Properties

Label 4928.2.a.ch
Level $4928$
Weight $2$
Character orbit 4928.a
Self dual yes
Analytic conductor $39.350$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4928,2,Mod(1,4928)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4928, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4928.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4928 = 2^{6} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4928.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3502781161\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.11348.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 616)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + (\beta_1 - 1) q^{5} + q^{7} + ( - \beta_{3} + \beta_{2} + 2) q^{9} + q^{11} + ( - \beta_{3} - 1) q^{13} + ( - \beta_{3} - \beta_{2} + 1) q^{15} + ( - \beta_{2} + \beta_1 + 3) q^{17}+ \cdots + ( - \beta_{3} + \beta_{2} + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} - 5 q^{5} + 4 q^{7} + 9 q^{9} + 4 q^{11} - 4 q^{13} + 3 q^{15} + 10 q^{17} + 6 q^{19} + q^{21} + 3 q^{23} + 17 q^{25} + 13 q^{27} + 4 q^{29} - q^{31} + q^{33} - 5 q^{35} - 13 q^{37} - 8 q^{39}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 5x^{2} + x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} - \nu^{2} - 3\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - \nu^{2} - 5\nu + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 2\nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - \beta_{2} + \beta _1 + 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} - 4\beta_{2} + 6\beta _1 + 9 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.723742
2.64119
−1.77571
−0.589216
0 −2.76342 0 −3.31593 0 1.00000 0 4.63646 0
1.2 0 −0.757235 0 2.52514 0 1.00000 0 −2.42659 0
1.3 0 1.12631 0 −4.42512 0 1.00000 0 −1.73143 0
1.4 0 3.39434 0 0.215911 0 1.00000 0 8.52156 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4928.2.a.ch 4
4.b odd 2 1 4928.2.a.cc 4
8.b even 2 1 1232.2.a.s 4
8.d odd 2 1 616.2.a.h 4
24.f even 2 1 5544.2.a.bm 4
56.e even 2 1 4312.2.a.z 4
56.h odd 2 1 8624.2.a.cy 4
88.g even 2 1 6776.2.a.bb 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
616.2.a.h 4 8.d odd 2 1
1232.2.a.s 4 8.b even 2 1
4312.2.a.z 4 56.e even 2 1
4928.2.a.cc 4 4.b odd 2 1
4928.2.a.ch 4 1.a even 1 1 trivial
5544.2.a.bm 4 24.f even 2 1
6776.2.a.bb 4 88.g even 2 1
8624.2.a.cy 4 56.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4928))\):

\( T_{3}^{4} - T_{3}^{3} - 10T_{3}^{2} + 4T_{3} + 8 \) Copy content Toggle raw display
\( T_{5}^{4} + 5T_{5}^{3} - 6T_{5}^{2} - 36T_{5} + 8 \) Copy content Toggle raw display
\( T_{13}^{4} + 4T_{13}^{3} - 32T_{13}^{2} - 80T_{13} + 256 \) Copy content Toggle raw display
\( T_{17}^{4} - 10T_{17}^{3} + 16T_{17}^{2} + 32T_{17} - 32 \) Copy content Toggle raw display
\( T_{19}^{4} - 6T_{19}^{3} - 48T_{19}^{2} + 320T_{19} - 448 \) Copy content Toggle raw display
\( T_{23}^{4} - 3T_{23}^{3} - 52T_{23}^{2} - 48T_{23} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} - 10 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$5$ \( T^{4} + 5 T^{3} + \cdots + 8 \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( (T - 1)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 4 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$17$ \( T^{4} - 10 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$19$ \( T^{4} - 6 T^{3} + \cdots - 448 \) Copy content Toggle raw display
$23$ \( T^{4} - 3 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$29$ \( T^{4} - 4 T^{3} + \cdots + 304 \) Copy content Toggle raw display
$31$ \( T^{4} + T^{3} + \cdots + 152 \) Copy content Toggle raw display
$37$ \( T^{4} + 13 T^{3} + \cdots + 56 \) Copy content Toggle raw display
$41$ \( T^{4} - 10 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$43$ \( T^{4} + 8 T^{3} + \cdots + 1792 \) Copy content Toggle raw display
$47$ \( T^{4} - 6 T^{3} + \cdots - 256 \) Copy content Toggle raw display
$53$ \( (T + 2)^{4} \) Copy content Toggle raw display
$59$ \( T^{4} - 3 T^{3} + \cdots + 3032 \) Copy content Toggle raw display
$61$ \( T^{4} + 2 T^{3} + \cdots - 224 \) Copy content Toggle raw display
$67$ \( T^{4} - 3 T^{3} + \cdots + 128 \) Copy content Toggle raw display
$71$ \( T^{4} + 7 T^{3} + \cdots - 64 \) Copy content Toggle raw display
$73$ \( T^{4} - 2 T^{3} + \cdots + 5408 \) Copy content Toggle raw display
$79$ \( T^{4} - 46 T^{3} + \cdots + 12032 \) Copy content Toggle raw display
$83$ \( T^{4} - 32 T^{3} + \cdots - 3584 \) Copy content Toggle raw display
$89$ \( T^{4} - 7 T^{3} + \cdots - 1816 \) Copy content Toggle raw display
$97$ \( T^{4} + 11 T^{3} + \cdots - 2872 \) Copy content Toggle raw display
show more
show less