.189282 0.981923i \(-0.439384\pi\)
0.189282 + 0.981923i \(0.439384\pi\)
\(72\) −18304.0 −0.416116
\(73\) 80482.0 1.76763 0.883816 0.467836i \(-0.154966\pi\)
0.883816 + 0.467836i \(0.154966\pi\)
\(74\) 22408.0 0.475690
\(75\) 14375.0 0.295090
\(76\) 32608.0 0.647575
\(77\) 0 0
\(78\) −22172.0 −0.412637
\(79\) −64147.0 −1.15640 −0.578201 0.815895i \(-0.696245\pi\)
−0.578201 + 0.815895i \(0.696245\pi\)
\(80\) −6400.00 −0.111803
\(81\) −46751.0 −0.791732
\(82\) −9696.00 −0.159242
\(83\) 106284. 1.69345 0.846726 0.532030i \(-0.178571\pi\)
0.846726 + 0.532030i \(0.178571\pi\)
\(84\) 0 0
\(85\) −37275.0 −0.559591
\(86\) −2408.00 −0.0351083
\(87\) −115023. −1.62925
\(88\) −35520.0 −0.488952
\(89\) 71676.0 0.959177 0.479588 0.877494i \(-0.340786\pi\)
0.479588 + 0.877494i \(0.340786\pi\)
\(90\) 28600.0 0.372186
\(91\) 0 0
\(92\) −19680.0 −0.242413
\(93\) −131008. −1.57069
\(94\) −92652.0 −1.08152
\(95\) −50950.0 −0.579209
\(96\) −23552.0 −0.260825
\(97\) −151025. −1.62974 −0.814872 0.579641i \(-0.803193\pi\)
−0.814872 + 0.579641i \(0.803193\pi\)
\(98\) 0 0
\(99\) 158730. 1.62769
\(100\) 10000.0 0.100000
\(101\) 57150.0 0.557459 0.278729 0.960370i \(-0.410087\pi\)
0.278729 + 0.960370i \(0.410087\pi\)
\(102\) −137172. −1.30546
\(103\) −115889. −1.07634 −0.538170 0.842837i \(-0.680884\pi\)
−0.538170 + 0.842837i \(0.680884\pi\)
\(104\) −15424.0 −0.139834
\(105\) 0 0
\(106\) 101184. 0.874676
\(107\) −137862. −1.16409 −0.582043 0.813158i \(-0.697747\pi\)
−0.582043 + 0.813158i \(0.697747\pi\)
\(108\) 15824.0 0.130544
\(109\) 88397.0 0.712642 0.356321 0.934364i \(-0.384031\pi\)
0.356321 + 0.934364i \(0.384031\pi\)
\(110\) 55500.0 0.437332
\(111\) −128846. −0.992575
\(112\) 0 0
\(113\) 205554. 1.51436 0.757181 0.653205i \(-0.226576\pi\)
0.757181 + 0.653205i \(0.226576\pi\)
\(114\) −187496. −1.35123
\(115\) 30750.0 0.216821
\(116\) −80016.0 −0.552118
\(117\) 68926.0 0.465499
\(118\) 22896.0 0.151375
\(119\) 0 0
\(120\) 36800.0 0.233289
\(121\) 146974. 0.912593
\(122\) −144448. −0.878642
\(123\) 55752.0 0.332275
\(124\) −91136.0 −0.532275
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) 250916. 1.38044 0.690222 0.723597i \(-0.257513\pi\)
0.690222 + 0.723597i \(0.257513\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 13846.0 0.0732572
\(130\) 24100.0 0.125072
\(131\) 52122.0 0.265365 0.132682 0.991159i \(-0.457641\pi\)
0.132682 + 0.991159i \(0.457641\pi\)
\(132\) 204240. 1.02025
\(133\) 0 0
\(134\) −264416. −1.27211
\(135\) −24725.0 −0.116762
\(136\) −95424.0 −0.442395
\(137\) −135468. −0.616645 −0.308323 0.951282i \(-0.599768\pi\)
−0.308323 + 0.951282i \(0.599768\pi\)
\(138\) 113160. 0.505819
\(139\) 349486. 1.53424 0.767119 0.641505i \(-0.221690\pi\)
0.767119 + 0.641505i \(0.221690\pi\)
\(140\) 0 0
\(141\) 532749. 2.25671
\(142\) −64320.0 −0.267686
\(143\) 133755. 0.546978
\(144\) 73216.0 0.294239
\(145\) 125025. 0.493829
\(146\) −321928. −1.24990
\(147\) 0 0
\(148\) −89632.0 −0.336363
\(149\) 176082. 0.649754 0.324877 0.945756i \(-0.394677\pi\)
0.324877 + 0.945756i \(0.394677\pi\)
\(150\) −57500.0 −0.208660
\(151\) 383333. 1.36815 0.684075 0.729411i \(-0.260206\pi\)
0.684075 + 0.729411i \(0.260206\pi\)
\(152\) −130432. −0.457905
\(153\) 426426. 1.47270
\(154\) 0 0
\(155\) 142400. 0.476081
\(156\) 88688.0 0.291779
\(157\) −345914. −1.12000 −0.560001 0.828492i \(-0.689199\pi\)
−0.560001 + 0.828492i \(0.689199\pi\)
\(158\) 256588. 0.817699
\(159\) −581808. −1.82510
\(160\) 25600.0 0.0790569
\(161\) 0 0
\(162\) 187004. 0.559839
\(163\) 91586.0 0.269998 0.134999 0.990846i \(-0.456897\pi\)
0.134999 + 0.990846i \(0.456897\pi\)
\(164\) 38784.0 0.112601
\(165\) −319125. −0.912538
\(166\) −425136. −1.19745
\(167\) −38097.0 −0.105706 −0.0528530 0.998602i \(-0.516831\pi\)
−0.0528530 + 0.998602i \(0.516831\pi\)
\(168\) 0 0
\(169\) −313212. −0.843571
\(170\) 149100. 0.395690
\(171\) 582868. 1.52433
\(172\) 9632.00 0.0248253
\(173\) 541443. 1.37543 0.687713 0.725982i \(-0.258615\pi\)
0.687713 + 0.725982i \(0.258615\pi\)
\(174\) 460092. 1.15205
\(175\) 0 0
\(176\) 142080. 0.345741
\(177\) −131652. −0.315860
\(178\) −286704. −0.678241
\(179\) 166188. 0.387674 0.193837 0.981034i \(-0.437907\pi\)
0.193837 + 0.981034i \(0.437907\pi\)
\(180\) −114400. −0.263175
\(181\) 197320. 0.447687 0.223844 0.974625i \(-0.428140\pi\)
0.223844 + 0.974625i \(0.428140\pi\)
\(182\) 0 0
\(183\) 830576. 1.83338
