Properties

Label 4950.2.c.ba.199.1
Level 49504950
Weight 22
Character 4950.199
Analytic conductor 39.52639.526
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4950,2,Mod(199,4950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4950, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4950.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4950=2325211 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4950.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 39.525949000539.5259490005
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 550)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 199.1
Root 1.00000i1.00000i of defining polynomial
Character χ\chi == 4950.199
Dual form 4950.2.c.ba.199.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq21.00000q4+4.00000iq7+1.00000iq8+1.00000q11+5.00000iq13+4.00000q14+1.00000q16+7.00000q191.00000iq223.00000iq23+5.00000q264.00000iq28+3.00000q29+5.00000q311.00000iq32+4.00000iq377.00000iq3812.0000q41+5.00000iq431.00000q443.00000q469.00000q495.00000iq526.00000iq534.00000q563.00000iq58+12.0000q5910.0000q615.00000iq621.00000q6414.0000iq673.00000q71+8.00000iq73+4.00000q747.00000q76+4.00000iq77+4.00000q79+12.0000iq82+15.0000iq83+5.00000q86+1.00000iq88+3.00000q8920.0000q91+3.00000iq92+13.0000iq97+9.00000iq98+O(q100)q-1.00000i q^{2} -1.00000 q^{4} +4.00000i q^{7} +1.00000i q^{8} +1.00000 q^{11} +5.00000i q^{13} +4.00000 q^{14} +1.00000 q^{16} +7.00000 q^{19} -1.00000i q^{22} -3.00000i q^{23} +5.00000 q^{26} -4.00000i q^{28} +3.00000 q^{29} +5.00000 q^{31} -1.00000i q^{32} +4.00000i q^{37} -7.00000i q^{38} -12.0000 q^{41} +5.00000i q^{43} -1.00000 q^{44} -3.00000 q^{46} -9.00000 q^{49} -5.00000i q^{52} -6.00000i q^{53} -4.00000 q^{56} -3.00000i q^{58} +12.0000 q^{59} -10.0000 q^{61} -5.00000i q^{62} -1.00000 q^{64} -14.0000i q^{67} -3.00000 q^{71} +8.00000i q^{73} +4.00000 q^{74} -7.00000 q^{76} +4.00000i q^{77} +4.00000 q^{79} +12.0000i q^{82} +15.0000i q^{83} +5.00000 q^{86} +1.00000i q^{88} +3.00000 q^{89} -20.0000 q^{91} +3.00000i q^{92} +13.0000i q^{97} +9.00000i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q4+2q11+8q14+2q16+14q19+10q26+6q29+10q3124q412q446q4618q498q56+24q5920q612q646q71+8q74+40q91+O(q100) 2 q - 2 q^{4} + 2 q^{11} + 8 q^{14} + 2 q^{16} + 14 q^{19} + 10 q^{26} + 6 q^{29} + 10 q^{31} - 24 q^{41} - 2 q^{44} - 6 q^{46} - 18 q^{49} - 8 q^{56} + 24 q^{59} - 20 q^{61} - 2 q^{64} - 6 q^{71} + 8 q^{74}+ \cdots - 40 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4950Z)×\left(\mathbb{Z}/4950\mathbb{Z}\right)^\times.

nn 551551 23772377 45014501
χ(n)\chi(n) 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 − 1.00000i − 0.707107i
33 0 0
44 −1.00000 −0.500000
55 0 0
66 0 0
77 4.00000i 1.51186i 0.654654 + 0.755929i 0.272814π0.272814\pi
−0.654654 + 0.755929i 0.727186π0.727186\pi
88 1.00000i 0.353553i
99 0 0
1010 0 0
1111 1.00000 0.301511
1212 0 0
1313 5.00000i 1.38675i 0.720577 + 0.693375i 0.243877π0.243877\pi
−0.720577 + 0.693375i 0.756123π0.756123\pi
1414 4.00000 1.06904
1515 0 0
1616 1.00000 0.250000
1717 0 0 1.00000 00
−1.00000 π\pi
1818 0 0
1919 7.00000 1.60591 0.802955 0.596040i 0.203260π-0.203260\pi
0.802955 + 0.596040i 0.203260π0.203260\pi
2020 0 0
2121 0 0
2222 − 1.00000i − 0.213201i
2323 − 3.00000i − 0.625543i −0.949828 0.312772i 0.898743π-0.898743\pi
0.949828 0.312772i 0.101257π-0.101257\pi
2424 0 0
2525 0 0
2626 5.00000 0.980581
2727 0 0
2828 − 4.00000i − 0.755929i
2929 3.00000 0.557086 0.278543 0.960424i 0.410149π-0.410149\pi
0.278543 + 0.960424i 0.410149π0.410149\pi
3030 0 0
3131 5.00000 0.898027 0.449013 0.893525i 0.351776π-0.351776\pi
0.449013 + 0.893525i 0.351776π0.351776\pi
3232 − 1.00000i − 0.176777i
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 4.00000i 0.657596i 0.944400 + 0.328798i 0.106644π0.106644\pi
−0.944400 + 0.328798i 0.893356π0.893356\pi
3838 − 7.00000i − 1.13555i
3939 0 0
4040 0 0
4141 −12.0000 −1.87409 −0.937043 0.349215i 0.886448π-0.886448\pi
−0.937043 + 0.349215i 0.886448π0.886448\pi
4242 0 0
4343 5.00000i 0.762493i 0.924473 + 0.381246i 0.124505π0.124505\pi
−0.924473 + 0.381246i 0.875495π0.875495\pi
4444 −1.00000 −0.150756
4545 0 0
4646 −3.00000 −0.442326
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 −9.00000 −1.28571
5050 0 0
5151 0 0
5252 − 5.00000i − 0.693375i
5353 − 6.00000i − 0.824163i −0.911147 0.412082i 0.864802π-0.864802\pi
0.911147 0.412082i 0.135198π-0.135198\pi
5454 0 0
