Properties

Label 4950.2.c.ba.199.1
Level $4950$
Weight $2$
Character 4950.199
Analytic conductor $39.526$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4950,2,Mod(199,4950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4950, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4950.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4950.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5259490005\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 550)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 4950.199
Dual form 4950.2.c.ba.199.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +4.00000i q^{7} +1.00000i q^{8} +1.00000 q^{11} +5.00000i q^{13} +4.00000 q^{14} +1.00000 q^{16} +7.00000 q^{19} -1.00000i q^{22} -3.00000i q^{23} +5.00000 q^{26} -4.00000i q^{28} +3.00000 q^{29} +5.00000 q^{31} -1.00000i q^{32} +4.00000i q^{37} -7.00000i q^{38} -12.0000 q^{41} +5.00000i q^{43} -1.00000 q^{44} -3.00000 q^{46} -9.00000 q^{49} -5.00000i q^{52} -6.00000i q^{53} -4.00000 q^{56} -3.00000i q^{58} +12.0000 q^{59} -10.0000 q^{61} -5.00000i q^{62} -1.00000 q^{64} -14.0000i q^{67} -3.00000 q^{71} +8.00000i q^{73} +4.00000 q^{74} -7.00000 q^{76} +4.00000i q^{77} +4.00000 q^{79} +12.0000i q^{82} +15.0000i q^{83} +5.00000 q^{86} +1.00000i q^{88} +3.00000 q^{89} -20.0000 q^{91} +3.00000i q^{92} +13.0000i q^{97} +9.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 2 q^{11} + 8 q^{14} + 2 q^{16} + 14 q^{19} + 10 q^{26} + 6 q^{29} + 10 q^{31} - 24 q^{41} - 2 q^{44} - 6 q^{46} - 18 q^{49} - 8 q^{56} + 24 q^{59} - 20 q^{61} - 2 q^{64} - 6 q^{71} + 8 q^{74}+ \cdots - 40 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4950\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(2377\) \(4501\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 4.00000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 5.00000i 1.38675i 0.720577 + 0.693375i \(0.243877\pi\)
−0.720577 + 0.693375i \(0.756123\pi\)
\(14\) 4.00000 1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 1.00000i − 0.213201i
\(23\) − 3.00000i − 0.625543i −0.949828 0.312772i \(-0.898743\pi\)
0.949828 0.312772i \(-0.101257\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 5.00000 0.980581
\(27\) 0 0
\(28\) − 4.00000i − 0.755929i
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) 5.00000 0.898027 0.449013 0.893525i \(-0.351776\pi\)
0.449013 + 0.893525i \(0.351776\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000i 0.657596i 0.944400 + 0.328798i \(0.106644\pi\)
−0.944400 + 0.328798i \(0.893356\pi\)
\(38\) − 7.00000i − 1.13555i
\(39\) 0 0
\(40\) 0 0
\(41\) −12.0000 −1.87409 −0.937043 0.349215i \(-0.886448\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 0 0
\(43\) 5.00000i 0.762493i 0.924473 + 0.381246i \(0.124505\pi\)
−0.924473 + 0.381246i \(0.875495\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) −3.00000 −0.442326
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 0 0
\(52\) − 5.00000i − 0.693375i
\(53\) − 6.00000i − 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −4.00000 −0.534522
\(57\) 0 0
\(58\) − 3.00000i − 0.393919i
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) − 5.00000i − 0.635001i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 14.0000i − 1.71037i −0.518321 0.855186i \(-0.673443\pi\)