\(184\) 78720.0 0.171412
\(185\) 140050. 0.300853
\(186\) 524032. 1.11065
\(187\) 827505. 1.73048
\(188\) 370608. 0.764751
\(189\) 0 0
\(190\) 203800. 0.409562
\(191\) −337221. −0.668854 −0.334427 0.942422i \(-0.608543\pi\)
−0.334427 + 0.942422i \(0.608543\pi\)
\(192\) 94208.0 0.184431
\(193\) 260516. 0.503432 0.251716 0.967801i \(-0.419005\pi\)
0.251716 + 0.967801i \(0.419005\pi\)
\(194\) 604100. 1.15240
\(195\) −138575. −0.260975
\(196\) 0 0
\(197\) −409212. −0.751247 −0.375624 0.926772i \(-0.622571\pi\)
−0.375624 + 0.926772i \(0.622571\pi\)
\(198\) −634920. −1.15095
\(199\) −300980. −0.538772 −0.269386 0.963032i \(-0.586821\pi\)
−0.269386 + 0.963032i \(0.586821\pi\)
\(200\) −40000.0 −0.0707107
\(201\) 1.52039e6 2.65439
\(202\) −228600. −0.394183
\(203\) 0 0
\(204\) 548688. 0.923103
\(205\) −60600.0 −0.100714
\(206\) 463556. 0.761087
\(207\) −351780. −0.570618
\(208\) 61696.0 0.0988778
\(209\) 1.13109e6 1.79115
\(210\) 0 0
\(211\) −1.22618e6 −1.89604 −0.948021 0.318209i \(-0.896919\pi\)
−0.948021 + 0.318209i \(0.896919\pi\)
\(212\) −404736. −0.618489
\(213\) 369840. 0.558554
\(214\) 551448. 0.823133
\(215\) −15050.0 −0.0222045
\(216\) −63296.0 −0.0923085
\(217\) 0 0
\(218\) −353588. −0.503914
\(219\) 1.85109e6 2.60805
\(220\) −222000. −0.309240
\(221\) 359331. 0.494896
\(222\) 515384. 0.701857
\(223\) −621257. −0.836583 −0.418292 0.908313i \(-0.637371\pi\)
−0.418292 + 0.908313i \(0.637371\pi\)
\(224\) 0 0
\(225\) 178750. 0.235391
\(226\) −822216. −1.07082
\(227\) −1.29768e6 −1.67148 −0.835742 0.549123i \(-0.814962\pi\)
−0.835742 + 0.549123i \(0.814962\pi\)
\(228\) 749984. 0.955465
\(229\) 124264. 0.156587 0.0782937 0.996930i \(-0.475053\pi\)
0.0782937 + 0.996930i \(0.475053\pi\)
\(230\) −123000. −0.153315
\(231\) 0 0
\(232\) 320064. 0.390406
\(233\) 1.08742e6 1.31222 0.656109 0.754666i \(-0.272201\pi\)
0.656109 + 0.754666i \(0.272201\pi\)
\(234\) −275704. −0.329157
\(235\) −579075. −0.684014
\(236\) −91584.0 −0.107038
\(237\) −1.47538e6 −1.70621
\(238\) 0 0
\(239\) −545631. −0.617880 −0.308940 0.951081i \(-0.599974\pi\)
−0.308940 + 0.951081i \(0.599974\pi\)
\(240\) −147200. −0.164960
\(241\) −811310. −0.899796 −0.449898 0.893080i \(-0.648540\pi\)
−0.449898 + 0.893080i \(0.648540\pi\)
\(242\) −587896. −0.645301
\(243\) −1.31560e6 −1.42925
\(244\) 577792. 0.621294
\(245\) 0 0
\(246\) −223008. −0.234954
\(247\) 491158. 0.512246
\(248\) 364544. 0.376375
\(249\) 2.44453e6 2.49860
\(250\) 62500.0 0.0632456
\(251\) 897738. 0.899426 0.449713 0.893173i \(-0.351526\pi\)
0.449713 + 0.893173i \(0.351526\pi\)
\(252\) 0 0
\(253\) −682650. −0.670497
\(254\) −1.00366e6 −0.976122
\(255\) −857325. −0.825648
\(256\) 65536.0 0.0625000
\(257\) 594678. 0.561628 0.280814 0.959762i \(-0.409396\pi\)
0.280814 + 0.959762i \(0.409396\pi\)
\(258\) −55384.0 −0.0518006
\(259\) 0 0
\(260\) −96400.0 −0.0884390
\(261\) −1.43029e6 −1.29964
\(262\) −208488. −0.187641
\(263\) 1.02837e6 0.916769 0.458385 0.888754i \(-0.348428\pi\)
0.458385 + 0.888754i \(0.348428\pi\)
\(264\) −816960. −0.721425
\(265\) 632400. 0.553194
\(266\) 0 0
\(267\) 1.64855e6 1.41522
\(268\) 1.05766e6 0.899520
\(269\) 1.24390e6 1.04811 0.524053 0.851685i \(-0.324419\pi\)
0.524053 + 0.851685i \(0.324419\pi\)
\(270\) 98900.0 0.0825633
\(271\) −737624. −0.610115 −0.305058 0.952334i \(-0.598676\pi\)
−0.305058 + 0.952334i \(0.598676\pi\)
\(272\) 381696. 0.312821
\(273\) 0 0
\(274\) 541872. 0.436034
\(275\) 346875. 0.276593
\(276\) −452640. −0.357668
\(277\) −2.20063e6 −1.72325 −0.861624 0.507548i \(-0.830552\pi\)
−0.861624 + 0.507548i \(0.830552\pi\)
\(278\) −1.39794e6 −1.08487
\(279\) −1.62906e6 −1.25293
\(280\) 0 0
\(281\) 173979. 0.131441 0.0657205 0.997838i \(-0.479065\pi\)
0.0657205 + 0.997838i \(0.479065\pi\)
\(282\) −2.13100e6 −1.59573
\(283\) 551053. 0.409004 0.204502 0.978866i \(-0.434443\pi\)
0.204502 + 0.978866i \(0.434443\pi\)
\(284\) 257280. 0.189282
\(285\) −1.17185e6 −0.854594
\(286\) −535020. −0.386772
\(287\) 0 0
\(288\) −292864. −0.208058
\(289\) 803224. 0.565708
\(290\) −500100. −0.349190
\(291\) −3.47358e6 −2.40461
\(292\) 1.28771e6 0.883816
\(293\) 1.67512e6 1.13993 0.569963 0.821670i \(-0.306958\pi\)
0.569963 + 0.821670i \(0.306958\pi\)
\(294\) 0 0
\(295\) 143100. 0.0957381
\(296\) 358528. 0.237845
\(297\) 548895. 0.361076
\(298\) −704328. −0.459446
\(299\) −296430. −0.191754
\(300\) 230000. 0.147545
\(301\) 0 0
