Properties

Label 495.2.c.e.199.4
Level $495$
Weight $2$
Character 495.199
Analytic conductor $3.953$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [495,2,Mod(199,495)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(495, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("495.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.4
Root \(1.45161 - 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 495.199
Dual form 495.2.c.e.199.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.311108i q^{2} +1.90321 q^{4} +(-0.311108 + 2.21432i) q^{5} +0.903212i q^{7} +1.21432i q^{8} +(-0.688892 - 0.0967881i) q^{10} -1.00000 q^{11} +2.90321i q^{13} -0.280996 q^{14} +3.42864 q^{16} +2.28100i q^{17} -2.42864 q^{19} +(-0.592104 + 4.21432i) q^{20} -0.311108i q^{22} -4.00000i q^{23} +(-4.80642 - 1.37778i) q^{25} -0.903212 q^{26} +1.71900i q^{28} +7.05086 q^{29} -2.62222 q^{31} +3.49532i q^{32} -0.709636 q^{34} +(-2.00000 - 0.280996i) q^{35} -5.80642i q^{37} -0.755569i q^{38} +(-2.68889 - 0.377784i) q^{40} +10.6637 q^{41} +10.7096i q^{43} -1.90321 q^{44} +1.24443 q^{46} +0.949145i q^{47} +6.18421 q^{49} +(0.428639 - 1.49532i) q^{50} +5.52543i q^{52} -0.815792i q^{53} +(0.311108 - 2.21432i) q^{55} -1.09679 q^{56} +2.19358i q^{58} -1.67307 q^{59} -7.24443 q^{61} -0.815792i q^{62} +5.76986 q^{64} +(-6.42864 - 0.903212i) q^{65} -12.8573i q^{67} +4.34122i q^{68} +(0.0874201 - 0.622216i) q^{70} -9.28592 q^{71} -5.65878i q^{73} +1.80642 q^{74} -4.62222 q^{76} -0.903212i q^{77} +16.5303 q^{79} +(-1.06668 + 7.59210i) q^{80} +3.31756i q^{82} -7.76049i q^{83} +(-5.05086 - 0.709636i) q^{85} -3.33185 q^{86} -1.21432i q^{88} +6.13335 q^{89} -2.62222 q^{91} -7.61285i q^{92} -0.295286 q^{94} +(0.755569 - 5.37778i) q^{95} +12.4701i q^{97} +1.92396i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{4} - 2 q^{5} - 4 q^{10} - 6 q^{11} + 12 q^{14} - 6 q^{16} + 12 q^{19} + 10 q^{20} - 2 q^{25} + 8 q^{26} + 16 q^{29} - 16 q^{31} + 36 q^{34} - 12 q^{35} - 16 q^{40} - 16 q^{41} + 2 q^{44} + 8 q^{46}+ \cdots + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.311108i 0.219986i 0.993932 + 0.109993i \(0.0350829\pi\)
−0.993932 + 0.109993i \(0.964917\pi\)
\(3\) 0 0
\(4\) 1.90321 0.951606
\(5\) −0.311108 + 2.21432i −0.139132 + 0.990274i
\(6\) 0 0
\(7\) 0.903212i 0.341382i 0.985325 + 0.170691i \(0.0546000\pi\)
−0.985325 + 0.170691i \(0.945400\pi\)
\(8\) 1.21432i 0.429327i
\(9\) 0 0
\(10\) −0.688892 0.0967881i −0.217847 0.0306071i
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 2.90321i 0.805206i 0.915375 + 0.402603i \(0.131894\pi\)
−0.915375 + 0.402603i \(0.868106\pi\)
\(14\) −0.280996 −0.0750994
\(15\) 0 0
\(16\) 3.42864 0.857160
\(17\) 2.28100i 0.553223i 0.960982 + 0.276611i \(0.0892115\pi\)
−0.960982 + 0.276611i \(0.910789\pi\)
\(18\) 0 0
\(19\) −2.42864 −0.557168 −0.278584 0.960412i \(-0.589865\pi\)
−0.278584 + 0.960412i \(0.589865\pi\)
\(20\) −0.592104 + 4.21432i −0.132399 + 0.942351i
\(21\) 0 0
\(22\) 0.311108i 0.0663284i
\(23\) 4.00000i 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 0 0
\(25\) −4.80642 1.37778i −0.961285 0.275557i
\(26\) −0.903212 −0.177134
\(27\) 0 0
\(28\) 1.71900i 0.324861i
\(29\) 7.05086 1.30931 0.654655 0.755927i \(-0.272814\pi\)
0.654655 + 0.755927i \(0.272814\pi\)
\(30\) 0 0
\(31\) −2.62222 −0.470964 −0.235482 0.971879i \(-0.575667\pi\)
−0.235482 + 0.971879i \(0.575667\pi\)
\(32\) 3.49532i 0.617890i
\(33\) 0 0
\(34\) −0.709636 −0.121702
\(35\) −2.00000 0.280996i −0.338062 0.0474970i
\(36\) 0 0
\(37\) 5.80642i 0.954570i −0.878749 0.477285i \(-0.841621\pi\)
0.878749 0.477285i \(-0.158379\pi\)
\(38\) 0.755569i 0.122569i
\(39\) 0 0
\(40\) −2.68889 0.377784i −0.425151 0.0597330i
\(41\) 10.6637 1.66539 0.832695 0.553731i \(-0.186797\pi\)
0.832695 + 0.553731i \(0.186797\pi\)
\(42\) 0 0
\(43\) 10.7096i 1.63320i 0.577201 + 0.816602i \(0.304145\pi\)
−0.577201 + 0.816602i \(0.695855\pi\)
\(44\) −1.90321 −0.286920
\(45\) 0 0
\(46\) 1.24443 0.183481
\(47\) 0.949145i 0.138447i 0.997601 + 0.0692235i \(0.0220522\pi\)
−0.997601 + 0.0692235i \(0.977948\pi\)
\(48\) 0 0
\(49\) 6.18421 0.883458
\(50\) 0.428639 1.49532i 0.0606188 0.211470i
\(51\) 0 0
\(52\) 5.52543i 0.766239i
\(53\) 0.815792i 0.112058i −0.998429 0.0560288i \(-0.982156\pi\)
0.998429 0.0560288i \(-0.0178439\pi\)
\(54\) 0 0
\(55\) 0.311108 2.21432i 0.0419498 0.298579i
\(56\) −1.09679 −0.146564
\(57\) 0 0
\(58\) 2.19358i 0.288031i
\(59\) −1.67307 −0.217815 −0.108908 0.994052i \(-0.534735\pi\)
−0.108908 + 0.994052i \(0.534735\pi\)
\(60\) 0 0
\(61\) −7.24443 −0.927554 −0.463777 0.885952i \(-0.653506\pi\)
−0.463777 + 0.885952i \(0.653506\pi\)
\(62\) 0.815792i 0.103606i
\(63\) 0 0
\(64\) 5.76986 0.721232
\(65\) −6.42864 0.903212i −0.797375 0.112030i
\(66\) 0 0
\(67\) 12.8573i 1.57077i −0.619010 0.785383i \(-0.712466\pi\)
0.619010 0.785383i \(-0.287534\pi\)
\(68\) 4.34122i 0.526450i
\(69\) 0 0
\(70\) 0.0874201 0.622216i 0.0104487 0.0743690i
\(71\) −9.28592 −1.10204 −0.551018 0.834493i \(-0.685760\pi\)