5555 0 0
5656 −4.00000 −0.534522
5757 0 0
5858 − 3.00000i − 0.393919i
5959 12.0000 1.56227 0.781133 0.624364i 0.214642π-0.214642\pi
0.781133 + 0.624364i 0.214642π0.214642\pi
6060 0 0
6161 −10.0000 −1.28037 −0.640184 0.768221i 0.721142π-0.721142\pi
−0.640184 + 0.768221i 0.721142π0.721142\pi
6262 − 5.00000i − 0.635001i
6363 0 0
6464 −1.00000 −0.125000
6565 0 0
6666 0 0
6767 − 14.0000i − 1.71037i −0.518321 0.855186i 0.673443π-0.673443\pi
0.518321 0.855186i 0.326557π-0.326557\pi
6868 0 0
6969 0 0
7070 0 0
7171 −3.00000 −0.356034 −0.178017 0.984027i 0.556968π-0.556968\pi
−0.178017 + 0.984027i 0.556968π0.556968\pi
7272 0 0
7373 8.00000i 0.936329i 0.883641 + 0.468165i 0.155085π0.155085\pi
−0.883641 + 0.468165i 0.844915π0.844915\pi
7474 4.00000 0.464991
7575 0 0
7676 −7.00000 −0.802955
7777 4.00000i 0.455842i
7878 0 0
7979 4.00000 0.450035 0.225018 0.974355i 0.427756π-0.427756\pi
0.225018 + 0.974355i 0.427756π0.427756\pi
8080 0 0
8181 0 0
8282 12.0000i 1.32518i
8383 15.0000i 1.64646i 0.567705 + 0.823232i 0.307831π0.307831\pi
−0.567705 + 0.823232i 0.692169π0.692169\pi
8484 0 0
8585 0 0
8686 5.00000 0.539164
8787 0 0
8888 1.00000i 0.106600i
8989 3.00000 0.317999 0.159000 0.987279i 0.449173π-0.449173\pi
0.159000 + 0.987279i 0.449173π0.449173\pi
9090 0 0
9191 −20.0000 −2.09657
9292 3.00000i 0.312772i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 13.0000i 1.31995i 0.751288 + 0.659975i 0.229433π0.229433\pi
−0.751288 + 0.659975i 0.770567π0.770567\pi
9898 9.00000i 0.909137i
9999 0 0
100100 0 0
101101 9.00000 0.895533 0.447767 0.894150i 0.352219π-0.352219\pi
0.447767 + 0.894150i 0.352219π0.352219\pi
102102 0 0
103103 − 7.00000i − 0.689730i −0.938652 0.344865i 0.887925π-0.887925\pi
0.938652 0.344865i 0.112075π-0.112075\pi
104104 −5.00000 −0.490290
105105 0 0
106106 −6.00000 −0.582772
107107 15.0000i 1.45010i 0.688694 + 0.725052i 0.258184π0.258184\pi
−0.688694 + 0.725052i 0.741816π0.741816\pi
108108 0 0
109109 −5.00000 −0.478913 −0.239457 0.970907i 0.576969π-0.576969\pi
−0.239457 + 0.970907i 0.576969π0.576969\pi
110110 0 0
111111 0 0
112112 4.00000i 0.377964i
113113 6.00000i 0.564433i 0.959351 + 0.282216i 0.0910696π0.0910696\pi
−0.959351 + 0.282216i 0.908930π0.908930\pi
114114 0 0
115115 0 0
116116 −3.00000 −0.278543
117117 0 0
118118 − 12.0000i − 1.10469i
119119 0 0
120120 0 0
121121 1.00000 0.0909091
122122 10.0000i 0.905357i
123123 0 0
124124 −5.00000 −0.449013
125125 0 0
126126 0 0
127127 16.0000i 1.41977i 0.704317 + 0.709885i 0.251253π0.251253\pi
−0.704317 + 0.709885i 0.748747π0.748747\pi
128128 1.00000i 0.0883883i
129129 0 0
130130 0 0
131131 −21.0000 −1.83478 −0.917389 0.397991i 0.869707π-0.869707\pi
−0.917389 + 0.397991i 0.869707π0.869707\pi
132132 0 0
133133 28.0000i 2.42791i
134134 −14.0000 −1.20942
135135 0 0
136136 0 0
137137 3.00000i 0.256307i 0.991754 + 0.128154i 0.0409051π0.0409051\pi
−0.991754 + 0.128154i 0.959095π0.959095\pi
138138 0 0
139139 13.0000 1.10265 0.551323 0.834292i 0.314123π-0.314123\pi
0.551323 + 0.834292i 0.314123π0.314123\pi
140140 0 0
141141 0 0
142142 3.00000i 0.251754i
143143 5.00000i 0.418121i
144144 0 0
145145 0 0
146146 8.00000 0.662085
147147 0 0
148148 − 4.00000i − 0.328798i
149149 −6.00000 −0.491539 −0.245770 0.969328i 0.579041π-0.579041\pi
−0.245770 + 0.969328i 0.579041π0.579041\pi
150150 0 0
151151 −16.0000 −1.30206 −0.651031 0.759051i 0.725663π-0.725663\pi
−0.651031 + 0.759051i 0.725663π0.725663\pi
152152 7.00000i 0.567775i
153153 0 0
154154 4.00000 0.322329
155155 0 0
156156 0 0
157157 − 14.0000i − 1.11732i −0.829396 0.558661i 0.811315π-0.811315\pi
0.829396 0.558661i 0.188685π-0.188685\pi
158158 − 4.00000i − 0.318223i
159159 0 0
160160 0 0
161161 12.0000 0.945732
162162 0 0
163163 − 16.0000i − 1.25322i −0.779334 0.626608i 0.784443π-0.784443\pi
0.779334 0.626608i 0.215557π-0.215557\pi
164164 12.0000 0.937043
165165 0 0
166166 15.0000 1.16423
167167 24.0000i 1.85718i 0.371113 + 0.928588i 0.378976π0.378976\pi
−0.371113 + 0.928588i 0.621024π0.621024\pi
168168 0 0
169169 −12.0000 −0.923077
170170 0 0
171171 0 0
172172 − 5.00000i − 0.381246i
173173 − 21.0000i − 1.59660i −0.602260 0.798300i 0.705733π-0.705733\pi
0.602260 0.798300i 0.294267π-0.294267\pi
174174 0 0
175175 0 0
176176 1.00000 0.0753778
177177 0 0
178178 − 3.00000i − 0.224860i
179179 12.0000 0.896922 0.448461 0.893802i 0.351972π-0.351972\pi
0.448461 + 0.893802i 0.351972π0.351972\pi
180180 0 0