\(302\) −1.53333e6 −0.967428
\(303\) 1.31445e6 0.822503
\(304\) 521728. 0.323788
\(305\) −902800. −0.555702
\(306\) −1.70570e6 −1.04136
\(307\) −2.33060e6 −1.41131 −0.705655 0.708556i \(-0.749347\pi\)
−0.705655 + 0.708556i \(0.749347\pi\)
\(308\) 0 0
\(309\) −2.66545e6 −1.58809
\(310\) −569600. −0.336640
\(311\) −706266. −0.414064 −0.207032 0.978334i \(-0.566380\pi\)
−0.207032 + 0.978334i \(0.566380\pi\)
\(312\) −354752. −0.206319
\(313\) 183565. 0.105908 0.0529540 0.998597i \(-0.483136\pi\)
0.0529540 + 0.998597i \(0.483136\pi\)
\(314\) 1.38366e6 0.791961
\(315\) 0 0
\(316\) −1.02635e6 −0.578201
\(317\) 2.70665e6 1.51281 0.756405 0.654103i \(-0.226954\pi\)
0.756405 + 0.654103i \(0.226954\pi\)
\(318\) 2.32723e6 1.29054
\(319\) −2.77556e6 −1.52712
\(320\) −102400. −0.0559017
\(321\) −3.17083e6 −1.71755
\(322\) 0 0
\(323\) 3.03866e6 1.62060
\(324\) −748016. −0.395866
\(325\) 150625. 0.0791022
\(326\) −366344. −0.190917
\(327\) 2.03313e6 1.05147
\(328\) −155136. −0.0796211
\(329\) 0 0
\(330\) 1.27650e6 0.645262
\(331\) −2.14337e6 −1.07529 −0.537647 0.843170i \(-0.680687\pi\)
−0.537647 + 0.843170i \(0.680687\pi\)
\(332\) 1.70054e6 0.846726
\(333\) −1.60217e6 −0.791769
\(334\) 152388. 0.0747454
\(335\) −1.65260e6 −0.804555
\(336\) 0 0
\(337\) 655346. 0.314337 0.157169 0.987572i \(-0.449763\pi\)
0.157169 + 0.987572i \(0.449763\pi\)
\(338\) 1.25285e6 0.596495
\(339\) 4.72774e6 2.23437
\(340\) −596400. −0.279795
\(341\) −3.16128e6 −1.47223
\(342\) −2.33147e6 −1.07787
\(343\) 0 0
\(344\) −38528.0 −0.0175542
\(345\) 707250. 0.319908
\(346\) −2.16577e6 −0.972574
\(347\) −4.22275e6 −1.88266 −0.941329 0.337491i \(-0.890422\pi\)
−0.941329 + 0.337491i \(0.890422\pi\)
\(348\) −1.84037e6 −0.814623
\(349\) −3.01710e6 −1.32595 −0.662974 0.748643i \(-0.730706\pi\)
−0.662974 + 0.748643i \(0.730706\pi\)
\(350\) 0 0
\(351\) 238349. 0.103263
\(352\) −568320. −0.244476
\(353\) −2.25258e6 −0.962150 −0.481075 0.876679i \(-0.659754\pi\)
−0.481075 + 0.876679i \(0.659754\pi\)
\(354\) 526608. 0.223347
\(355\) −402000. −0.169299
\(356\) 1.14682e6 0.479588
\(357\) 0 0
\(358\) −664752. −0.274127
\(359\) −1.83950e6 −0.753294 −0.376647 0.926357i \(-0.622923\pi\)
−0.376647 + 0.926357i \(0.622923\pi\)
\(360\) 457600. 0.186093
\(361\) 1.67735e6 0.677414
\(362\) −789280. −0.316563
\(363\) 3.38040e6 1.34649
\(364\) 0 0
\(365\) −2.01205e6 −0.790509
\(366\) −3.32230e6 −1.29639
\(367\) 1.68832e6 0.654320 0.327160 0.944969i \(-0.393908\pi\)
0.327160 + 0.944969i \(0.393908\pi\)
\(368\) −314880. −0.121206
\(369\) 693264. 0.265053
\(370\) −560200. −0.212735
\(371\) 0 0
\(372\) −2.09613e6 −0.785345
\(373\) 1.81212e6 0.674394 0.337197 0.941434i \(-0.390521\pi\)
0.337197 + 0.941434i \(0.390521\pi\)
\(374\) −3.31002e6 −1.22363
\(375\) −359375. −0.131968
\(376\) −1.48243e6 −0.540761
\(377\) −1.20524e6 −0.436738
\(378\) 0 0
\(379\) −4.76708e6 −1.70472 −0.852362 0.522952i \(-0.824831\pi\)
−0.852362 + 0.522952i \(0.824831\pi\)
\(380\) −815200. −0.289604
\(381\) 5.77107e6 2.03678
\(382\) 1.34888e6 0.472951
\(383\) 69996.0 0.0243824 0.0121912 0.999926i \(-0.496119\pi\)
0.0121912 + 0.999926i \(0.496119\pi\)
\(384\) −376832. −0.130413
\(385\) 0 0
\(386\) −1.04206e6 −0.355980
\(387\) 172172. 0.0584366
\(388\) −2.41640e6 −0.814872
\(389\) 3.98895e6 1.33655 0.668275 0.743915i \(-0.267033\pi\)
0.668275 + 0.743915i \(0.267033\pi\)
\(390\) 554300. 0.184537
\(391\) −1.83393e6 −0.606654
\(392\) 0 0
\(393\) 1.19881e6 0.391532
\(394\) 1.63685e6 0.531212
\(395\) 1.60367e6 0.517158
\(396\) 2.53968e6 0.813844
\(397\) 3.05904e6 0.974110 0.487055 0.873371i \(-0.338071\pi\)
0.487055 + 0.873371i \(0.338071\pi\)
\(398\) 1.20392e6 0.380969
\(399\) 0 0
\(400\) 160000. 0.0500000
\(401\) 4.30794e6 1.33785 0.668927 0.743329i \(-0.266754\pi\)
0.668927 + 0.743329i \(0.266754\pi\)
\(402\) −6.08157e6 −1.87694
\(403\) −1.37274e6 −0.421041
\(404\) 914400. 0.278729
\(405\) 1.16878e6 0.354073
\(406\) 0 0
\(407\) −3.10911e6 −0.930358
\(408\) −2.19475e6 −0.652732
\(409\) 239206. 0.0707072 0.0353536 0.999375i \(-0.488744\pi\)
0.0353536 + 0.999375i \(0.488744\pi\)
\(410\) 242400. 0.0712152
\(411\) −3.11576e6 −0.909829
\(412\) −1.85422e6 −0.538170
\(413\) 0 0
\(414\) 1.40712e6 0.403488
\(415\) −2.65710e6 −0.757334
\(416\) −246784. −0.0699171
\(417\) 8.03818e6 2.26369
\(418\) −4.52436e6 −1.26653
\(419\) −4.63462e6 −1.28967 −0.644835 0.764322i \(-0.723074\pi\)