−0.551018 + 0.834493i \(0.685760\pi\)
\(72\) 0 0
\(73\) 5.65878i 0.662310i −0.943576 0.331155i \(-0.892562\pi\)
0.943576 0.331155i \(-0.107438\pi\)
\(74\) 1.80642 0.209993
\(75\) 0 0
\(76\) −4.62222 −0.530204
\(77\) 0.903212i 0.102931i
\(78\) 0 0
\(79\) 16.5303 1.85981 0.929905 0.367800i \(-0.119889\pi\)
0.929905 + 0.367800i \(0.119889\pi\)
\(80\) −1.06668 + 7.59210i −0.119258 + 0.848823i
\(81\) 0 0
\(82\) 3.31756i 0.366363i
\(83\) 7.76049i 0.851825i −0.904764 0.425912i \(-0.859953\pi\)
0.904764 0.425912i \(-0.140047\pi\)
\(84\) 0 0
\(85\) −5.05086 0.709636i −0.547842 0.0769708i
\(86\) −3.33185 −0.359283
\(87\) 0 0
\(88\) 1.21432i 0.129447i
\(89\) 6.13335 0.650134 0.325067 0.945691i \(-0.394613\pi\)
0.325067 + 0.945691i \(0.394613\pi\)
\(90\) 0 0
\(91\) −2.62222 −0.274883
\(92\) 7.61285i 0.793694i
\(93\) 0 0
\(94\) −0.295286 −0.0304565
\(95\) 0.755569 5.37778i 0.0775197 0.551749i
\(96\) 0 0
\(97\) 12.4701i 1.26615i 0.774091 + 0.633075i \(0.218207\pi\)
−0.774091 + 0.633075i \(0.781793\pi\)
\(98\) 1.92396i 0.194349i
\(99\) 0 0
\(100\) −9.14764 2.62222i −0.914764 0.262222i
\(101\) −16.1748 −1.60946 −0.804728 0.593643i \(-0.797689\pi\)
−0.804728 + 0.593643i \(0.797689\pi\)
\(102\) 0 0
\(103\) 17.1526i 1.69009i −0.534693 0.845046i \(-0.679573\pi\)
0.534693 0.845046i \(-0.320427\pi\)
\(104\) −3.52543 −0.345697
\(105\) 0 0
\(106\) 0.253799 0.0246512
\(107\) 13.5669i 1.31156i −0.754951 0.655782i \(-0.772339\pi\)
0.754951 0.655782i \(-0.227661\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0.688892 + 0.0967881i 0.0656833 + 0.00922838i
\(111\) 0 0
\(112\) 3.09679i 0.292619i
\(113\) 14.2351i 1.33912i −0.742757 0.669561i \(-0.766482\pi\)
0.742757 0.669561i \(-0.233518\pi\)
\(114\) 0 0
\(115\) 8.85728 + 1.24443i 0.825946 + 0.116044i
\(116\) 13.4193 1.24595
\(117\) 0 0
\(118\) 0.520505i 0.0479164i
\(119\) −2.06022 −0.188860
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 2.25380i 0.204049i
\(123\) 0 0
\(124\) −4.99063 −0.448172
\(125\) 4.54617 10.2143i 0.406622 0.913597i
\(126\) 0 0
\(127\) 11.0049i 0.976529i −0.872696 0.488264i \(-0.837630\pi\)
0.872696 0.488264i \(-0.162370\pi\)
\(128\) 8.78568i 0.776552i
\(129\) 0 0
\(130\) 0.280996 2.00000i 0.0246450 0.175412i
\(131\) −1.24443 −0.108726 −0.0543632 0.998521i \(-0.517313\pi\)
−0.0543632 + 0.998521i \(0.517313\pi\)
\(132\) 0 0
\(133\) 2.19358i 0.190207i
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) −2.76986 −0.237513
\(137\) 4.42864i 0.378364i −0.981942 0.189182i \(-0.939416\pi\)
0.981942 0.189182i \(-0.0605836\pi\)
\(138\) 0 0
\(139\) −0.917502 −0.0778215 −0.0389108 0.999243i \(-0.512389\pi\)
−0.0389108 + 0.999243i \(0.512389\pi\)
\(140\) −3.80642 0.534795i −0.321702 0.0451985i
\(141\) 0 0
\(142\) 2.88892i 0.242433i
\(143\) 2.90321i 0.242779i
\(144\) 0 0
\(145\) −2.19358 + 15.6128i −0.182167 + 1.29658i
\(146\) 1.76049 0.145699
\(147\) 0 0
\(148\) 11.0509i 0.908375i
\(149\) 2.19358 0.179705 0.0898524 0.995955i \(-0.471360\pi\)
0.0898524 + 0.995955i \(0.471360\pi\)
\(150\) 0 0
\(151\) −10.4286 −0.848671 −0.424335 0.905505i \(-0.639492\pi\)
−0.424335 + 0.905505i \(0.639492\pi\)
\(152\) 2.94914i 0.239207i
\(153\) 0 0
\(154\) 0.280996 0.0226433
\(155\) 0.815792 5.80642i 0.0655260 0.466383i
\(156\) 0 0
\(157\) 5.80642i 0.463403i −0.972787 0.231702i \(-0.925571\pi\)
0.972787 0.231702i \(-0.0744293\pi\)
\(158\) 5.14272i 0.409133i
\(159\) 0 0
\(160\) −7.73975 1.08742i −0.611881 0.0859681i
\(161\) 3.61285 0.284732
\(162\) 0 0
\(163\) 11.0509i 0.865570i 0.901497 + 0.432785i \(0.142469\pi\)
−0.901497 + 0.432785i \(0.857531\pi\)
\(164\) 20.2953 1.58480
\(165\) 0 0
\(166\) 2.41435 0.187390
\(167\) 13.9541i 1.07980i 0.841730 + 0.539899i \(0.181538\pi\)
−0.841730 + 0.539899i \(0.818462\pi\)
\(168\) 0 0
\(169\) 4.57136 0.351643
\(170\) 0.220773 1.57136i 0.0169325 0.120518i
\(171\) 0 0
\(172\) 20.3827i 1.55417i
\(173\) 18.8430i 1.43261i 0.697789 + 0.716303i \(0.254167\pi\)
−0.697789 + 0.716303i \(0.745833\pi\)
\(174\) 0 0
\(175\) 1.24443 4.34122i 0.0940702 0.328165i
\(176\) −3.42864 −0.258443
\(177\) 0 0
\(178\) 1.90813i 0.143021i
\(179\) 4.85728 0.363050 0.181525 0.983386i \(-0.441897\pi\)
0.181525 + 0.983386i \(0.441897\pi\)
\(180\) 0 0
\(181\) −16.7971 −1.24852 −0.624258 0.781219i \(-0.714598\pi\)
−0.624258 + 0.781219i \(0.714598\pi\)
\(182\) 0.815792i 0.0604705i
\(183\) 0 0
\(184\) 4.85728 0.358083
\(185\) 12.8573 + 1.80642i 0.945286 + 0.132811i
\(186\) 0 0
\(187\) 2.28100i 0.166803i
\(188\) 1.80642i 0.131747i
\(189\) 0 0
\(190\) 1.67307 + 0.235063i 0.121377 + 0.0170533i
\(191\) −16.8573 −1.21975 −0.609875 0.792498i \(-0.708780\pi\)
−0.609875 + 0.792498i \(0.708780\pi\)
\(192\) 0 0
\(193\) 24.6178i 1.77203i −0.463661 0.886013i \(-0.653464\pi\)
0.463661 0.886013i \(-0.346536\pi\)
\(194\) −3.87955 −0.278536
\(195\) 0 0
\(196\) 11.7699 0.840704
\(197\) 14.8716i 1.05956i 0.848137 + 0.529778i \(0.177725\pi\)
−0.848137 + 0.529778i \(0.822275\pi\)
\(198\) 0 0
\(199\) 11.2257 0.795768 0.397884 0.917436i \(-0.369745\pi\)