181181 20.0000 1.48659 0.743294 0.668965i 0.233262π-0.233262\pi
0.743294 + 0.668965i 0.233262π0.233262\pi
182182 20.0000i 1.48250i
183183 0 0
184184 3.00000 0.221163
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 −15.0000 −1.08536 −0.542681 0.839939i 0.682591π-0.682591\pi
−0.542681 + 0.839939i 0.682591π0.682591\pi
192192 0 0
193193 − 4.00000i − 0.287926i −0.989583 0.143963i 0.954015π-0.954015\pi
0.989583 0.143963i 0.0459847π-0.0459847\pi
194194 13.0000 0.933346
195195 0 0
196196 9.00000 0.642857
197197 3.00000i 0.213741i 0.994273 + 0.106871i 0.0340831π0.0340831\pi
−0.994273 + 0.106871i 0.965917π0.965917\pi
198198 0 0
199199 −11.0000 −0.779769 −0.389885 0.920864i 0.627485π-0.627485\pi
−0.389885 + 0.920864i 0.627485π0.627485\pi
200200 0 0
201201 0 0
202202 − 9.00000i − 0.633238i
203203 12.0000i 0.842235i
204204 0 0
205205 0 0
206206 −7.00000 −0.487713
207207 0 0
208208 5.00000i 0.346688i
209209 7.00000 0.484200
210210 0 0
211211 −4.00000 −0.275371 −0.137686 0.990476i 0.543966π-0.543966\pi
−0.137686 + 0.990476i 0.543966π0.543966\pi
212212 6.00000i 0.412082i
213213 0 0
214214 15.0000 1.02538
215215 0 0
216216 0 0
217217 20.0000i 1.35769i
218218 5.00000i 0.338643i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 8.00000i 0.535720i 0.963458 + 0.267860i 0.0863164π0.0863164\pi
−0.963458 + 0.267860i 0.913684π0.913684\pi
224224 4.00000 0.267261
225225 0 0
226226 6.00000 0.399114
227227 − 3.00000i − 0.199117i −0.995032 0.0995585i 0.968257π-0.968257\pi
0.995032 0.0995585i 0.0317430π-0.0317430\pi
228228 0 0
229229 −2.00000 −0.132164 −0.0660819 0.997814i 0.521050π-0.521050\pi
−0.0660819 + 0.997814i 0.521050π0.521050\pi
230230 0 0
231231 0 0
232232 3.00000i 0.196960i
233233 18.0000i 1.17922i 0.807688 + 0.589610i 0.200718π0.200718\pi
−0.807688 + 0.589610i 0.799282π0.799282\pi
234234 0 0
235235 0 0
236236 −12.0000 −0.781133
237237 0 0
238238 0 0
239239 −6.00000 −0.388108 −0.194054 0.980991i 0.562164π-0.562164\pi
−0.194054 + 0.980991i 0.562164π0.562164\pi
240240 0 0
241241 −10.0000 −0.644157 −0.322078 0.946713i 0.604381π-0.604381\pi
−0.322078 + 0.946713i 0.604381π0.604381\pi
242242 − 1.00000i − 0.0642824i
243243 0 0
244244 10.0000 0.640184
245245 0 0
246246 0 0
247247 35.0000i 2.22700i
248248 5.00000i 0.317500i
249249 0 0
250250 0 0
251251 −24.0000 −1.51487 −0.757433 0.652913i 0.773547π-0.773547\pi
−0.757433 + 0.652913i 0.773547π0.773547\pi
252252 0 0
253253 − 3.00000i − 0.188608i
254254 16.0000 1.00393
255255 0 0
256256 1.00000 0.0625000
257257 − 9.00000i − 0.561405i −0.959795 0.280702i 0.909433π-0.909433\pi
0.959795 0.280702i 0.0905674π-0.0905674\pi
258258 0 0
259259 −16.0000 −0.994192
260260 0 0
261261 0 0
262262 21.0000i 1.29738i
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 0 0
266266 28.0000 1.71679
267267 0 0
268268 14.0000i 0.855186i
269269 30.0000 1.82913 0.914566 0.404436i 0.132532π-0.132532\pi
0.914566 + 0.404436i 0.132532π0.132532\pi
270270 0 0
271271 2.00000 0.121491 0.0607457 0.998153i 0.480652π-0.480652\pi
0.0607457 + 0.998153i 0.480652π0.480652\pi
272272 0 0
273273 0 0
274274 3.00000 0.181237
275275 0 0
276276 0 0
277277 − 26.0000i − 1.56219i −0.624413 0.781094i 0.714662π-0.714662\pi
0.624413 0.781094i 0.285338π-0.285338\pi
278278 − 13.0000i − 0.779688i
279279 0 0
280280 0 0
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 − 4.00000i − 0.237775i −0.992908 0.118888i 0.962067π-0.962067\pi
0.992908 0.118888i 0.0379328π-0.0379328\pi
284284 3.00000 0.178017
285285 0 0
286286 5.00000 0.295656
287287 − 48.0000i − 2.83335i
288288 0 0
289289 17.0000 1.00000
290290 0 0
291291 0 0
292292 − 8.00000i − 0.468165i
293293 18.0000i 1.05157i 0.850617 + 0.525786i 0.176229π0.176229\pi
−0.850617 + 0.525786i 0.823771π0.823771\pi
294294 0 0
295295 0 0
296296 −4.00000 −0.232495
297297 0 0
298298 6.00000i 0.347571i
299299 15.0000 0.867472
300300 0 0
301301 −20.0000 −1.15278
302302 16.0000i 0.920697i
303303 0 0
304304 7.00000 0.401478
305305 0 0
306306 0 0
307307 16.0000i 0.913168i 0.889680 + 0.456584i 0.150927π0.150927\pi
−0.889680 + 0.456584i 0.849073π0.849073\pi
308308 − 4.00000i − 0.227921i
309309 0 0
310310 0 0
311311 −3.00000 −0.170114 −0.0850572 0.996376i 0.527107π-0.527107\pi
−0.0850572 + 0.996376i 0.527107π0.527107\pi
312312 0 0
313313 26.0000i 1.46961i 0.678280 + 0.734803i 0.262726π0.262726\pi
−0.678280 + 0.734803i 0.737274π0.737274\pi
314314 −14.0000 −0.790066
315315 0 0
316316 −4.00000 −0.225018