−0.644835 + 0.764322i \(0.723074\pi\)
\(420\) 0 0
\(421\) −2.10108e6 −0.577745 −0.288873 0.957368i \(-0.593280\pi\)
−0.288873 + 0.957368i \(0.593280\pi\)
\(422\) 4.90472e6 1.34070
\(423\) 6.62462e6 1.80016
\(424\) 1.61894e6 0.437338
\(425\) 931875. 0.250256
\(426\) −1.47936e6 −0.394957
\(427\) 0 0
\(428\) −2.20579e6 −0.582043
\(429\) 3.07636e6 0.807039
\(430\) 60200.0 0.0157009
\(431\) 1.65484e6 0.429104 0.214552 0.976713i \(-0.431171\pi\)
0.214552 + 0.976713i \(0.431171\pi\)
\(432\) 253184. 0.0652720
\(433\) 1.84031e6 0.471705 0.235852 0.971789i \(-0.424212\pi\)
0.235852 + 0.971789i \(0.424212\pi\)
\(434\) 0 0
\(435\) 2.87558e6 0.728621
\(436\) 1.41435e6 0.356321
\(437\) −2.50674e6 −0.627922
\(438\) −7.40434e6 −1.84417
\(439\) −5.83684e6 −1.44549 −0.722747 0.691113i \(-0.757121\pi\)
−0.722747 + 0.691113i \(0.757121\pi\)
\(440\) 888000. 0.218666
\(441\) 0 0
\(442\) −1.43732e6 −0.349944
\(443\) 1.19704e6 0.289801 0.144901 0.989446i \(-0.453714\pi\)
0.144901 + 0.989446i \(0.453714\pi\)
\(444\) −2.06154e6 −0.496288
\(445\) −1.79190e6 −0.428957
\(446\) 2.48503e6 0.591554
\(447\) 4.04989e6 0.958681
\(448\) 0 0
\(449\) −3.42570e6 −0.801924 −0.400962 0.916095i \(-0.631324\pi\)
−0.400962 + 0.916095i \(0.631324\pi\)
\(450\) −715000. −0.166447
\(451\) 1.34532e6 0.311447
\(452\) 3.28886e6 0.757181
\(453\) 8.81666e6 2.01864
\(454\) 5.19071e6 1.18192
\(455\) 0 0
\(456\) −2.99994e6 −0.675616
\(457\) 5.29742e6 1.18652 0.593258 0.805012i \(-0.297841\pi\)
0.593258 + 0.805012i \(0.297841\pi\)
\(458\) −497056. −0.110724
\(459\) 1.47460e6 0.326695
\(460\) 492000. 0.108410
\(461\) −8.87731e6 −1.94549 −0.972745 0.231876i \(-0.925514\pi\)
−0.972745 + 0.231876i \(0.925514\pi\)
\(462\) 0 0
\(463\) −2.17475e6 −0.471473 −0.235737 0.971817i \(-0.575750\pi\)
−0.235737 + 0.971817i \(0.575750\pi\)
\(464\) −1.28026e6 −0.276059
\(465\) 3.27520e6 0.702434
\(466\) −4.34966e6 −0.927878
\(467\) 378969. 0.0804103 0.0402051 0.999191i \(-0.487199\pi\)
0.0402051 + 0.999191i \(0.487199\pi\)
\(468\) 1.10282e6 0.232749
\(469\) 0 0
\(470\) 2.31630e6 0.483671
\(471\) −7.95602e6 −1.65251
\(472\) 366336. 0.0756876
\(473\) 334110. 0.0686652
\(474\) 5.90152e6 1.20647
\(475\) 1.27375e6 0.259030
\(476\) 0 0
\(477\) −7.23466e6 −1.45587
\(478\) 2.18252e6 0.436907
\(479\) −1.88489e6 −0.375360 −0.187680 0.982230i \(-0.560097\pi\)
−0.187680 + 0.982230i \(0.560097\pi\)
\(480\) 588800. 0.116645
\(481\) −1.35008e6 −0.266071
\(482\) 3.24524e6 0.636252
\(483\) 0 0
\(484\) 2.35158e6 0.456296
\(485\) 3.77562e6 0.728844
\(486\) 5.26240e6 1.01063
\(487\) 3.67689e6 0.702518 0.351259 0.936278i \(-0.385754\pi\)
0.351259 + 0.936278i \(0.385754\pi\)
\(488\) −2.31117e6 −0.439321
\(489\) 2.10648e6 0.398368
\(490\) 0 0
\(491\) 9.54015e6 1.78588 0.892939 0.450178i \(-0.148640\pi\)
0.892939 + 0.450178i \(0.148640\pi\)
\(492\) 892032. 0.166138
\(493\) −7.45649e6 −1.38171
\(494\) −1.96463e6 −0.362213
\(495\) −3.96825e6 −0.727924
\(496\) −1.45818e6 −0.266137
\(497\) 0 0
\(498\) −9.77813e6 −1.76678
\(499\) 4.78243e6 0.859800 0.429900 0.902877i \(-0.358549\pi\)
0.429900 + 0.902877i \(0.358549\pi\)
\(500\) −250000. −0.0447214
\(501\) −876231. −0.155964
\(502\) −3.59095e6 −0.635990
\(503\) 1.08395e7 1.91024 0.955120 0.296220i \(-0.0957260\pi\)
0.955120 + 0.296220i \(0.0957260\pi\)
\(504\) 0 0
\(505\) −1.42875e6 −0.249303
\(506\) 2.73060e6 0.474113
\(507\) −7.20388e6 −1.24465
\(508\) 4.01466e6 0.690222
\(509\) 7.64177e6 1.30737 0.653687 0.756765i \(-0.273221\pi\)
0.653687 + 0.756765i \(0.273221\pi\)
\(510\) 3.42930e6 0.583821
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 2.01558e6 0.338148
\(514\) −2.37871e6 −0.397131
\(515\) 2.89723e6 0.481354
\(516\) 221536. 0.0366286
\(517\) 1.28555e7 2.11525
\(518\) 0 0
\(519\) 1.24532e7 2.02937
\(520\) 385600. 0.0625358
\(521\) −6.44011e6 −1.03944 −0.519719 0.854337i \(-0.673963\pi\)
−0.519719 + 0.854337i \(0.673963\pi\)
\(522\) 5.72114e6 0.918981
\(523\) 4.77929e6 0.764028 0.382014 0.924157i \(-0.375231\pi\)
0.382014 + 0.924157i \(0.375231\pi\)
\(524\) 833952. 0.132682
\(525\) 0 0
\(526\) −4.11348e6 −0.648254
\(527\) −8.49274e6 −1.33205
\(528\) 3.26784e6 0.510124
\(529\) −4.92344e6 −0.764944
\(530\) −2.52960e6 −0.391167
\(531\) −1.63706e6 −0.251959
\(532\) 0 0
\(533\) 584184. 0.0890700
\(534\) −6.59419e6 −1.00071
\(535\) 3.44655e6 0.520595
\(536\) −4.23066e6 −0.636057
\(537\) 3.82232e6 0.571994