0.397884 + 0.917436i \(0.369745\pi\)
\(200\) 1.67307 5.83654i 0.118304 0.412705i
\(201\) 0 0
\(202\) 5.03212i 0.354059i
\(203\) 6.36842i 0.446975i
\(204\) 0 0
\(205\) −3.31756 + 23.6128i −0.231709 + 1.64919i
\(206\) 5.33630 0.371797
\(207\) 0 0
\(208\) 9.95407i 0.690190i
\(209\) 2.42864 0.167993
\(210\) 0 0
\(211\) −11.9398 −0.821968 −0.410984 0.911643i \(-0.634815\pi\)
−0.410984 + 0.911643i \(0.634815\pi\)
\(212\) 1.55262i 0.106635i
\(213\) 0 0
\(214\) 4.22077 0.288526
\(215\) −23.7146 3.33185i −1.61732 0.227230i
\(216\) 0 0
\(217\) 2.36842i 0.160779i
\(218\) 3.11108i 0.210709i
\(219\) 0 0
\(220\) 0.592104 4.21432i 0.0399197 0.284129i
\(221\) −6.62222 −0.445458
\(222\) 0 0
\(223\) 21.8064i 1.46027i 0.683305 + 0.730133i \(0.260542\pi\)
−0.683305 + 0.730133i \(0.739458\pi\)
\(224\) −3.15701 −0.210937
\(225\) 0 0
\(226\) 4.42864 0.294589
\(227\) 3.19850i 0.212292i 0.994351 + 0.106146i \(0.0338511\pi\)
−0.994351 + 0.106146i \(0.966149\pi\)
\(228\) 0 0
\(229\) −7.12399 −0.470766 −0.235383 0.971903i \(-0.575634\pi\)
−0.235383 + 0.971903i \(0.575634\pi\)
\(230\) −0.387152 + 2.75557i −0.0255281 + 0.181697i
\(231\) 0 0
\(232\) 8.56199i 0.562122i
\(233\) 19.5254i 1.27915i 0.768727 + 0.639577i \(0.220890\pi\)
−0.768727 + 0.639577i \(0.779110\pi\)
\(234\) 0 0
\(235\) −2.10171 0.295286i −0.137100 0.0192624i
\(236\) −3.18421 −0.207274
\(237\) 0 0
\(238\) 0.640951i 0.0415467i
\(239\) −21.9813 −1.42185 −0.710925 0.703268i \(-0.751723\pi\)
−0.710925 + 0.703268i \(0.751723\pi\)
\(240\) 0 0
\(241\) 5.34614 0.344375 0.172188 0.985064i \(-0.444916\pi\)
0.172188 + 0.985064i \(0.444916\pi\)
\(242\) 0.311108i 0.0199988i
\(243\) 0 0
\(244\) −13.7877 −0.882666
\(245\) −1.92396 + 13.6938i −0.122917 + 0.874866i
\(246\) 0 0
\(247\) 7.05086i 0.448635i
\(248\) 3.18421i 0.202197i
\(249\) 0 0
\(250\) 3.17775 + 1.41435i 0.200979 + 0.0894513i
\(251\) 23.7748 1.50065 0.750325 0.661069i \(-0.229897\pi\)
0.750325 + 0.661069i \(0.229897\pi\)
\(252\) 0 0
\(253\) 4.00000i 0.251478i
\(254\) 3.42372 0.214823
\(255\) 0 0
\(256\) 8.80642 0.550401
\(257\) 8.13335i 0.507345i −0.967290 0.253672i \(-0.918362\pi\)
0.967290 0.253672i \(-0.0816385\pi\)
\(258\) 0 0
\(259\) 5.24443 0.325873
\(260\) −12.2351 1.71900i −0.758786 0.106608i
\(261\) 0 0
\(262\) 0.387152i 0.0239183i
\(263\) 22.9032i 1.41227i −0.708076 0.706136i \(-0.750437\pi\)
0.708076 0.706136i \(-0.249563\pi\)
\(264\) 0 0
\(265\) 1.80642 + 0.253799i 0.110968 + 0.0155908i
\(266\) 0.682439 0.0418430
\(267\) 0 0
\(268\) 24.4701i 1.49475i
\(269\) 11.8350 0.721593 0.360796 0.932645i \(-0.382505\pi\)
0.360796 + 0.932645i \(0.382505\pi\)
\(270\) 0 0
\(271\) 14.8988 0.905036 0.452518 0.891755i \(-0.350526\pi\)
0.452518 + 0.891755i \(0.350526\pi\)
\(272\) 7.82071i 0.474200i
\(273\) 0 0
\(274\) 1.37778 0.0832350
\(275\) 4.80642 + 1.37778i 0.289838 + 0.0830835i
\(276\) 0 0
\(277\) 27.6686i 1.66245i 0.555939 + 0.831223i \(0.312359\pi\)
−0.555939 + 0.831223i \(0.687641\pi\)
\(278\) 0.285442i 0.0171197i
\(279\) 0 0
\(280\) 0.341219 2.42864i 0.0203918 0.145139i
\(281\) −9.80642 −0.585002 −0.292501 0.956265i \(-0.594488\pi\)
−0.292501 + 0.956265i \(0.594488\pi\)
\(282\) 0 0
\(283\) 19.0049i 1.12973i −0.825185 0.564863i \(-0.808929\pi\)
0.825185 0.564863i \(-0.191071\pi\)
\(284\) −17.6731 −1.04870
\(285\) 0 0
\(286\) 0.903212 0.0534080
\(287\) 9.63158i 0.568534i
\(288\) 0 0
\(289\) 11.7971 0.693944
\(290\) −4.85728 0.682439i −0.285229 0.0400742i
\(291\) 0 0
\(292\) 10.7699i 0.630258i
\(293\) 30.7511i 1.79650i 0.439485 + 0.898250i \(0.355161\pi\)
−0.439485 + 0.898250i \(0.644839\pi\)
\(294\) 0 0
\(295\) 0.520505 3.70471i 0.0303050 0.215697i
\(296\) 7.05086 0.409823
\(297\) 0 0
\(298\) 0.682439i 0.0395326i
\(299\) 11.6128 0.671588
\(300\) 0 0
\(301\) −9.67307 −0.557547
\(302\) 3.24443i 0.186696i
\(303\) 0 0
\(304\) −8.32693 −0.477582
\(305\) 2.25380 16.0415i 0.129052 0.918533i
\(306\) 0 0
\(307\) 13.4938i 0.770131i 0.922889 + 0.385065i \(0.125821\pi\)
−0.922889 + 0.385065i \(0.874179\pi\)
\(308\) 1.71900i 0.0979493i
\(309\) 0 0
\(310\) 1.80642 + 0.253799i 0.102598 + 0.0144148i
\(311\) 17.5526 0.995318 0.497659 0.867373i \(-0.334193\pi\)
0.497659 + 0.867373i \(0.334193\pi\)
\(312\) 0 0
\(313\) 14.3970i 0.813766i 0.913480 + 0.406883i \(0.133384\pi\)
−0.913480 + 0.406883i \(0.866616\pi\)
\(314\) 1.80642 0.101942
\(315\) 0 0
\(316\) 31.4608 1.76981
\(317\) 29.4608i 1.65468i 0.561701 + 0.827341i \(0.310147\pi\)
−0.561701 + 0.827341i \(0.689853\pi\)
\(318\) 0 0
\(319\) −7.05086 −0.394772
\(320\) −1.79505 + 12.7763i −0.100346 + 0.714218i
\(321\) 0 0
\(322\) 1.12399i 0.0626372i
\(323\) 5.53972i 0.308238i
\(324\) 0 0
\(325\) 4.00000 13.9541i 0.221880 0.774032i
\(326\) −3.43801 −0.190414
\(327\) 0 0
\(328\) 12.9491i 0.714997i
\(329\) −0.857279 −0.0472633
\(330\) 0 0
\(331\) −2.62222 −0.144130 −0.0720650 0.997400i \(-0.522959\pi\)
−0.0720650 + 0.997400i \(0.522959\pi\)
\(332\) 14.7699i 0.810601i
\(333\) 0 0
\(334\) −4.34122 −0.237541
\(335\) 28.4701 + 4.00000i 1.55549 + 0.218543i