317317 12.0000i 0.673987i 0.941507 + 0.336994i 0.109410π0.109410\pi
−0.941507 + 0.336994i 0.890590π0.890590\pi
318318 0 0
319319 3.00000 0.167968
320320 0 0
321321 0 0
322322 − 12.0000i − 0.668734i
323323 0 0
324324 0 0
325325 0 0
326326 −16.0000 −0.886158
327327 0 0
328328 − 12.0000i − 0.662589i
329329 0 0
330330 0 0
331331 32.0000 1.75888 0.879440 0.476011i 0.157918π-0.157918\pi
0.879440 + 0.476011i 0.157918π0.157918\pi
332332 − 15.0000i − 0.823232i
333333 0 0
334334 24.0000 1.31322
335335 0 0
336336 0 0
337337 − 14.0000i − 0.762629i −0.924445 0.381314i 0.875472π-0.875472\pi
0.924445 0.381314i 0.124528π-0.124528\pi
338338 12.0000i 0.652714i
339339 0 0
340340 0 0
341341 5.00000 0.270765
342342 0 0
343343 − 8.00000i − 0.431959i
344344 −5.00000 −0.269582
345345 0 0
346346 −21.0000 −1.12897
347347 − 12.0000i − 0.644194i −0.946707 0.322097i 0.895612π-0.895612\pi
0.946707 0.322097i 0.104388π-0.104388\pi
348348 0 0
349349 −11.0000 −0.588817 −0.294408 0.955680i 0.595123π-0.595123\pi
−0.294408 + 0.955680i 0.595123π0.595123\pi
350350 0 0
351351 0 0
352352 − 1.00000i − 0.0533002i
353353 9.00000i 0.479022i 0.970894 + 0.239511i 0.0769871π0.0769871\pi
−0.970894 + 0.239511i 0.923013π0.923013\pi
354354 0 0
355355 0 0
356356 −3.00000 −0.159000
357357 0 0
358358 − 12.0000i − 0.634220i
359359 −24.0000 −1.26667 −0.633336 0.773877i 0.718315π-0.718315\pi
−0.633336 + 0.773877i 0.718315π0.718315\pi
360360 0 0
361361 30.0000 1.57895
362362 − 20.0000i − 1.05118i
363363 0 0
364364 20.0000 1.04828
365365 0 0
366366 0 0
367367 − 17.0000i − 0.887393i −0.896177 0.443696i 0.853667π-0.853667\pi
0.896177 0.443696i 0.146333π-0.146333\pi
368368 − 3.00000i − 0.156386i
369369 0 0
370370 0 0
371371 24.0000 1.24602
372372 0 0
373373 2.00000i 0.103556i 0.998659 + 0.0517780i 0.0164888π0.0164888\pi
−0.998659 + 0.0517780i 0.983511π0.983511\pi
374374 0 0
375375 0 0
376376 0 0
377377 15.0000i 0.772539i
378378 0 0
379379 −2.00000 −0.102733 −0.0513665 0.998680i 0.516358π-0.516358\pi
−0.0513665 + 0.998680i 0.516358π0.516358\pi
380380 0 0
381381 0 0
382382 15.0000i 0.767467i
383383 3.00000i 0.153293i 0.997058 + 0.0766464i 0.0244213π0.0244213\pi
−0.997058 + 0.0766464i 0.975579π0.975579\pi
384384 0 0
385385 0 0
386386 −4.00000 −0.203595
387387 0 0
388388 − 13.0000i − 0.659975i
389389 −24.0000 −1.21685 −0.608424 0.793612i 0.708198π-0.708198\pi
−0.608424 + 0.793612i 0.708198π0.708198\pi
390390 0 0
391391 0 0
392392 − 9.00000i − 0.454569i
393393 0 0
394394 3.00000 0.151138
395395 0 0
396396 0 0
397397 − 14.0000i − 0.702640i −0.936255 0.351320i 0.885733π-0.885733\pi
0.936255 0.351320i 0.114267π-0.114267\pi
398398 11.0000i 0.551380i
399399 0 0
400400 0 0
401401 9.00000 0.449439 0.224719 0.974424i 0.427853π-0.427853\pi
0.224719 + 0.974424i 0.427853π0.427853\pi
402402 0 0
403403 25.0000i 1.24534i
404404 −9.00000 −0.447767
405405 0 0
406406 12.0000 0.595550
407407 4.00000i 0.198273i
408408 0 0
409409 4.00000 0.197787 0.0988936 0.995098i 0.468470π-0.468470\pi
0.0988936 + 0.995098i 0.468470π0.468470\pi
410410 0 0
411411 0 0
412412 7.00000i 0.344865i
413413 48.0000i 2.36193i
414414 0 0
415415 0 0
416416 5.00000 0.245145
417417 0 0
418418 − 7.00000i − 0.342381i
419419 30.0000 1.46560 0.732798 0.680446i 0.238214π-0.238214\pi
0.732798 + 0.680446i 0.238214π0.238214\pi
420420 0 0
421421 26.0000 1.26716 0.633581 0.773676i 0.281584π-0.281584\pi
0.633581 + 0.773676i 0.281584π0.281584\pi
422422 4.00000i 0.194717i
423423 0 0
424424 6.00000 0.291386
425425 0 0
426426 0 0
427427 − 40.0000i − 1.93574i
428428 − 15.0000i − 0.725052i
429429 0 0
430430 0 0
431431 −12.0000 −0.578020 −0.289010 0.957326i 0.593326π-0.593326\pi
−0.289010 + 0.957326i 0.593326π0.593326\pi
432432 0 0
433433 11.0000i 0.528626i 0.964437 + 0.264313i 0.0851452π0.0851452\pi
−0.964437 + 0.264313i 0.914855π0.914855\pi
434434 20.0000 0.960031
435435 0 0
436436 5.00000 0.239457
437437 − 21.0000i − 1.00457i
438438 0 0
439439 −20.0000 −0.954548 −0.477274 0.878755i 0.658375π-0.658375\pi
−0.477274 + 0.878755i 0.658375π0.658375\pi
440440 0 0
441441 0 0
442442 0 0
443443 24.0000i 1.14027i 0.821549 + 0.570137i 0.193110π0.193110\pi
−0.821549 + 0.570137i 0.806890π0.806890\pi
444444 0 0
445445 0 0
446446 8.00000 0.378811
447447 0 0
448448 − 4.00000i − 0.188982i
449449 −27.0000 −1.27421 −0.637104 0.770778i 0.719868π-0.719868\pi
−0.637104 + 0.770778i 0.719868π0.719868\pi
450450 0 0
451451 −12.0000 −0.565058
452452 − 6.00000i − 0.282216i
453453 0 0