\(538\) −4.97561e6 −0.741123
\(539\) 0 0
\(540\) −395600. −0.0583810
\(541\) −2.05678e6 −0.302130 −0.151065 0.988524i \(-0.548270\pi\)
−0.151065 + 0.988524i \(0.548270\pi\)
\(542\) 2.95050e6 0.431417
\(543\) 4.53836e6 0.660540
\(544\) −1.52678e6 −0.221198
\(545\) −2.20992e6 −0.318703
\(546\) 0 0
\(547\) −1.20189e7 −1.71750 −0.858751 0.512393i \(-0.828759\pi\)
−0.858751 + 0.512393i \(0.828759\pi\)
\(548\) −2.16749e6 −0.308323
\(549\) 1.03280e7 1.46247
\(550\) −1.38750e6 −0.195581
\(551\) −1.01920e7 −1.43015
\(552\) 1.81056e6 0.252910
\(553\) 0 0
\(554\) 8.80252e6 1.21852
\(555\) 3.22115e6 0.443893
\(556\) 5.59178e6 0.767119
\(557\) 8.69942e6 1.18810 0.594049 0.804429i \(-0.297528\pi\)
0.594049 + 0.804429i \(0.297528\pi\)
\(558\) 6.51622e6 0.885953
\(559\) 145082. 0.0196374
\(560\) 0 0
\(561\) 1.90326e7 2.55324
\(562\) −695916. −0.0929429
\(563\) 7.35942e6 0.978527 0.489263 0.872136i \(-0.337266\pi\)
0.489263 + 0.872136i \(0.337266\pi\)
\(564\) 8.52398e6 1.12835
\(565\) −5.13885e6 −0.677243
\(566\) −2.20421e6 −0.289209
\(567\) 0 0
\(568\) −1.02912e6 −0.133843
\(569\) −7.50029e6 −0.971175 −0.485588 0.874188i \(-0.661394\pi\)
−0.485588 + 0.874188i \(0.661394\pi\)
\(570\) 4.68740e6 0.604289
\(571\) −2.22879e6 −0.286074 −0.143037 0.989717i \(-0.545687\pi\)
−0.143037 + 0.989717i \(0.545687\pi\)
\(572\) 2.14008e6 0.273489
\(573\) −7.75608e6 −0.986861
\(574\) 0 0
\(575\) −768750. −0.0969651
\(576\) 1.17146e6 0.147119
\(577\) 5.10946e6 0.638903 0.319452 0.947603i \(-0.396501\pi\)
0.319452 + 0.947603i \(0.396501\pi\)
\(578\) −3.21290e6 −0.400016
\(579\) 5.99187e6 0.742790
\(580\) 2.00040e6 0.246915
\(581\) 0 0
\(582\) 1.38943e7 1.70031
\(583\) −1.40393e7 −1.71070
\(584\) −5.15085e6 −0.624952
\(585\) −1.72315e6 −0.208177
\(586\) −6.70048e6 −0.806049
\(587\) −1.10646e7 −1.32537 −0.662687 0.748896i \(-0.730584\pi\)
−0.662687 + 0.748896i \(0.730584\pi\)
\(588\) 0 0
\(589\) −1.16084e7 −1.37875
\(590\) −572400. −0.0676970
\(591\) −9.41188e6 −1.10843
\(592\) −1.43411e6 −0.168182
\(593\) −9.10043e6 −1.06274 −0.531368 0.847141i \(-0.678322\pi\)
−0.531368 + 0.847141i \(0.678322\pi\)
\(594\) −2.19558e6 −0.255319
\(595\) 0 0
\(596\) 2.81731e6 0.324877
\(597\) −6.92254e6 −0.794931
\(598\) 1.18572e6 0.135590
\(599\) −1.28615e7 −1.46462 −0.732309 0.680973i \(-0.761557\pi\)
−0.732309 + 0.680973i \(0.761557\pi\)
\(600\) −920000. −0.104330
\(601\) −1.58163e6 −0.178615 −0.0893074 0.996004i \(-0.528465\pi\)
−0.0893074 + 0.996004i \(0.528465\pi\)
\(602\) 0 0
\(603\) 1.89057e7 2.11739
\(604\) 6.13333e6 0.684075
\(605\) −3.67435e6 −0.408124
\(606\) −5.25780e6 −0.581597
\(607\) 688297. 0.0758236 0.0379118 0.999281i \(-0.487929\pi\)
0.0379118 + 0.999281i \(0.487929\pi\)
\(608\) −2.08691e6 −0.228952
\(609\) 0 0
\(610\) 3.61120e6 0.392941
\(611\) 5.58228e6 0.604935
\(612\) 6.82282e6 0.736351
\(613\) −6.02150e6 −0.647223 −0.323611 0.946190i \(-0.604897\pi\)
−0.323611 + 0.946190i \(0.604897\pi\)
\(614\) 9.32241e6 0.997947
\(615\) −1.39380e6 −0.148598
\(616\) 0 0
\(617\) 3.36137e6 0.355471 0.177735 0.984078i \(-0.443123\pi\)
0.177735 + 0.984078i \(0.443123\pi\)
\(618\) 1.06618e7 1.12295
\(619\) −1.31769e7 −1.38225 −0.691126 0.722734i \(-0.742885\pi\)
−0.691126 + 0.722734i \(0.742885\pi\)
\(620\) 2.27840e6 0.238040
\(621\) −1.21647e6 −0.126582
\(622\) 2.82506e6 0.292787
\(623\) 0 0
\(624\) 1.41901e6 0.145889
\(625\) 390625. 0.0400000
\(626\) −734260. −0.0748883
\(627\) 2.60151e7 2.64275
\(628\) −5.53462e6 −0.560001
\(629\) −8.35258e6 −0.841771
\(630\) 0 0
\(631\) 1.26264e6 0.126243 0.0631213 0.998006i \(-0.479895\pi\)
0.0631213 + 0.998006i \(0.479895\pi\)
\(632\) 4.10541e6 0.408850
\(633\) −2.82021e7 −2.79752
\(634\) −1.08266e7 −1.06972
\(635\) −6.27290e6 −0.617354
\(636\) −9.30893e6 −0.912550
\(637\) 0 0
\(638\) 1.11022e7 1.07984
\(639\) 4.59888e6 0.445554
\(640\) 409600. 0.0395285
\(641\) −1.58859e7 −1.52710 −0.763550 0.645749i \(-0.776545\pi\)
−0.763550 + 0.645749i \(0.776545\pi\)
\(642\) 1.26833e7 1.21449
\(643\) −1.80880e6 −0.172529 −0.0862647 0.996272i \(-0.527493\pi\)
−0.0862647 + 0.996272i \(0.527493\pi\)
\(644\) 0 0
\(645\) −346150. −0.0327616
\(646\) −1.21546e7 −1.14594
\(647\) −95712.0 −0.00898888 −0.00449444 0.999990i \(-0.501431\pi\)
−0.00449444 + 0.999990i \(0.501431\pi\)
\(648\) 2.99206e6 0.279920
\(649\) −3.17682e6 −0.296061
\(650\) −602500. −0.0559337
\(651\) 0 0
\(652\) 1.46538e6 0.134999