\(336\) 0 0
\(337\) 5.00492i 0.272635i 0.990665 + 0.136318i \(0.0435268\pi\)
−0.990665 + 0.136318i \(0.956473\pi\)
\(338\) 1.42219i 0.0773567i
\(339\) 0 0
\(340\) −9.61285 1.35059i −0.521330 0.0732459i
\(341\) 2.62222 0.142001
\(342\) 0 0
\(343\) 11.9081i 0.642979i
\(344\) −13.0049 −0.701178
\(345\) 0 0
\(346\) −5.86220 −0.315154
\(347\) 22.8113i 1.22458i −0.790634 0.612289i \(-0.790249\pi\)
0.790634 0.612289i \(-0.209751\pi\)
\(348\) 0 0
\(349\) −21.2257 −1.13619 −0.568093 0.822965i \(-0.692319\pi\)
−0.568093 + 0.822965i \(0.692319\pi\)
\(350\) 1.35059 + 0.387152i 0.0721919 + 0.0206942i
\(351\) 0 0
\(352\) 3.49532i 0.186301i
\(353\) 7.18421i 0.382377i −0.981553 0.191188i \(-0.938766\pi\)
0.981553 0.191188i \(-0.0612341\pi\)
\(354\) 0 0
\(355\) 2.88892 20.5620i 0.153328 1.09132i
\(356\) 11.6731 0.618672
\(357\) 0 0
\(358\) 1.51114i 0.0798661i
\(359\) −14.1017 −0.744260 −0.372130 0.928181i \(-0.621372\pi\)
−0.372130 + 0.928181i \(0.621372\pi\)
\(360\) 0 0
\(361\) −13.1017 −0.689564
\(362\) 5.22570i 0.274656i
\(363\) 0 0
\(364\) −4.99063 −0.261580
\(365\) 12.5303 + 1.76049i 0.655868 + 0.0921483i
\(366\) 0 0
\(367\) 3.90813i 0.204003i 0.994784 + 0.102001i \(0.0325246\pi\)
−0.994784 + 0.102001i \(0.967475\pi\)
\(368\) 13.7146i 0.714921i
\(369\) 0 0
\(370\) −0.561993 + 4.00000i −0.0292166 + 0.207950i
\(371\) 0.736833 0.0382545
\(372\) 0 0
\(373\) 12.9763i 0.671890i 0.941882 + 0.335945i \(0.109056\pi\)
−0.941882 + 0.335945i \(0.890944\pi\)
\(374\) 0.709636 0.0366944
\(375\) 0 0
\(376\) −1.15257 −0.0594390
\(377\) 20.4701i 1.05427i
\(378\) 0 0
\(379\) −36.0830 −1.85346 −0.926729 0.375731i \(-0.877392\pi\)
−0.926729 + 0.375731i \(0.877392\pi\)
\(380\) 1.43801 10.2351i 0.0737682 0.525048i
\(381\) 0 0
\(382\) 5.24443i 0.268328i
\(383\) 20.2953i 1.03704i −0.855065 0.518520i \(-0.826483\pi\)
0.855065 0.518520i \(-0.173517\pi\)
\(384\) 0 0
\(385\) 2.00000 + 0.280996i 0.101929 + 0.0143209i
\(386\) 7.65878 0.389822
\(387\) 0 0
\(388\) 23.7333i 1.20488i
\(389\) 30.4701 1.54490 0.772448 0.635078i \(-0.219032\pi\)
0.772448 + 0.635078i \(0.219032\pi\)
\(390\) 0 0
\(391\) 9.12399 0.461420
\(392\) 7.50961i 0.379292i
\(393\) 0 0
\(394\) −4.62666 −0.233088
\(395\) −5.14272 + 36.6035i −0.258758 + 1.84172i
\(396\) 0 0
\(397\) 4.97773i 0.249825i −0.992168 0.124912i \(-0.960135\pi\)
0.992168 0.124912i \(-0.0398650\pi\)
\(398\) 3.49240i 0.175058i
\(399\) 0 0
\(400\) −16.4795 4.72393i −0.823975 0.236196i
\(401\) 1.86665 0.0932159 0.0466079 0.998913i \(-0.485159\pi\)
0.0466079 + 0.998913i \(0.485159\pi\)
\(402\) 0 0
\(403\) 7.61285i 0.379223i
\(404\) −30.7841 −1.53157
\(405\) 0 0
\(406\) −1.98126 −0.0983285
\(407\) 5.80642i 0.287814i
\(408\) 0 0
\(409\) 3.63158 0.179570 0.0897851 0.995961i \(-0.471382\pi\)
0.0897851 + 0.995961i \(0.471382\pi\)
\(410\) −7.34614 1.03212i −0.362800 0.0509727i
\(411\) 0 0
\(412\) 32.6450i 1.60830i
\(413\) 1.51114i 0.0743582i
\(414\) 0 0
\(415\) 17.1842 + 2.41435i 0.843540 + 0.118516i
\(416\) −10.1476 −0.497529
\(417\) 0 0
\(418\) 0.755569i 0.0369561i
\(419\) 4.85728 0.237294 0.118647 0.992937i \(-0.462144\pi\)
0.118647 + 0.992937i \(0.462144\pi\)
\(420\) 0 0
\(421\) 22.6321 1.10302 0.551510 0.834169i \(-0.314052\pi\)
0.551510 + 0.834169i \(0.314052\pi\)
\(422\) 3.71456i 0.180822i
\(423\) 0 0
\(424\) 0.990632 0.0481093
\(425\) 3.14272 10.9634i 0.152444 0.531805i
\(426\) 0 0
\(427\) 6.54326i 0.316650i
\(428\) 25.8207i 1.24809i
\(429\) 0 0
\(430\) 1.03657 7.37778i 0.0499876 0.355788i
\(431\) −1.24443 −0.0599421 −0.0299711 0.999551i \(-0.509542\pi\)
−0.0299711 + 0.999551i \(0.509542\pi\)
\(432\) 0 0
\(433\) 16.0000i 0.768911i −0.923144 0.384455i \(-0.874389\pi\)
0.923144 0.384455i \(-0.125611\pi\)
\(434\) 0.736833 0.0353691
\(435\) 0 0
\(436\) 19.0321 0.911473
\(437\) 9.71456i 0.464710i
\(438\) 0 0
\(439\) 2.42864 0.115913 0.0579563 0.998319i \(-0.481542\pi\)
0.0579563 + 0.998319i \(0.481542\pi\)
\(440\) 2.68889 + 0.377784i 0.128188 + 0.0180102i
\(441\) 0 0
\(442\) 2.06022i 0.0979948i
\(443\) 31.0509i 1.47527i −0.675199 0.737635i \(-0.735942\pi\)
0.675199 0.737635i \(-0.264058\pi\)
\(444\) 0 0
\(445\) −1.90813 + 13.5812i −0.0904542 + 0.643811i
\(446\) −6.78415 −0.321239
\(447\) 0 0
\(448\) 5.21141i 0.246216i
\(449\) −37.3590 −1.76308 −0.881541 0.472107i \(-0.843494\pi\)
−0.881541 + 0.472107i \(0.843494\pi\)
\(450\) 0 0
\(451\) −10.6637 −0.502134
\(452\) 27.0923i 1.27432i
\(453\) 0 0
\(454\) −0.995078 −0.0467013
\(455\) 0.815792 5.80642i 0.0382449 0.272209i
\(456\) 0 0
\(457\) 8.73822i 0.408757i −0.978892 0.204378i \(-0.934483\pi\)
0.978892 0.204378i \(-0.0655172\pi\)
\(458\) 2.21633i 0.103562i
\(459\) 0 0
\(460\) 16.8573 + 2.36842i 0.785975 + 0.110428i
\(461\) −31.7877 −1.48050 −0.740250 0.672332i \(-0.765293\pi\)
−0.740250 + 0.672332i \(0.765293\pi\)
\(462\) 0 0
\(463\) 12.0919i 0.561957i 0.959714 + 0.280978i \(0.0906589\pi\)
−0.959714 + 0.280978i \(0.909341\pi\)
\(464\) 24.1748 1.12229
\(465\) 0 0
\(466\) −6.07451 −0.281396
\(467\) 15.3461i 0.710135i −0.934841 0.355067i \(-0.884458\pi\)