454454 −3.00000 −0.140797
455455 0 0
456456 0 0
457457 28.0000i 1.30978i 0.755722 + 0.654892i 0.227286π0.227286\pi
−0.755722 + 0.654892i 0.772714π0.772714\pi
458458 2.00000i 0.0934539i
459459 0 0
460460 0 0
461461 6.00000 0.279448 0.139724 0.990190i 0.455378π-0.455378\pi
0.139724 + 0.990190i 0.455378π0.455378\pi
462462 0 0
463463 − 13.0000i − 0.604161i −0.953282 0.302081i 0.902319π-0.902319\pi
0.953282 0.302081i 0.0976812π-0.0976812\pi
464464 3.00000 0.139272
465465 0 0
466466 18.0000 0.833834
467467 18.0000i 0.832941i 0.909149 + 0.416470i 0.136733π0.136733\pi
−0.909149 + 0.416470i 0.863267π0.863267\pi
468468 0 0
469469 56.0000 2.58584
470470 0 0
471471 0 0
472472 12.0000i 0.552345i
473473 5.00000i 0.229900i
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 6.00000i 0.274434i
479479 6.00000 0.274147 0.137073 0.990561i 0.456230π-0.456230\pi
0.137073 + 0.990561i 0.456230π0.456230\pi
480480 0 0
481481 −20.0000 −0.911922
482482 10.0000i 0.455488i
483483 0 0
484484 −1.00000 −0.0454545
485485 0 0
486486 0 0
487487 − 29.0000i − 1.31412i −0.753840 0.657058i 0.771801π-0.771801\pi
0.753840 0.657058i 0.228199π-0.228199\pi
488488 − 10.0000i − 0.452679i
489489 0 0
490490 0 0
491491 −9.00000 −0.406164 −0.203082 0.979162i 0.565096π-0.565096\pi
−0.203082 + 0.979162i 0.565096π0.565096\pi
492492 0 0
493493 0 0
494494 35.0000 1.57472
495495 0 0
496496 5.00000 0.224507
497497 − 12.0000i − 0.538274i
498498 0 0
499499 10.0000 0.447661 0.223831 0.974628i 0.428144π-0.428144\pi
0.223831 + 0.974628i 0.428144π0.428144\pi
500500 0 0
501501 0 0
502502 24.0000i 1.07117i
503503 6.00000i 0.267527i 0.991013 + 0.133763i 0.0427062π0.0427062\pi
−0.991013 + 0.133763i 0.957294π0.957294\pi
504504 0 0
505505 0 0
506506 −3.00000 −0.133366
507507 0 0
508508 − 16.0000i − 0.709885i
509509 6.00000 0.265945 0.132973 0.991120i 0.457548π-0.457548\pi
0.132973 + 0.991120i 0.457548π0.457548\pi
510510 0 0
511511 −32.0000 −1.41560
512512 − 1.00000i − 0.0441942i
513513 0 0
514514 −9.00000 −0.396973
515515 0 0
516516 0 0
517517 0 0
518518 16.0000i 0.703000i
519519 0 0
520520 0 0
521521 33.0000 1.44576 0.722878 0.690976i 0.242819π-0.242819\pi
0.722878 + 0.690976i 0.242819π0.242819\pi
522522 0 0
523523 11.0000i 0.480996i 0.970650 + 0.240498i 0.0773108π0.0773108\pi
−0.970650 + 0.240498i 0.922689π0.922689\pi
524524 21.0000 0.917389
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 14.0000 0.608696
530530 0 0
531531 0 0
532532 − 28.0000i − 1.21395i
533533 − 60.0000i − 2.59889i
534534 0 0
535535 0 0
536536 14.0000 0.604708
537537 0 0
538538 − 30.0000i − 1.29339i
539539 −9.00000 −0.387657
540540 0 0
541541 −31.0000 −1.33279 −0.666397 0.745597i 0.732164π-0.732164\pi
−0.666397 + 0.745597i 0.732164π0.732164\pi
542542 − 2.00000i − 0.0859074i
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 1.00000i 0.0427569i 0.999771 + 0.0213785i 0.00680549π0.00680549\pi
−0.999771 + 0.0213785i 0.993195π0.993195\pi
548548 − 3.00000i − 0.128154i
549549 0 0
550550 0 0
551551 21.0000 0.894630
552552 0 0
553553 16.0000i 0.680389i
554554 −26.0000 −1.10463
555555 0 0
556556 −13.0000 −0.551323
557557 27.0000i 1.14403i 0.820244 + 0.572013i 0.193837π0.193837\pi
−0.820244 + 0.572013i 0.806163π0.806163\pi
558558 0 0
559559 −25.0000 −1.05739
560560 0 0
561561 0 0
562562 0 0
563563 − 12.0000i − 0.505740i −0.967500 0.252870i 0.918626π-0.918626\pi
0.967500 0.252870i 0.0813744π-0.0813744\pi
564564 0 0
565565 0 0
566566 −4.00000 −0.168133
567567 0 0
568568 − 3.00000i − 0.125877i
569569 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
570570 0 0
571571 −7.00000 −0.292941 −0.146470 0.989215i 0.546791π-0.546791\pi
−0.146470 + 0.989215i 0.546791π0.546791\pi
572572 − 5.00000i − 0.209061i
573573 0 0
574574 −48.0000 −2.00348
575575 0 0
576576 0 0
577577 − 2.00000i − 0.0832611i −0.999133 0.0416305i 0.986745π-0.986745\pi
0.999133 0.0416305i 0.0132552π-0.0132552\pi
578578 − 17.0000i − 0.707107i
579579 0 0
580580 0 0
581581 −60.0000 −2.48922
582582 0 0
583583 − 6.00000i − 0.248495i
584584 −8.00000 −0.331042
585585 0 0
586586 18.0000 0.743573
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 35.0000 1.44215
590590 0 0
591591 0 0
592592 4.00000i 0.164399i
593593 6.00000i 0.246390i 0.992382 + 0.123195i 0.0393141π0.0393141\pi
−0.992382 + 0.123195i 0.960686π0.960686\pi
594594 0 0
595595 0 0
596596 6.00000 0.245770
597597 0 0
598598 − 15.0000i − 0.613396i
599599 −36.0000 −1.47092 −0.735460 0.677568i 0.763034π-0.763034\pi