\(653\) 3.06736e6 0.281502 0.140751 0.990045i \(-0.455048\pi\)
0.140751 + 0.990045i \(0.455048\pi\)
\(654\) −8.13252e6 −0.743500
\(655\) −1.30305e6 −0.118675
\(656\) 620544. 0.0563006
\(657\) 2.30179e7 2.08042
\(658\) 0 0
\(659\) −1.32961e6 −0.119264 −0.0596321 0.998220i \(-0.518993\pi\)
−0.0596321 + 0.998220i \(0.518993\pi\)
\(660\) −5.10600e6 −0.456269
\(661\) 7.37188e6 0.656258 0.328129 0.944633i \(-0.393582\pi\)
0.328129 + 0.944633i \(0.393582\pi\)
\(662\) 8.57349e6 0.760348
\(663\) 8.26461e6 0.730195
\(664\) −6.80218e6 −0.598725
\(665\) 0 0
\(666\) 6.40869e6 0.559865
\(667\) 6.15123e6 0.535362
\(668\) −609552. −0.0528530
\(669\) −1.42889e7 −1.23434
\(670\) 6.61040e6 0.568906
\(671\) 2.00422e7 1.71846
\(672\) 0 0
\(673\) 8.48476e6 0.722108 0.361054 0.932545i \(-0.382417\pi\)
0.361054 + 0.932545i \(0.382417\pi\)
\(674\) −2.62138e6 −0.222270
\(675\) 618125. 0.0522176
\(676\) −5.01139e6 −0.421785
\(677\) 4.35891e6 0.365516 0.182758 0.983158i \(-0.441497\pi\)
0.182758 + 0.983158i \(0.441497\pi\)
\(678\) −1.89110e7 −1.57994
\(679\) 0 0
\(680\) 2.38560e6 0.197845
\(681\) −2.98466e7 −2.46619
\(682\) 1.26451e7 1.04103
\(683\) −1.58732e7 −1.30200 −0.651001 0.759077i \(-0.725651\pi\)
−0.651001 + 0.759077i \(0.725651\pi\)
\(684\) 9.32589e6 0.762167
\(685\) 3.38670e6 0.275772
\(686\) 0 0
\(687\) 2.85807e6 0.231037
\(688\) 154112. 0.0124127
\(689\) −6.09634e6 −0.489239
\(690\) −2.82900e6 −0.226209
\(691\) 554956. 0.0442144 0.0221072 0.999756i \(-0.492962\pi\)
0.0221072 + 0.999756i \(0.492962\pi\)
\(692\) 8.66309e6 0.687713
\(693\) 0 0
\(694\) 1.68910e7 1.33124
\(695\) −8.73715e6 −0.686132
\(696\) 7.36147e6 0.576025
\(697\) 3.61418e6 0.281792
\(698\) 1.20684e7 0.937587
\(699\) 2.50106e7 1.93611
\(700\) 0 0
\(701\) −7.74720e6 −0.595456 −0.297728 0.954651i \(-0.596229\pi\)
−0.297728 + 0.954651i \(0.596229\pi\)
\(702\) −953396. −0.0730181
\(703\) −1.14169e7 −0.871282
\(704\) 2.27328e6 0.172871
\(705\) −1.33187e7 −1.00923
\(706\) 9.01031e6 0.680343
\(707\) 0 0
\(708\) −2.10643e6 −0.157930
\(709\) −1.89055e7 −1.41245 −0.706225 0.707987i \(-0.749603\pi\)
−0.706225 + 0.707987i \(0.749603\pi\)
\(710\) 1.60800e6 0.119713
\(711\) −1.83460e7 −1.36103
\(712\) −4.58726e6 −0.339120
\(713\) 7.00608e6 0.516121
\(714\) 0 0
\(715\) −3.34388e6 −0.244616
\(716\) 2.65901e6 0.193837
\(717\) −1.25495e7 −0.911652
\(718\) 7.35802e6 0.532659
\(719\) 1.83928e7 1.32686 0.663430 0.748238i \(-0.269100\pi\)
0.663430 + 0.748238i \(0.269100\pi\)
\(720\) −1.83040e6 −0.131588
\(721\) 0 0
\(722\) −6.70938e6 −0.479004
\(723\) −1.86601e7 −1.32761
\(724\) 3.15712e6 0.223844
\(725\) −3.12562e6 −0.220847
\(726\) −1.35216e7 −0.952109
\(727\) 1.34259e7 0.942123 0.471061 0.882100i \(-0.343871\pi\)
0.471061 + 0.882100i \(0.343871\pi\)
\(728\) 0 0
\(729\) −1.88983e7 −1.31706
\(730\) 8.04820e6 0.558974
\(731\) 897582. 0.0621270
\(732\) 1.32892e7 0.916688
\(733\) −1.08473e7 −0.745697 −0.372848 0.927892i \(-0.621619\pi\)
−0.372848 + 0.927892i \(0.621619\pi\)
\(734\) −6.75329e6 −0.462674
\(735\) 0 0
\(736\) 1.25952e6 0.0857059
\(737\) 3.66877e7 2.48801
\(738\) −2.77306e6 −0.187421
\(739\) 2.64323e7 1.78043 0.890214 0.455542i \(-0.150555\pi\)
0.890214 + 0.455542i \(0.150555\pi\)
\(740\) 2.24080e6 0.150426
\(741\) 1.12966e7 0.755794
\(742\) 0 0
\(743\) 2.03120e7 1.34984 0.674918 0.737893i \(-0.264179\pi\)
0.674918 + 0.737893i \(0.264179\pi\)
\(744\) 8.38451e6 0.555323
\(745\) −4.40205e6 −0.290579
\(746\) −7.24846e6 −0.476869
\(747\) 3.03972e7 1.99312
\(748\) 1.32401e7 0.865240
\(749\) 0 0
\(750\) 1.43750e6 0.0933157
\(751\) −3.95388e6 −0.255813 −0.127907 0.991786i \(-0.540826\pi\)
−0.127907 + 0.991786i \(0.540826\pi\)
\(752\) 5.92973e6 0.382376
\(753\) 2.06480e7 1.32706
\(754\) 4.82096e6 0.308820
\(755\) −9.58332e6 −0.611855
\(756\) 0 0
\(757\) −2.62165e7 −1.66278 −0.831391 0.555688i \(-0.812455\pi\)
−0.831391 + 0.555688i \(0.812455\pi\)
\(758\) 1.90683e7 1.20542
\(759\) −1.57010e7 −0.989285
\(760\) 3.26080e6 0.204781
\(761\) −1.14329e7 −0.715638 −0.357819 0.933791i \(-0.616479\pi\)
−0.357819 + 0.933791i \(0.616479\pi\)
\(762\) −2.30843e7 −1.44022
\(763\) 0 0
\(764\) −5.39554e6 −0.334427
\(765\) −1.06606e7 −0.658613
\(766\) −279984. −0.0172410
\(767\) −1.37948e6 −0.0846697
\(768\) 1.50733e6 0.0922157
\(769\) −2.37076e7 −1.44568 −0.722840 0.691015i \(-0.757164\pi\)
−0.722840 + 0.691015i \(0.757164\pi\)
\(770\) 0 0
\(771\) 1.36776e7 0.828655