0.934841 0.355067i \(-0.115542\pi\)
\(468\) 0 0
\(469\) 11.6128 0.536231
\(470\) 0.0918659 0.653858i 0.00423746 0.0301602i
\(471\) 0 0
\(472\) 2.03164i 0.0935139i
\(473\) 10.7096i 0.492430i
\(474\) 0 0
\(475\) 11.6731 + 3.34614i 0.535597 + 0.153532i
\(476\) −3.92104 −0.179721
\(477\) 0 0
\(478\) 6.83854i 0.312788i
\(479\) 5.89829 0.269500 0.134750 0.990880i \(-0.456977\pi\)
0.134750 + 0.990880i \(0.456977\pi\)
\(480\) 0 0
\(481\) 16.8573 0.768626
\(482\) 1.66323i 0.0757579i
\(483\) 0 0
\(484\) 1.90321 0.0865096
\(485\) −27.6128 3.87955i −1.25383 0.176161i
\(486\) 0 0
\(487\) 31.3461i 1.42043i −0.703985 0.710215i \(-0.748598\pi\)
0.703985 0.710215i \(-0.251402\pi\)
\(488\) 8.79706i 0.398224i
\(489\) 0 0
\(490\) −4.26025 0.598558i −0.192459 0.0270401i
\(491\) 8.00000 0.361035 0.180517 0.983572i \(-0.442223\pi\)
0.180517 + 0.983572i \(0.442223\pi\)
\(492\) 0 0
\(493\) 16.0830i 0.724341i
\(494\) 2.19358 0.0986937
\(495\) 0 0
\(496\) −8.99063 −0.403691
\(497\) 8.38715i 0.376215i
\(498\) 0 0
\(499\) −15.1427 −0.677881 −0.338941 0.940808i \(-0.610069\pi\)
−0.338941 + 0.940808i \(0.610069\pi\)
\(500\) 8.65233 19.4400i 0.386944 0.869384i
\(501\) 0 0
\(502\) 7.39652i 0.330123i
\(503\) 26.0370i 1.16093i −0.814284 0.580467i \(-0.802870\pi\)
0.814284 0.580467i \(-0.197130\pi\)
\(504\) 0 0
\(505\) 5.03212 35.8163i 0.223926 1.59380i
\(506\) −1.24443 −0.0553217
\(507\) 0 0
\(508\) 20.9447i 0.929271i
\(509\) −24.5718 −1.08913 −0.544564 0.838719i \(-0.683305\pi\)
−0.544564 + 0.838719i \(0.683305\pi\)
\(510\) 0 0
\(511\) 5.11108 0.226101
\(512\) 20.3111i 0.897633i
\(513\) 0 0
\(514\) 2.53035 0.111609
\(515\) 37.9813 + 5.33630i 1.67365 + 0.235145i
\(516\) 0 0
\(517\) 0.949145i 0.0417433i
\(518\) 1.63158i 0.0716877i
\(519\) 0 0
\(520\) 1.09679 7.80642i 0.0480973 0.342334i
\(521\) 4.88892 0.214188 0.107094 0.994249i \(-0.465845\pi\)
0.107094 + 0.994249i \(0.465845\pi\)
\(522\) 0 0
\(523\) 4.22077i 0.184562i −0.995733 0.0922808i \(-0.970584\pi\)
0.995733 0.0922808i \(-0.0294157\pi\)
\(524\) −2.36842 −0.103465
\(525\) 0 0
\(526\) 7.12537 0.310681
\(527\) 5.98126i 0.260548i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) −0.0789589 + 0.561993i −0.00342976 + 0.0244114i
\(531\) 0 0
\(532\) 4.17484i 0.181002i
\(533\) 30.9590i 1.34098i
\(534\) 0 0
\(535\) 30.0415 + 4.22077i 1.29881 + 0.182480i
\(536\) 15.6128 0.674372
\(537\) 0 0
\(538\) 3.68196i 0.158741i
\(539\) −6.18421 −0.266373
\(540\) 0 0
\(541\) −13.6128 −0.585262 −0.292631 0.956225i \(-0.594531\pi\)
−0.292631 + 0.956225i \(0.594531\pi\)
\(542\) 4.63512i 0.199096i
\(543\) 0 0
\(544\) −7.97280 −0.341831
\(545\) −3.11108 + 22.1432i −0.133264 + 0.948510i
\(546\) 0 0
\(547\) 7.48394i 0.319990i 0.987118 + 0.159995i \(0.0511478\pi\)
−0.987118 + 0.159995i \(0.948852\pi\)
\(548\) 8.42864i 0.360054i
\(549\) 0 0
\(550\) −0.428639 + 1.49532i −0.0182772 + 0.0637605i
\(551\) −17.1240 −0.729506
\(552\) 0 0
\(553\) 14.9304i 0.634906i
\(554\) −8.60793 −0.365716
\(555\) 0 0
\(556\) −1.74620 −0.0740554
\(557\) 32.2908i 1.36821i −0.729385 0.684103i \(-0.760194\pi\)
0.729385 0.684103i \(-0.239806\pi\)
\(558\) 0 0
\(559\) −31.0923 −1.31507
\(560\) −6.85728 0.963435i −0.289773 0.0407126i
\(561\) 0 0
\(562\) 3.05086i 0.128693i
\(563\) 7.49378i 0.315825i 0.987453 + 0.157913i \(0.0504765\pi\)
−0.987453 + 0.157913i \(0.949524\pi\)
\(564\) 0 0
\(565\) 31.5210 + 4.42864i 1.32610 + 0.186314i
\(566\) 5.91258 0.248524
\(567\) 0 0
\(568\) 11.2761i 0.473134i
\(569\) −12.9491 −0.542856 −0.271428 0.962459i \(-0.587496\pi\)
−0.271428 + 0.962459i \(0.587496\pi\)
\(570\) 0 0
\(571\) −15.2859 −0.639696 −0.319848 0.947469i \(-0.603632\pi\)
−0.319848 + 0.947469i \(0.603632\pi\)
\(572\) 5.52543i 0.231030i
\(573\) 0 0
\(574\) −2.99646 −0.125070
\(575\) −5.51114 + 19.2257i −0.229830 + 0.801767i
\(576\) 0 0
\(577\) 28.4415i 1.18404i 0.805924 + 0.592019i \(0.201669\pi\)
−0.805924 + 0.592019i \(0.798331\pi\)
\(578\) 3.67016i 0.152658i
\(579\) 0 0
\(580\) −4.17484 + 29.7146i −0.173351 + 1.23383i
\(581\) 7.00937 0.290798
\(582\) 0 0
\(583\) 0.815792i 0.0337866i
\(584\) 6.87157 0.284348
\(585\) 0 0
\(586\) −9.56691 −0.395206
\(587\) 8.47013i 0.349600i 0.984604 + 0.174800i \(0.0559278\pi\)
−0.984604 + 0.174800i \(0.944072\pi\)
\(588\) 0 0
\(589\) 6.36842 0.262406
\(590\) 1.15257 + 0.161933i 0.0474504 + 0.00666669i
\(591\) 0 0
\(592\) 19.9081i 0.818219i
\(593\) 26.5763i 1.09136i 0.837995 + 0.545679i \(0.183728\pi\)
−0.837995 + 0.545679i \(0.816272\pi\)
\(594\) 0 0
\(595\) 0.640951 4.56199i 0.0262764 0.187023i
\(596\) 4.17484 0.171008
\(597\) 0 0
\(598\) 3.61285i 0.147740i
\(599\) −8.77430 −0.358508 −0.179254 0.983803i \(-0.557368\pi\)
−0.179254 + 0.983803i \(0.557368\pi\)
\(600\) 0 0
\(601\) −41.8163 −1.70572 −0.852861 0.522139i \(-0.825134\pi\)
−0.852861 + 0.522139i \(0.825134\pi\)
\(602\) 3.00937i 0.122653i
\(603\) 0 0
\(604\) −19.8479 −0.807600
\(605\) −0.311108 + 2.21432i −0.0126483 + 0.0900249i
\(606\) 0 0
\(607\) 29.9353i 1.21504i 0.794305 + 0.607519i \(0.207835\pi\)