−0.735460 + 0.677568i 0.763034π0.763034\pi
600600 0 0
601601 44.0000 1.79480 0.897399 0.441221i 0.145454π-0.145454\pi
0.897399 + 0.441221i 0.145454π0.145454\pi
602602 20.0000i 0.815139i
603603 0 0
604604 16.0000 0.651031
605605 0 0
606606 0 0
607607 − 14.0000i − 0.568242i −0.958788 0.284121i 0.908298π-0.908298\pi
0.958788 0.284121i 0.0917018π-0.0917018\pi
608608 − 7.00000i − 0.283887i
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 26.0000i 1.05013i 0.851062 + 0.525065i 0.175959π0.175959\pi
−0.851062 + 0.525065i 0.824041π0.824041\pi
614614 16.0000 0.645707
615615 0 0
616616 −4.00000 −0.161165
617617 − 27.0000i − 1.08698i −0.839416 0.543490i 0.817103π-0.817103\pi
0.839416 0.543490i 0.182897π-0.182897\pi
618618 0 0
619619 −20.0000 −0.803868 −0.401934 0.915669i 0.631662π-0.631662\pi
−0.401934 + 0.915669i 0.631662π0.631662\pi
620620 0 0
621621 0 0
622622 3.00000i 0.120289i
623623 12.0000i 0.480770i
624624 0 0
625625 0 0
626626 26.0000 1.03917
627627 0 0
628628 14.0000i 0.558661i
629629 0 0
630630 0 0
631631 −16.0000 −0.636950 −0.318475 0.947931i 0.603171π-0.603171\pi
−0.318475 + 0.947931i 0.603171π0.603171\pi
632632 4.00000i 0.159111i
633633 0 0
634634 12.0000 0.476581
635635 0 0
636636 0 0
637637 − 45.0000i − 1.78296i
638638 − 3.00000i − 0.118771i
639639 0 0
640640 0 0
641641 27.0000 1.06644 0.533218 0.845978i 0.320983π-0.320983\pi
0.533218 + 0.845978i 0.320983π0.320983\pi
642642 0 0
643643 − 4.00000i − 0.157745i −0.996885 0.0788723i 0.974868π-0.974868\pi
0.996885 0.0788723i 0.0251319π-0.0251319\pi
644644 −12.0000 −0.472866
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 12.0000 0.471041
650650 0 0
651651 0 0
652652 16.0000i 0.626608i
653653 − 30.0000i − 1.17399i −0.809590 0.586995i 0.800311π-0.800311\pi
0.809590 0.586995i 0.199689π-0.199689\pi
654654 0 0
655655 0 0
656656 −12.0000 −0.468521
657657 0 0
658658 0 0
659659 3.00000 0.116863 0.0584317 0.998291i 0.481390π-0.481390\pi
0.0584317 + 0.998291i 0.481390π0.481390\pi
660660 0 0
661661 −16.0000 −0.622328 −0.311164 0.950356i 0.600719π-0.600719\pi
−0.311164 + 0.950356i 0.600719π0.600719\pi
662662 − 32.0000i − 1.24372i
663663 0 0
664664 −15.0000 −0.582113
665665 0 0
666666 0 0
667667 − 9.00000i − 0.348481i
668668 − 24.0000i − 0.928588i
669669 0 0
670670 0 0
671671 −10.0000 −0.386046
672672 0 0
673673 − 4.00000i − 0.154189i −0.997024 0.0770943i 0.975436π-0.975436\pi
0.997024 0.0770943i 0.0245643π-0.0245643\pi
674674 −14.0000 −0.539260
675675 0 0
676676 12.0000 0.461538
677677 9.00000i 0.345898i 0.984931 + 0.172949i 0.0553296π0.0553296\pi
−0.984931 + 0.172949i 0.944670π0.944670\pi
678678 0 0
679679 −52.0000 −1.99558
680680 0 0
681681 0 0
682682 − 5.00000i − 0.191460i
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 0 0
686686 −8.00000 −0.305441
687687 0 0
688688 5.00000i 0.190623i
689689 30.0000 1.14291
690690 0 0
691691 −28.0000 −1.06517 −0.532585 0.846376i 0.678779π-0.678779\pi
−0.532585 + 0.846376i 0.678779π0.678779\pi
692692 21.0000i 0.798300i
693693 0 0
694694 −12.0000 −0.455514
695695 0 0
696696 0 0
697697 0 0
698698 11.0000i 0.416356i
699699 0 0
700700 0 0
701701 −45.0000 −1.69963 −0.849813 0.527084i 0.823285π-0.823285\pi
−0.849813 + 0.527084i 0.823285π0.823285\pi
702702 0 0
703703 28.0000i 1.05604i
704704 −1.00000 −0.0376889
705705 0 0
706706 9.00000 0.338719
707707 36.0000i 1.35392i
708708 0 0
709709 16.0000 0.600893 0.300446 0.953799i 0.402864π-0.402864\pi
0.300446 + 0.953799i 0.402864π0.402864\pi
710710 0 0
711711 0 0
712712 3.00000i 0.112430i
713713 − 15.0000i − 0.561754i
714714 0 0
715715 0 0
716716 −12.0000 −0.448461
717717 0 0
718718 24.0000i 0.895672i
719719 24.0000 0.895049 0.447524 0.894272i 0.352306π-0.352306\pi
0.447524 + 0.894272i 0.352306π0.352306\pi
720720 0 0
721721 28.0000 1.04277
722722 − 30.0000i − 1.11648i
723723 0 0
724724 −20.0000 −0.743294
725725 0 0
726726 0 0
727727 − 5.00000i − 0.185440i −0.995692 0.0927199i 0.970444π-0.970444\pi
0.995692 0.0927199i 0.0295561π-0.0295561\pi
728728 − 20.0000i − 0.741249i
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 5.00000i 0.184679i 0.995728 + 0.0923396i 0.0294345π0.0294345\pi
−0.995728 + 0.0923396i 0.970565π0.970565\pi
734734 −17.0000 −0.627481
735735 0 0
736736 −3.00000 −0.110581
737737 − 14.0000i − 0.515697i
738738 0 0
739739 16.0000 0.588570 0.294285 0.955718i 0.404919π-0.404919\pi
0.294285 + 0.955718i 0.404919π0.404919\pi
740740 0 0