\(772\) 4.16826e6 0.251716
\(773\) 1.24180e7 0.747484 0.373742 0.927533i \(-0.378075\pi\)
0.373742 + 0.927533i \(0.378075\pi\)
\(774\) −688688. −0.0413209
\(775\) −3.56000e6 −0.212910
\(776\) 9.66560e6 0.576202
\(777\) 0 0
\(778\) −1.59558e7 −0.945083
\(779\) 4.94011e6 0.291671
\(780\) −2.21720e6 −0.130487
\(781\) 8.92440e6 0.523542
\(782\) 7.33572e6 0.428969
\(783\) −4.94599e6 −0.288303
\(784\) 0 0
\(785\) 8.64785e6 0.500880
\(786\) −4.79522e6 −0.276855
\(787\) −3.06553e7 −1.76428 −0.882142 0.470984i \(-0.843899\pi\)
−0.882142 + 0.470984i \(0.843899\pi\)
\(788\) −6.54739e6 −0.375624
\(789\) 2.36525e7 1.35265
\(790\) −6.41470e6 −0.365686
\(791\) 0 0
\(792\) −1.01587e7 −0.575474
\(793\) 8.70299e6 0.491457
\(794\) −1.22361e7 −0.688800
\(795\) 1.45452e7 0.816210
\(796\) −4.81568e6 −0.269386
\(797\) 1.51870e7 0.846886 0.423443 0.905923i \(-0.360821\pi\)
0.423443 + 0.905923i \(0.360821\pi\)
\(798\) 0 0
\(799\) 3.45360e7 1.91384
\(800\) −640000. −0.0353553
\(801\) 2.04993e7 1.12891
\(802\) −1.72317e7 −0.946005
\(803\) 4.46675e7 2.44457
\(804\) 2.43263e7 1.32720
\(805\) 0 0
\(806\) 5.49094e6 0.297721
\(807\) 2.86097e7 1.54643
\(808\) −3.65760e6 −0.197091
\(809\) 539721. 0.0289933 0.0144967 0.999895i \(-0.495385\pi\)
0.0144967 + 0.999895i \(0.495385\pi\)
\(810\) −4.67510e6 −0.250368
\(811\) −1.39772e7 −0.746221 −0.373111 0.927787i \(-0.621709\pi\)
−0.373111 + 0.927787i \(0.621709\pi\)
\(812\) 0 0
\(813\) −1.69654e7 −0.900195
\(814\) 1.24364e7 0.657862
\(815\) −2.28965e6 −0.120747
\(816\) 8.77901e6 0.461551
\(817\) 1.22688e6 0.0643051
\(818\) −956824. −0.0499976
\(819\) 0 0
\(820\) −969600. −0.0503568
\(821\) −1.78137e7 −0.922350 −0.461175 0.887309i \(-0.652572\pi\)
−0.461175 + 0.887309i \(0.652572\pi\)
\(822\) 1.24631e7 0.643347
\(823\) 1.91010e7 0.983005 0.491502 0.870876i \(-0.336448\pi\)
0.491502 + 0.870876i \(0.336448\pi\)
\(824\) 7.41690e6 0.380543
\(825\) 7.97813e6 0.408099
\(826\) 0 0
\(827\) 3.19225e6 0.162305 0.0811526 0.996702i \(-0.474140\pi\)
0.0811526 + 0.996702i \(0.474140\pi\)
\(828\) −5.62848e6 −0.285309
\(829\) −8.56842e6 −0.433026 −0.216513 0.976280i \(-0.569468\pi\)
−0.216513 + 0.976280i \(0.569468\pi\)
\(830\) 1.06284e7 0.535516
\(831\) −5.06145e7 −2.54257
\(832\) 987136. 0.0494389
\(833\) 0 0
\(834\) −3.21527e7 −1.60067
\(835\) 952425. 0.0472732
\(836\) 1.80974e7 0.895574
\(837\) −5.63334e6 −0.277941
\(838\) 1.85385e7 0.911935
\(839\) −3.56751e7 −1.74969 −0.874843 0.484407i \(-0.839036\pi\)
−0.874843 + 0.484407i \(0.839036\pi\)
\(840\) 0 0
\(841\) 4.49885e6 0.219337
\(842\) 8.40430e6 0.408528
\(843\) 4.00152e6 0.193935
\(844\) −1.96189e7 −0.948021
\(845\) 7.83030e6 0.377256
\(846\) −2.64985e7 −1.27290
\(847\) 0 0
\(848\) −6.47578e6 −0.309245
\(849\) 1.26742e7 0.603465
\(850\) −3.72750e6 −0.176958
\(851\) 6.89046e6 0.326155
\(852\) 5.91744e6 0.279277
\(853\) −3.06355e7 −1.44163 −0.720814 0.693129i \(-0.756232\pi\)
−0.720814 + 0.693129i \(0.756232\pi\)
\(854\) 0 0
\(855\) −1.45717e7 −0.681703
\(856\) 8.82317e6 0.411567
\(857\) 4.46188e6 0.207523 0.103761 0.994602i \(-0.466912\pi\)
0.103761 + 0.994602i \(0.466912\pi\)
\(858\) −1.23055e7 −0.570663
\(859\) −2.63974e7 −1.22061 −0.610307 0.792165i \(-0.708954\pi\)
−0.610307 + 0.792165i \(0.708954\pi\)
\(860\) −240800. −0.0111022
\(861\) 0 0
\(862\) −6.61936e6 −0.303422
\(863\) −2.17530e7 −0.994244 −0.497122 0.867681i \(-0.665610\pi\)
−0.497122 + 0.867681i \(0.665610\pi\)
\(864\) −1.01274e6 −0.0461543
\(865\) −1.35361e7 −0.615110
\(866\) −7.36122e6 −0.333546
\(867\) 1.84742e7 0.834674
\(868\) 0 0
\(869\) −3.56016e7 −1.59926
\(870\) −1.15023e7 −0.515213
\(871\) 1.59311e7 0.711540
\(872\) −5.65741e6 −0.251957
\(873\) −4.31932e7 −1.91814
\(874\) 1.00270e7 0.444008
\(875\) 0 0
\(876\) 2.96174e7 1.30403
\(877\) −1.58383e7 −0.695361 −0.347680 0.937613i \(-0.613031\pi\)
−0.347680 + 0.937613i \(0.613031\pi\)
\(878\) 2.33474e7 1.02212
\(879\) 3.85277e7 1.68190
\(880\) −3.55200e6 −0.154620
\(881\) −1.97427e7 −0.856974 −0.428487 0.903548i \(-0.640953\pi\)
−0.428487 + 0.903548i \(0.640953\pi\)
\(882\) 0 0
\(883\) −1.72899e7 −0.746263 −0.373131 0.927779i \(-0.621716\pi\)
−0.373131 + 0.927779i \(0.621716\pi\)
\(884\) 5.74930e6 0.247448
\(885\) 3.29130e6 0.141257
\(886\) −4.78817e6 −0.204920
\(887\) 4.44693e7 1.89780 0.948901 0.315574i \(-0.102197\pi\)
0.948901 + 0.315574i \(0.102197\pi\)
\(888\) 8.24614e6 0.350928
\(889\) 0 0