−0.794305 + 0.607519i \(0.792165\pi\)
\(608\) 8.48886i 0.344269i
\(609\) 0 0
\(610\) 4.99063 + 0.701175i 0.202065 + 0.0283897i
\(611\) −2.75557 −0.111478
\(612\) 0 0
\(613\) 26.1289i 1.05534i −0.849450 0.527668i \(-0.823066\pi\)
0.849450 0.527668i \(-0.176934\pi\)
\(614\) −4.19802 −0.169418
\(615\) 0 0
\(616\) 1.09679 0.0441909
\(617\) 3.66323i 0.147476i 0.997278 + 0.0737380i \(0.0234928\pi\)
−0.997278 + 0.0737380i \(0.976507\pi\)
\(618\) 0 0
\(619\) −43.2958 −1.74020 −0.870102 0.492872i \(-0.835947\pi\)
−0.870102 + 0.492872i \(0.835947\pi\)
\(620\) 1.55262 11.0509i 0.0623549 0.443813i
\(621\) 0 0
\(622\) 5.46076i 0.218956i
\(623\) 5.53972i 0.221944i
\(624\) 0 0
\(625\) 21.2034 + 13.2444i 0.848137 + 0.529777i
\(626\) −4.47902 −0.179018
\(627\) 0 0
\(628\) 11.0509i 0.440977i
\(629\) 13.2444 0.528090
\(630\) 0 0
\(631\) 8.97773 0.357398 0.178699 0.983904i \(-0.442811\pi\)
0.178699 + 0.983904i \(0.442811\pi\)
\(632\) 20.0731i 0.798466i
\(633\) 0 0
\(634\) −9.16547 −0.364007
\(635\) 24.3684 + 3.42372i 0.967031 + 0.135866i
\(636\) 0 0
\(637\) 17.9541i 0.711366i
\(638\) 2.19358i 0.0868445i
\(639\) 0 0
\(640\) −19.4543 2.73329i −0.768999 0.108043i
\(641\) −9.21279 −0.363883 −0.181942 0.983309i \(-0.558238\pi\)
−0.181942 + 0.983309i \(0.558238\pi\)
\(642\) 0 0
\(643\) 16.3783i 0.645896i 0.946417 + 0.322948i \(0.104674\pi\)
−0.946417 + 0.322948i \(0.895326\pi\)
\(644\) 6.87601 0.270953
\(645\) 0 0
\(646\) 1.72345 0.0678082
\(647\) 9.80642i 0.385530i −0.981245 0.192765i \(-0.938254\pi\)
0.981245 0.192765i \(-0.0617456\pi\)
\(648\) 0 0
\(649\) 1.67307 0.0656738
\(650\) 4.34122 + 1.24443i 0.170277 + 0.0488106i
\(651\) 0 0
\(652\) 21.0321i 0.823681i
\(653\) 33.0736i 1.29427i 0.762375 + 0.647135i \(0.224033\pi\)
−0.762375 + 0.647135i \(0.775967\pi\)
\(654\) 0 0
\(655\) 0.387152 2.75557i 0.0151273 0.107669i
\(656\) 36.5620 1.42751
\(657\) 0 0
\(658\) 0.266706i 0.0103973i
\(659\) 34.1017 1.32841 0.664207 0.747549i \(-0.268769\pi\)
0.664207 + 0.747549i \(0.268769\pi\)
\(660\) 0 0
\(661\) −5.40943 −0.210402 −0.105201 0.994451i \(-0.533549\pi\)
−0.105201 + 0.994451i \(0.533549\pi\)
\(662\) 0.815792i 0.0317066i
\(663\) 0 0
\(664\) 9.42372 0.365711
\(665\) 4.85728 + 0.682439i 0.188357 + 0.0264638i
\(666\) 0 0
\(667\) 28.2034i 1.09204i
\(668\) 26.5575i 1.02754i
\(669\) 0 0
\(670\) −1.24443 + 8.85728i −0.0480766 + 0.342187i
\(671\) 7.24443 0.279668
\(672\) 0 0
\(673\) 24.1476i 0.930823i −0.885094 0.465412i \(-0.845906\pi\)
0.885094 0.465412i \(-0.154094\pi\)
\(674\) −1.55707 −0.0599761
\(675\) 0 0
\(676\) 8.70027 0.334626
\(677\) 26.2810i 1.01006i −0.863102 0.505030i \(-0.831481\pi\)
0.863102 0.505030i \(-0.168519\pi\)
\(678\) 0 0
\(679\) −11.2632 −0.432241
\(680\) 0.861725 6.13335i 0.0330456 0.235203i
\(681\) 0 0
\(682\) 0.815792i 0.0312383i
\(683\) 15.3176i 0.586110i 0.956096 + 0.293055i \(0.0946719\pi\)
−0.956096 + 0.293055i \(0.905328\pi\)
\(684\) 0 0
\(685\) 9.80642 + 1.37778i 0.374684 + 0.0526424i
\(686\) −3.70471 −0.141447
\(687\) 0 0
\(688\) 36.7195i 1.39992i
\(689\) 2.36842 0.0902295
\(690\) 0 0
\(691\) 15.0223 0.571474 0.285737 0.958308i \(-0.407762\pi\)
0.285737 + 0.958308i \(0.407762\pi\)
\(692\) 35.8622i 1.36328i
\(693\) 0 0
\(694\) 7.09679 0.269390
\(695\) 0.285442 2.03164i 0.0108274 0.0770646i
\(696\) 0 0
\(697\) 24.3239i 0.921332i
\(698\) 6.60348i 0.249945i
\(699\) 0 0
\(700\) 2.36842 8.26226i 0.0895177 0.312284i
\(701\) 19.9081 0.751920 0.375960 0.926636i \(-0.377313\pi\)
0.375960 + 0.926636i \(0.377313\pi\)
\(702\) 0 0
\(703\) 14.1017i 0.531856i
\(704\) −5.76986 −0.217460
\(705\) 0 0
\(706\) 2.23506 0.0841177
\(707\) 14.6093i 0.549440i
\(708\) 0 0
\(709\) 13.5081 0.507306 0.253653 0.967295i \(-0.418368\pi\)
0.253653 + 0.967295i \(0.418368\pi\)
\(710\) 6.39700 + 0.898766i 0.240075 + 0.0337301i
\(711\) 0 0
\(712\) 7.44785i 0.279120i
\(713\) 10.4889i 0.392811i
\(714\) 0 0
\(715\) 6.42864 + 0.903212i 0.240417 + 0.0337782i
\(716\) 9.24443 0.345481
\(717\) 0 0
\(718\) 4.38715i 0.163727i
\(719\) −16.0830 −0.599794 −0.299897 0.953972i \(-0.596952\pi\)
−0.299897 + 0.953972i \(0.596952\pi\)
\(720\) 0 0
\(721\) 15.4924 0.576967
\(722\) 4.07604i 0.151695i
\(723\) 0 0
\(724\) −31.9684 −1.18809
\(725\) −33.8894 9.71456i −1.25862 0.360790i
\(726\) 0 0
\(727\) 23.6128i 0.875752i −0.899035 0.437876i \(-0.855731\pi\)
0.899035 0.437876i \(-0.144269\pi\)
\(728\) 3.18421i 0.118015i
\(729\) 0 0
\(730\) −0.547702 + 3.89829i −0.0202714 + 0.144282i
\(731\) −24.4286 −0.903526
\(732\) 0 0
\(733\) 30.0459i 1.10977i −0.831926 0.554886i \(-0.812762\pi\)
0.831926 0.554886i \(-0.187238\pi\)
\(734\) −1.21585 −0.0448779
\(735\) 0 0
\(736\) 13.9813 0.515356
\(737\) 12.8573i 0.473604i
\(738\) 0 0
\(739\) 24.4099 0.897933 0.448966 0.893549i \(-0.351792\pi\)
0.448966 + 0.893549i \(0.351792\pi\)
\(740\) 24.4701 + 3.43801i 0.899540 + 0.126384i
\(741\) 0 0
\(742\) 0.229234i 0.00841546i
\(743\) 33.1798i 1.21725i 0.793459 + 0.608624i \(0.208278\pi\)
−0.793459 + 0.608624i \(0.791722\pi\)