741741 0 0
742742 − 24.0000i − 0.881068i
743743 − 54.0000i − 1.98107i −0.137268 0.990534i 0.543832π-0.543832\pi
0.137268 0.990534i 0.456168π-0.456168\pi
744744 0 0
745745 0 0
746746 2.00000 0.0732252
747747 0 0
748748 0 0
749749 −60.0000 −2.19235
750750 0 0
751751 −25.0000 −0.912263 −0.456131 0.889912i 0.650765π-0.650765\pi
−0.456131 + 0.889912i 0.650765π0.650765\pi
752752 0 0
753753 0 0
754754 15.0000 0.546268
755755 0 0
756756 0 0
757757 − 8.00000i − 0.290765i −0.989376 0.145382i 0.953559π-0.953559\pi
0.989376 0.145382i 0.0464413π-0.0464413\pi
758758 2.00000i 0.0726433i
759759 0 0
760760 0 0
761761 −12.0000 −0.435000 −0.217500 0.976060i 0.569790π-0.569790\pi
−0.217500 + 0.976060i 0.569790π0.569790\pi
762762 0 0
763763 − 20.0000i − 0.724049i
764764 15.0000 0.542681
765765 0 0
766766 3.00000 0.108394
767767 60.0000i 2.16647i
768768 0 0
769769 22.0000 0.793340 0.396670 0.917961i 0.370166π-0.370166\pi
0.396670 + 0.917961i 0.370166π0.370166\pi
770770 0 0
771771 0 0
772772 4.00000i 0.143963i
773773 36.0000i 1.29483i 0.762138 + 0.647415i 0.224150π0.224150\pi
−0.762138 + 0.647415i 0.775850π0.775850\pi
774774 0 0
775775 0 0
776776 −13.0000 −0.466673
777777 0 0
778778 24.0000i 0.860442i
779779 −84.0000 −3.00961
780780 0 0
781781 −3.00000 −0.107348
782782 0 0
783783 0 0
784784 −9.00000 −0.321429
785785 0 0
786786 0 0
787787 28.0000i 0.998092i 0.866575 + 0.499046i 0.166316π0.166316\pi
−0.866575 + 0.499046i 0.833684π0.833684\pi
788788 − 3.00000i − 0.106871i
789789 0 0
790790 0 0
791791 −24.0000 −0.853342
792792 0 0
793793 − 50.0000i − 1.77555i
794794 −14.0000 −0.496841
795795 0 0
796796 11.0000 0.389885
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 − 9.00000i − 0.317801i
803803 8.00000i 0.282314i
804804 0 0
805805 0 0
806806 25.0000 0.880587
807807 0 0
808808 9.00000i 0.316619i
809809 42.0000 1.47664 0.738321 0.674450i 0.235619π-0.235619\pi
0.738321 + 0.674450i 0.235619π0.235619\pi
810810 0 0
811811 −4.00000 −0.140459 −0.0702295 0.997531i 0.522373π-0.522373\pi
−0.0702295 + 0.997531i 0.522373π0.522373\pi
812812 − 12.0000i − 0.421117i
813813 0 0
814814 4.00000 0.140200
815815 0 0
816816 0 0
817817 35.0000i 1.22449i
818818 − 4.00000i − 0.139857i
819819 0 0
820820 0 0
821821 9.00000 0.314102 0.157051 0.987590i 0.449801π-0.449801\pi
0.157051 + 0.987590i 0.449801π0.449801\pi
822822 0 0
823823 − 40.0000i − 1.39431i −0.716919 0.697156i 0.754448π-0.754448\pi
0.716919 0.697156i 0.245552π-0.245552\pi
824824 7.00000 0.243857
825825 0 0
826826 48.0000 1.67013
827827 − 27.0000i − 0.938882i −0.882964 0.469441i 0.844455π-0.844455\pi
0.882964 0.469441i 0.155545π-0.155545\pi
828828 0 0
829829 −14.0000 −0.486240 −0.243120 0.969996i 0.578171π-0.578171\pi
−0.243120 + 0.969996i 0.578171π0.578171\pi
830830 0 0
831831 0 0
832832 − 5.00000i − 0.173344i
833833 0 0
834834 0 0
835835 0 0
836836 −7.00000 −0.242100
837837 0 0
838838 − 30.0000i − 1.03633i
839839 48.0000 1.65714 0.828572 0.559883i 0.189154π-0.189154\pi
0.828572 + 0.559883i 0.189154π0.189154\pi
840840 0 0
841841 −20.0000 −0.689655
842842 − 26.0000i − 0.896019i
843843 0 0
844844 4.00000 0.137686
845845 0 0
846846 0 0
847847 4.00000i 0.137442i
848848 − 6.00000i − 0.206041i
849849 0 0
850850 0 0
851851 12.0000 0.411355
852852 0 0
853853 − 10.0000i − 0.342393i −0.985237 0.171197i 0.945237π-0.945237\pi
0.985237 0.171197i 0.0547634π-0.0547634\pi
854854 −40.0000 −1.36877
855855 0 0
856856 −15.0000 −0.512689
857857 − 48.0000i − 1.63965i −0.572615 0.819824i 0.694071π-0.694071\pi
0.572615 0.819824i 0.305929π-0.305929\pi
858858 0 0
859859 −26.0000 −0.887109 −0.443554 0.896248i 0.646283π-0.646283\pi
−0.443554 + 0.896248i 0.646283π0.646283\pi
860860 0 0
861861 0 0
862862 12.0000i 0.408722i
863863 39.0000i 1.32758i 0.747921 + 0.663788i 0.231052π0.231052\pi
−0.747921 + 0.663788i 0.768948π0.768948\pi
864864 0 0
865865 0 0
866866 11.0000 0.373795
867867 0 0
868868 − 20.0000i − 0.678844i
869869 4.00000 0.135691
870870 0 0
871871 70.0000 2.37186
872872 − 5.00000i − 0.169321i
873873 0 0
874874 −21.0000 −0.710336
875875 0 0
876876 0 0
877877 − 23.0000i − 0.776655i −0.921521 0.388327i 0.873053π-0.873053\pi
0.921521 0.388327i 0.126947π-0.126947\pi
878878 20.0000i 0.674967i
879879 0 0
880880 0 0
881881 27.0000 0.909653 0.454827 0.890580i 0.349701π-0.349701\pi
0.454827 + 0.890580i 0.349701π0.349701\pi
882882 0 0
883883 44.0000i 1.48072i 0.672212 + 0.740359i 0.265344π0.265344\pi