\(890\) 7.16760e6 0.303318
\(891\) −2.59468e7 −1.09494
\(892\) −9.94011e6 −0.418292
\(893\) 4.72062e7 1.98094
\(894\) −1.61995e7 −0.677890
\(895\) −4.15470e6 −0.173373
\(896\) 0 0
\(897\) −6.81789e6 −0.282923
\(898\) 1.37028e7 0.567046
\(899\) 2.84857e7 1.17551
\(900\) 2.86000e6 0.117695
\(901\) −3.77163e7 −1.54781
\(902\) −5.38128e6 −0.220226
\(903\) 0 0
\(904\) −1.31555e7 −0.535408
\(905\) −4.93300e6 −0.200212
\(906\) −3.52666e7 −1.42739
\(907\) 2.56887e6 0.103687 0.0518434 0.998655i \(-0.483490\pi\)
0.0518434 + 0.998655i \(0.483490\pi\)
\(908\) −2.07628e7 −0.835742
\(909\) 1.63449e7 0.656104
\(910\) 0 0
\(911\) 1.12692e7 0.449882 0.224941 0.974372i \(-0.427781\pi\)
0.224941 + 0.974372i \(0.427781\pi\)
\(912\) 1.19997e7 0.477733
\(913\) 5.89876e7 2.34198
\(914\) −2.11897e7 −0.838994
\(915\) −2.07644e7 −0.819911
\(916\) 1.98822e6 0.0782937
\(917\) 0 0
\(918\) −5.89840e6 −0.231008
\(919\) 3.18378e7 1.24353 0.621763 0.783205i \(-0.286417\pi\)
0.621763 + 0.783205i \(0.286417\pi\)
\(920\) −1.96800e6 −0.0766577
\(921\) −5.36039e7 −2.08232
\(922\) 3.55092e7 1.37567
\(923\) 3.87528e6 0.149727
\(924\) 0 0
\(925\) −3.50125e6 −0.134545
\(926\) 8.69901e6 0.333382
\(927\) −3.31443e7 −1.26680
\(928\) 5.12102e6 0.195203
\(929\) −1.88558e7 −0.716813 −0.358407 0.933566i \(-0.616680\pi\)
−0.358407 + 0.933566i \(0.616680\pi\)
\(930\) −1.31008e7 −0.496696
\(931\) 0 0
\(932\) 1.73987e7 0.656109
\(933\) −1.62441e7 −0.610931
\(934\) −1.51588e6 −0.0568586
\(935\) −2.06876e7 −0.773894
\(936\) −4.41126e6 −0.164579
\(937\) −1.12946e7 −0.420265 −0.210132 0.977673i \(-0.567390\pi\)
−0.210132 + 0.977673i \(0.567390\pi\)
\(938\) 0 0
\(939\) 4.22200e6 0.156262
\(940\) −9.26520e6 −0.342007
\(941\) 2.91941e7 1.07478 0.537392 0.843333i \(-0.319410\pi\)
0.537392 + 0.843333i \(0.319410\pi\)
\(942\) 3.18241e7 1.16850
\(943\) −2.98152e6 −0.109184
\(944\) −1.46534e6 −0.0535192
\(945\) 0 0
\(946\) −1.33644e6 −0.0485536
\(947\) 1.05892e7 0.383697 0.191848 0.981425i \(-0.438552\pi\)
0.191848 + 0.981425i \(0.438552\pi\)
\(948\) −2.36061e7 −0.853107
\(949\) 1.93962e7 0.699118
\(950\) −5.09500e6 −0.183162
\(951\) 6.22530e7 2.23208
\(952\) 0 0
\(953\) −3.90317e7 −1.39215 −0.696074 0.717970i \(-0.745071\pi\)
−0.696074 + 0.717970i \(0.745071\pi\)
\(954\) 2.89386e7 1.02945
\(955\) 8.43052e6 0.299121
\(956\) −8.73010e6 −0.308940
\(957\) −6.38378e7 −2.25319
\(958\) 7.53958e6 0.265420
\(959\) 0 0
\(960\) −2.35520e6 −0.0824802
\(961\) 3.81526e6 0.133265
\(962\) 5.40033e6 0.188141
\(963\) −3.94285e7 −1.37008
\(964\) −1.29810e7 −0.449898
\(965\) −6.51290e6 −0.225142
\(966\) 0 0
\(967\) −3.43395e7 −1.18094 −0.590470 0.807059i \(-0.701058\pi\)
−0.590470 + 0.807059i \(0.701058\pi\)
\(968\) −9.40634e6 −0.322650
\(969\) 6.98891e7 2.39111
\(970\) −1.51025e7 −0.515370
\(971\) 1.81464e7 0.617651 0.308826 0.951119i \(-0.400064\pi\)
0.308826 + 0.951119i \(0.400064\pi\)
\(972\) −2.10496e7 −0.714625
\(973\) 0 0
\(974\) −1.47075e7 −0.496756
\(975\) 3.46438e6 0.116711
\(976\) 9.24467e6 0.310647
\(977\) −1.05223e7 −0.352675 −0.176338 0.984330i \(-0.556425\pi\)
−0.176338 + 0.984330i \(0.556425\pi\)
\(978\) −8.42591e6 −0.281689
\(979\) 3.97802e7 1.32651
\(980\) 0 0
\(981\) 2.52815e7 0.838747
\(982\) −3.81606e7 −1.26281
\(983\) 7.91353e6 0.261208 0.130604 0.991435i \(-0.458308\pi\)
0.130604 + 0.991435i \(0.458308\pi\)
\(984\) −3.56813e6 −0.117477
\(985\) 1.02303e7 0.335968
\(986\) 2.98260e7 0.977017
\(987\) 0 0
\(988\) 7.85853e6 0.256123
\(989\) −740460. −0.0240719
\(990\) 1.58730e7 0.514720
\(991\) 4.01556e7 1.29886 0.649429 0.760422i \(-0.275008\pi\)
0.649429 + 0.760422i \(0.275008\pi\)
\(992\) 5.83270e6 0.188187
\(993\) −4.92976e7 −1.58654
\(994\) 0 0
\(995\) 7.52450e6 0.240946
\(996\) 3.91125e7 1.24930
\(997\) 4.93478e7 1.57228 0.786140 0.618048i \(-0.212076\pi\)
0.786140 + 0.618048i \(0.212076\pi\)
\(998\) −1.91297e7 −0.607970
\(999\) −5.54038e6 −0.175641
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 490.6.a.i.1.1 1
7.6 odd 2 70.6.a.a.1.1 1
21.20 even 2 630.6.a.j.1.1 1
28.27 even 2 560.6.a.i.1.1 1
35.13 even 4 350.6.c.h.99.2 2
35.27 even 4 350.6.c.h.99.1 2
35.34 odd 2 350.6.a.n.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.a.1.1 1 7.6 odd 2
350.6.a.n.1.1 1 35.34 odd 2
350.6.c.h.99.1 2 35.27 even 4
350.6.c.h.99.2 2 35.13 even 4
490.6.a.i.1.1 1 1.1 even 1 trivial
560.6.a.i.1.1 1 28.27 even 2
630.6.a.j.1.1 1 21.20 even 2