\(744\) 0 0
\(745\) −0.682439 + 4.85728i −0.0250026 + 0.177957i
\(746\) −4.03704 −0.147807
\(747\) 0 0
\(748\) 4.34122i 0.158731i
\(749\) 12.2538 0.447744
\(750\) 0 0
\(751\) −22.5718 −0.823658 −0.411829 0.911261i \(-0.635110\pi\)
−0.411829 + 0.911261i \(0.635110\pi\)
\(752\) 3.25428i 0.118671i
\(753\) 0 0
\(754\) −6.36842 −0.231924
\(755\) 3.24443 23.0923i 0.118077 0.840416i
\(756\) 0 0
\(757\) 4.94914i 0.179880i 0.995947 + 0.0899399i \(0.0286675\pi\)
−0.995947 + 0.0899399i \(0.971333\pi\)
\(758\) 11.2257i 0.407736i
\(759\) 0 0
\(760\) 6.53035 + 0.917502i 0.236881 + 0.0332813i
\(761\) −14.6637 −0.531559 −0.265779 0.964034i \(-0.585629\pi\)
−0.265779 + 0.964034i \(0.585629\pi\)
\(762\) 0 0
\(763\) 9.03212i 0.326985i
\(764\) −32.0830 −1.16072
\(765\) 0 0
\(766\) 6.31402 0.228135
\(767\) 4.85728i 0.175386i
\(768\) 0 0
\(769\) 44.5718 1.60730 0.803651 0.595101i \(-0.202888\pi\)
0.803651 + 0.595101i \(0.202888\pi\)
\(770\) −0.0874201 + 0.622216i −0.00315040 + 0.0224231i
\(771\) 0 0
\(772\) 46.8528i 1.68627i
\(773\) 17.3145i 0.622759i 0.950286 + 0.311380i \(0.100791\pi\)
−0.950286 + 0.311380i \(0.899209\pi\)
\(774\) 0 0
\(775\) 12.6035 + 3.61285i 0.452730 + 0.129777i
\(776\) −15.1427 −0.543592
\(777\) 0 0
\(778\) 9.47949i 0.339856i
\(779\) −25.8983 −0.927903
\(780\) 0 0
\(781\) 9.28592 0.332276
\(782\) 2.83854i 0.101506i
\(783\) 0 0
\(784\) 21.2034 0.757265
\(785\) 12.8573 + 1.80642i 0.458896 + 0.0644740i
\(786\) 0 0
\(787\) 36.5161i 1.30166i 0.759225 + 0.650828i \(0.225578\pi\)
−0.759225 + 0.650828i \(0.774422\pi\)
\(788\) 28.3037i 1.00828i
\(789\) 0 0
\(790\) −11.3876 1.59994i −0.405154 0.0569233i
\(791\) 12.8573 0.457152
\(792\) 0 0
\(793\) 21.0321i 0.746872i
\(794\) 1.54861 0.0549581
\(795\) 0 0
\(796\) 21.3649 0.757258
\(797\) 14.3180i 0.507171i 0.967313 + 0.253585i \(0.0816099\pi\)
−0.967313 + 0.253585i \(0.918390\pi\)
\(798\) 0 0
\(799\) −2.16500 −0.0765921
\(800\) 4.81579 16.8000i 0.170264 0.593969i
\(801\) 0 0
\(802\) 0.580728i 0.0205062i
\(803\) 5.65878i 0.199694i
\(804\) 0 0
\(805\) −1.12399 + 8.00000i −0.0396153 + 0.281963i
\(806\) 2.36842 0.0834239
\(807\) 0 0
\(808\) 19.6414i 0.690983i
\(809\) 32.0544 1.12697 0.563486 0.826125i \(-0.309460\pi\)
0.563486 + 0.826125i \(0.309460\pi\)
\(810\) 0 0
\(811\) −8.44738 −0.296627 −0.148314 0.988940i \(-0.547385\pi\)
−0.148314 + 0.988940i \(0.547385\pi\)
\(812\) 12.1204i 0.425344i
\(813\) 0 0
\(814\) −1.80642 −0.0633151
\(815\) −24.4701 3.43801i −0.857151 0.120428i
\(816\) 0 0
\(817\) 26.0098i 0.909969i
\(818\) 1.12981i 0.0395030i
\(819\) 0 0
\(820\) −6.31402 + 44.9403i −0.220495 + 1.56938i
\(821\) −17.2159 −0.600837 −0.300419 0.953807i \(-0.597126\pi\)
−0.300419 + 0.953807i \(0.597126\pi\)
\(822\) 0 0
\(823\) 12.7654i 0.444974i −0.974936 0.222487i \(-0.928582\pi\)
0.974936 0.222487i \(-0.0714175\pi\)
\(824\) 20.8287 0.725602
\(825\) 0 0
\(826\) 0.470127 0.0163578
\(827\) 8.70964i 0.302864i −0.988468 0.151432i \(-0.951612\pi\)
0.988468 0.151432i \(-0.0483884\pi\)
\(828\) 0 0
\(829\) 8.32693 0.289206 0.144603 0.989490i \(-0.453809\pi\)
0.144603 + 0.989490i \(0.453809\pi\)
\(830\) −0.751123 + 5.34614i −0.0260719 + 0.185567i
\(831\) 0 0
\(832\) 16.7511i 0.580741i
\(833\) 14.1062i 0.488749i
\(834\) 0 0
\(835\) −30.8988 4.34122i −1.06930 0.150234i
\(836\) 4.62222 0.159863
\(837\) 0 0
\(838\) 1.51114i 0.0522014i
\(839\) 12.8988 0.445315 0.222657 0.974897i \(-0.428527\pi\)
0.222657 + 0.974897i \(0.428527\pi\)
\(840\) 0 0
\(841\) 20.7146 0.714295
\(842\) 7.04101i 0.242649i
\(843\) 0 0
\(844\) −22.7239 −0.782190
\(845\) −1.42219 + 10.1225i −0.0489247 + 0.348223i
\(846\) 0 0
\(847\) 0.903212i 0.0310347i
\(848\) 2.79706i 0.0960513i
\(849\) 0 0
\(850\) 3.41081 + 0.977725i 0.116990 + 0.0335357i
\(851\) −23.2257 −0.796167
\(852\) 0 0
\(853\) 19.6686i 0.673441i 0.941605 + 0.336720i \(0.109318\pi\)
−0.941605 + 0.336720i \(0.890682\pi\)
\(854\) 2.03566 0.0696588
\(855\) 0 0
\(856\) 16.4746 0.563089
\(857\) 31.8207i 1.08697i −0.839417 0.543487i \(-0.817104\pi\)
0.839417 0.543487i \(-0.182896\pi\)
\(858\) 0 0
\(859\) −27.8292 −0.949519 −0.474760 0.880116i \(-0.657465\pi\)
−0.474760 + 0.880116i \(0.657465\pi\)
\(860\) −45.1338 6.34122i −1.53905 0.216234i
\(861\) 0 0
\(862\) 0.387152i 0.0131865i
\(863\) 4.82870i 0.164371i −0.996617 0.0821854i \(-0.973810\pi\)
0.996617 0.0821854i \(-0.0261900\pi\)
\(864\) 0 0
\(865\) −41.7244 5.86220i −1.41867 0.199321i
\(866\) 4.97773 0.169150
\(867\) 0 0
\(868\) 4.50760i 0.152998i
\(869\) −16.5303 −0.560754
\(870\) 0 0
\(871\) 37.3274 1.26479
\(872\) 12.1432i 0.411221i
\(873\) 0 0
\(874\) −3.02227 −0.102230
\(875\) 9.22570 + 4.10616i 0.311885 + 0.138813i
\(876\) 0 0
\(877\) 21.9826i 0.742301i 0.928573 + 0.371151i \(0.121037\pi\)
−0.928573 + 0.371151i \(0.878963\pi\)
\(878\) 0.755569i 0.0254992i
\(879\) 0 0
\(880\) 1.06668 7.59210i 0.0359577 0.255930i
\(881\) 12.1017 0.407717 0.203858 0.979000i \(-0.434652\pi\)
0.203858 + 0.979000i \(0.434652\pi\)
\(882\) 0 0