−0.672212 + 0.740359i 0.734656π0.734656\pi
884884 0 0
885885 0 0
886886 24.0000 0.806296
887887 6.00000i 0.201460i 0.994914 + 0.100730i 0.0321179π0.0321179\pi
−0.994914 + 0.100730i 0.967882π0.967882\pi
888888 0 0
889889 −64.0000 −2.14649
890890 0 0
891891 0 0
892892 − 8.00000i − 0.267860i
893893 0 0
894894 0 0
895895 0 0
896896 −4.00000 −0.133631
897897 0 0
898898 27.0000i 0.901002i
899899 15.0000 0.500278
900900 0 0
901901 0 0
902902 12.0000i 0.399556i
903903 0 0
904904 −6.00000 −0.199557
905905 0 0
906906 0 0
907907 34.0000i 1.12895i 0.825450 + 0.564476i 0.190922π0.190922\pi
−0.825450 + 0.564476i 0.809078π0.809078\pi
908908 3.00000i 0.0995585i
909909 0 0
910910 0 0
911911 48.0000 1.59031 0.795155 0.606406i 0.207389π-0.207389\pi
0.795155 + 0.606406i 0.207389π0.207389\pi
912912 0 0
913913 15.0000i 0.496428i
914914 28.0000 0.926158
915915 0 0
916916 2.00000 0.0660819
917917 − 84.0000i − 2.77392i
918918 0 0
919919 −32.0000 −1.05558 −0.527791 0.849374i 0.676980π-0.676980\pi
−0.527791 + 0.849374i 0.676980π0.676980\pi
920920 0 0
921921 0 0
922922 − 6.00000i − 0.197599i
923923 − 15.0000i − 0.493731i
924924 0 0
925925 0 0
926926 −13.0000 −0.427207
927927 0 0
928928 − 3.00000i − 0.0984798i
929929 −33.0000 −1.08269 −0.541347 0.840799i 0.682086π-0.682086\pi
−0.541347 + 0.840799i 0.682086π0.682086\pi
930930 0 0
931931 −63.0000 −2.06474
932932 − 18.0000i − 0.589610i
933933 0 0
934934 18.0000 0.588978
935935 0 0
936936 0 0
937937 − 26.0000i − 0.849383i −0.905338 0.424691i 0.860383π-0.860383\pi
0.905338 0.424691i 0.139617π-0.139617\pi
938938 − 56.0000i − 1.82846i
939939 0 0
940940 0 0
941941 −6.00000 −0.195594 −0.0977972 0.995206i 0.531180π-0.531180\pi
−0.0977972 + 0.995206i 0.531180π0.531180\pi
942942 0 0
943943 36.0000i 1.17232i
944944 12.0000 0.390567
945945 0 0
946946 5.00000 0.162564
947947 30.0000i 0.974869i 0.873160 + 0.487435i 0.162067π0.162067\pi
−0.873160 + 0.487435i 0.837933π0.837933\pi
948948 0 0
949949 −40.0000 −1.29845
950950 0 0
951951 0 0
952952 0 0
953953 − 6.00000i − 0.194359i −0.995267 0.0971795i 0.969018π-0.969018\pi
0.995267 0.0971795i 0.0309821π-0.0309821\pi
954954 0 0
955955 0 0
956956 6.00000 0.194054
957957 0 0
958958 − 6.00000i − 0.193851i
959959 −12.0000 −0.387500
960960 0 0
961961 −6.00000 −0.193548
962962 20.0000i 0.644826i
963963 0 0
964964 10.0000 0.322078
965965 0 0
966966 0 0
967967 − 26.0000i − 0.836104i −0.908423 0.418052i 0.862713π-0.862713\pi
0.908423 0.418052i 0.137287π-0.137287\pi
968968 1.00000i 0.0321412i
969969 0 0
970970 0 0
971971 6.00000 0.192549 0.0962746 0.995355i 0.469307π-0.469307\pi
0.0962746 + 0.995355i 0.469307π0.469307\pi
972972 0 0
973973 52.0000i 1.66704i
974974 −29.0000 −0.929220
975975 0 0
976976 −10.0000 −0.320092
977977 − 42.0000i − 1.34370i −0.740688 0.671850i 0.765500π-0.765500\pi
0.740688 0.671850i 0.234500π-0.234500\pi
978978 0 0
979979 3.00000 0.0958804
980980 0 0
981981 0 0
982982 9.00000i 0.287202i
983983 − 39.0000i − 1.24391i −0.783054 0.621953i 0.786339π-0.786339\pi
0.783054 0.621953i 0.213661π-0.213661\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 − 35.0000i − 1.11350i
989989 15.0000 0.476972
990990 0 0
991991 32.0000 1.01651 0.508257 0.861206i 0.330290π-0.330290\pi
0.508257 + 0.861206i 0.330290π0.330290\pi
992992 − 5.00000i − 0.158750i
993993 0 0
994994 −12.0000 −0.380617
995995 0 0
996996 0 0
997997 46.0000i 1.45683i 0.685134 + 0.728417i 0.259744π0.259744\pi
−0.685134 + 0.728417i 0.740256π0.740256\pi
998998 − 10.0000i − 0.316544i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4950.2.c.ba.199.1 2
3.2 odd 2 550.2.b.d.199.2 2
5.2 odd 4 4950.2.a.y.1.1 1
5.3 odd 4 4950.2.a.u.1.1 1
5.4 even 2 inner 4950.2.c.ba.199.2 2
12.11 even 2 4400.2.b.e.4049.2 2
15.2 even 4 550.2.a.a.1.1 1
15.8 even 4 550.2.a.m.1.1 yes 1
15.14 odd 2 550.2.b.d.199.1 2
60.23 odd 4 4400.2.a.d.1.1 1
60.47 odd 4 4400.2.a.bc.1.1 1
60.59 even 2 4400.2.b.e.4049.1 2
165.32 odd 4 6050.2.a.bb.1.1 1
165.98 odd 4 6050.2.a.n.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
550.2.a.a.1.1 1 15.2 even 4
550.2.a.m.1.1 yes 1 15.8 even 4
550.2.b.d.199.1 2 15.14 odd 2
550.2.b.d.199.2 2 3.2 odd 2
4400.2.a.d.1.1 1 60.23 odd 4
4400.2.a.bc.1.1 1 60.47 odd 4
4400.2.b.e.4049.1 2 60.59 even 2
4400.2.b.e.4049.2 2 12.11 even 2
4950.2.a.u.1.1 1 5.3 odd 4
4950.2.a.y.1.1 1 5.2 odd 4
4950.2.c.ba.199.1 2 1.1 even 1 trivial
4950.2.c.ba.199.2 2 5.4 even 2 inner
6050.2.a.n.1.1 1 165.98 odd 4
6050.2.a.bb.1.1 1 165.32 odd 4