\(883\) 8.73683i 0.294018i −0.989135 0.147009i \(-0.953035\pi\)
0.989135 0.147009i \(-0.0469646\pi\)
\(884\) −12.6035 −0.423901
\(885\) 0 0
\(886\) 9.66016 0.324540
\(887\) 19.8524i 0.666577i 0.942825 + 0.333288i \(0.108158\pi\)
−0.942825 + 0.333288i \(0.891842\pi\)
\(888\) 0 0
\(889\) 9.93978 0.333369
\(890\) −4.22522 0.593635i −0.141630 0.0198987i
\(891\) 0 0
\(892\) 41.5022i 1.38960i
\(893\) 2.30513i 0.0771383i
\(894\) 0 0
\(895\) −1.51114 + 10.7556i −0.0505118 + 0.359519i
\(896\) −7.93533 −0.265101
\(897\) 0 0
\(898\) 11.6227i 0.387854i
\(899\) −18.4889 −0.616638
\(900\) 0 0
\(901\) 1.86082 0.0619928
\(902\) 3.31756i 0.110463i
\(903\) 0 0
\(904\) 17.2859 0.574921
\(905\) 5.22570 37.1941i 0.173708 1.23637i
\(906\) 0 0
\(907\) 32.8287i 1.09006i 0.838417 + 0.545030i \(0.183482\pi\)
−0.838417 + 0.545030i \(0.816518\pi\)
\(908\) 6.08742i 0.202018i
\(909\) 0 0
\(910\) 1.80642 + 0.253799i 0.0598824 + 0.00841336i
\(911\) 16.3497 0.541689 0.270845 0.962623i \(-0.412697\pi\)
0.270845 + 0.962623i \(0.412697\pi\)
\(912\) 0 0
\(913\) 7.76049i 0.256835i
\(914\) 2.71853 0.0899209
\(915\) 0 0
\(916\) −13.5585 −0.447984
\(917\) 1.12399i 0.0371173i
\(918\) 0 0
\(919\) −20.0228 −0.660490 −0.330245 0.943895i \(-0.607131\pi\)
−0.330245 + 0.943895i \(0.607131\pi\)
\(920\) −1.51114 + 10.7556i −0.0498207 + 0.354601i
\(921\) 0 0
\(922\) 9.88940i 0.325690i
\(923\) 26.9590i 0.887366i
\(924\) 0 0
\(925\) −8.00000 + 27.9081i −0.263038 + 0.917614i
\(926\) −3.76187 −0.123623
\(927\) 0 0
\(928\) 24.6450i 0.809011i
\(929\) −43.5308 −1.42820 −0.714100 0.700044i \(-0.753164\pi\)
−0.714100 + 0.700044i \(0.753164\pi\)
\(930\) 0 0
\(931\) −15.0192 −0.492235
\(932\) 37.1610i 1.21725i
\(933\) 0 0
\(934\) 4.77430 0.156220
\(935\) 5.05086 + 0.709636i 0.165181 + 0.0232076i
\(936\) 0 0
\(937\) 43.4563i 1.41966i −0.704375 0.709828i \(-0.748773\pi\)
0.704375 0.709828i \(-0.251227\pi\)
\(938\) 3.61285i 0.117964i
\(939\) 0 0
\(940\) −4.00000 0.561993i −0.130466 0.0183302i
\(941\) 23.7244 0.773393 0.386697 0.922207i \(-0.373616\pi\)
0.386697 + 0.922207i \(0.373616\pi\)
\(942\) 0 0
\(943\) 42.6548i 1.38903i
\(944\) −5.73636 −0.186703
\(945\) 0 0
\(946\) 3.33185 0.108328
\(947\) 11.7047i 0.380352i 0.981750 + 0.190176i \(0.0609059\pi\)
−0.981750 + 0.190176i \(0.939094\pi\)
\(948\) 0 0
\(949\) 16.4286 0.533296
\(950\) −1.04101 + 3.63158i −0.0337748 + 0.117824i
\(951\) 0 0
\(952\) 2.50177i 0.0810828i
\(953\) 46.1258i 1.49416i −0.664733 0.747081i \(-0.731455\pi\)
0.664733 0.747081i \(-0.268545\pi\)
\(954\) 0 0
\(955\) 5.24443 37.3274i 0.169706 1.20789i
\(956\) −41.8350 −1.35304
\(957\) 0 0
\(958\) 1.83500i 0.0592863i
\(959\) 4.00000 0.129167
\(960\) 0 0
\(961\) −24.1240 −0.778193
\(962\) 5.24443i 0.169087i
\(963\) 0 0
\(964\) 10.1748 0.327710
\(965\) 54.5116 + 7.65878i 1.75479 + 0.246545i
\(966\) 0 0
\(967\) 17.0495i 0.548274i −0.961691 0.274137i \(-0.911608\pi\)
0.961691 0.274137i \(-0.0883922\pi\)
\(968\) 1.21432i 0.0390297i
\(969\) 0 0
\(970\) 1.20696 8.59057i 0.0387531 0.275827i
\(971\) 58.1847 1.86724 0.933618 0.358271i \(-0.116634\pi\)
0.933618 + 0.358271i \(0.116634\pi\)
\(972\) 0 0
\(973\) 0.828699i 0.0265669i
\(974\) 9.75203 0.312475
\(975\) 0 0
\(976\) −24.8385 −0.795062
\(977\) 51.7373i 1.65522i −0.561301 0.827612i \(-0.689699\pi\)
0.561301 0.827612i \(-0.310301\pi\)
\(978\) 0 0
\(979\) −6.13335 −0.196023
\(980\) −3.66170 + 26.0622i −0.116969 + 0.832527i
\(981\) 0 0
\(982\) 2.48886i 0.0794228i
\(983\) 26.3970i 0.841933i 0.907076 + 0.420967i \(0.138309\pi\)
−0.907076 + 0.420967i \(0.861691\pi\)
\(984\) 0 0
\(985\) −32.9304 4.62666i −1.04925 0.147418i
\(986\) −5.00354 −0.159345
\(987\) 0 0
\(988\) 13.4193i 0.426924i
\(989\) 42.8385 1.36219
\(990\) 0 0
\(991\) −23.0923 −0.733552 −0.366776 0.930309i \(-0.619539\pi\)
−0.366776 + 0.930309i \(0.619539\pi\)
\(992\) 9.16547i 0.291004i
\(993\) 0 0
\(994\) 2.60931 0.0827622
\(995\) −3.49240 + 24.8573i −0.110717 + 0.788029i
\(996\) 0 0
\(997\) 12.9131i 0.408961i −0.978871 0.204480i \(-0.934450\pi\)
0.978871 0.204480i \(-0.0655504\pi\)
\(998\) 4.71102i 0.149125i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.2.c.e.199.4 6
3.2 odd 2 165.2.c.b.34.3 6
5.2 odd 4 2475.2.a.ba.1.2 3
5.3 odd 4 2475.2.a.bc.1.2 3
5.4 even 2 inner 495.2.c.e.199.3 6
12.11 even 2 2640.2.d.h.529.2 6
15.2 even 4 825.2.a.l.1.2 3
15.8 even 4 825.2.a.j.1.2 3
15.14 odd 2 165.2.c.b.34.4 yes 6
33.32 even 2 1815.2.c.e.364.4 6
60.59 even 2 2640.2.d.h.529.5 6
165.32 odd 4 9075.2.a.cg.1.2 3
165.98 odd 4 9075.2.a.ch.1.2 3
165.164 even 2 1815.2.c.e.364.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.2.c.b.34.3 6 3.2 odd 2
165.2.c.b.34.4 yes 6 15.14 odd 2
495.2.c.e.199.3 6 5.4 even 2 inner
495.2.c.e.199.4 6 1.1 even 1 trivial
825.2.a.j.1.2 3 15.8 even 4
825.2.a.l.1.2 3 15.2 even 4
1815.2.c.e.364.3 6 165.164 even 2
1815.2.c.e.364.4 6 33.32 even 2
2475.2.a.ba.1.2 3 5.2 odd 4
2475.2.a.bc.1.2 3 5.3 odd 4
2640.2.d.h.529.2 6 12.11 even 2
2640.2.d.h.529.5 6 60.59 even 2
9075.2.a.cg.1.2 3 165.32 odd 4
9075.2.a.ch.1.2 3 165.98 odd 4