0.518321 0.855186i \(-0.326557\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.00000 −0.356034 −0.178017 0.984027i \(-0.556968\pi\)
−0.178017 + 0.984027i \(0.556968\pi\)
\(72\) 0 0
\(73\) 8.00000i 0.936329i 0.883641 + 0.468165i \(0.155085\pi\)
−0.883641 + 0.468165i \(0.844915\pi\)
\(74\) 4.00000 0.464991
\(75\) 0 0
\(76\) −7.00000 −0.802955
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 12.0000i 1.32518i
\(83\) 15.0000i 1.64646i 0.567705 + 0.823232i \(0.307831\pi\)
−0.567705 + 0.823232i \(0.692169\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 5.00000 0.539164
\(87\) 0 0
\(88\) 1.00000i 0.106600i
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) 0 0
\(91\) −20.0000 −2.09657
\(92\) 3.00000i 0.312772i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 13.0000i 1.31995i 0.751288 + 0.659975i \(0.229433\pi\)
−0.751288 + 0.659975i \(0.770567\pi\)
\(98\) 9.00000i 0.909137i
\(99\) 0 0
\(100\) 0 0
\(101\) 9.00000 0.895533 0.447767 0.894150i \(-0.352219\pi\)
0.447767 + 0.894150i \(0.352219\pi\)
\(102\) 0 0
\(103\) − 7.00000i − 0.689730i −0.938652 0.344865i \(-0.887925\pi\)
0.938652 0.344865i \(-0.112075\pi\)
\(104\) −5.00000 −0.490290
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 15.0000i 1.45010i 0.688694 + 0.725052i \(0.258184\pi\)
−0.688694 + 0.725052i \(0.741816\pi\)
\(108\) 0 0
\(109\) −5.00000 −0.478913 −0.239457 0.970907i \(-0.576969\pi\)
−0.239457 + 0.970907i \(0.576969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 4.00000i 0.377964i
\(113\) 6.00000i 0.564433i 0.959351 + 0.282216i \(0.0910696\pi\)
−0.959351 + 0.282216i \(0.908930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −3.00000 −0.278543
\(117\) 0 0
\(118\) − 12.0000i − 1.10469i
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 10.0000i 0.905357i
\(123\) 0 0
\(124\) −5.00000 −0.449013
\(125\) 0 0
\(126\) 0 0
\(127\) 16.0000i 1.41977i 0.704317 + 0.709885i \(0.251253\pi\)
−0.704317 + 0.709885i \(0.748747\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −21.0000 −1.83478 −0.917389 0.397991i \(-0.869707\pi\)
−0.917389 + 0.397991i \(0.869707\pi\)
\(132\) 0 0
\(133\) 28.0000i 2.42791i
\(134\) −14.0000 −1.20942
\(135\) 0 0
\(136\) 0 0
\(137\) 3.00000i 0.256307i 0.991754 + 0.128154i \(0.0409051\pi\)
−0.991754 + 0.128154i \(0.959095\pi\)
\(138\) 0 0
\(139\) 13.0000 1.10265 0.551323 0.834292i \(-0.314123\pi\)
0.551323 + 0.834292i \(0.314123\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3.00000i 0.251754i
\(143\) 5.00000i 0.418121i
\(144\) 0 0
\(145\) 0 0
\(146\) 8.00000 0.662085
\(147\) 0 0
\(148\) − 4.00000i − 0.328798i
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 7.00000i 0.567775i
\(153\) 0 0
\(154\) 4.00000 0.322329
\(155\) 0 0
\(156\) 0 0
\(157\) − 14.0000i − 1.11732i −0.829396 0.558661i \(-0.811315\pi\)
0.829396 0.558661i \(-0.188685\pi\)
\(158\) − 4.00000i − 0.318223i
\(159\) 0 0
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) − 16.0000i − 1.25322i −0.779334 0.626608i \(-0.784443\pi\)
0.779334 0.626608i \(-0.215557\pi\)
\(164\) 12.0000 0.937043
\(165\) 0 0
\(166\) 15.0000 1.16423
\(167\) 24.0000i 1.85718i 0.371113 + 0.928588i \(0.378976\pi\)
−0.371113 + 0.928588i \(0.621024\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) − 5.00000i − 0.381246i
\(173\) − 21.0000i − 1.59660i −0.602260 0.798300i \(-0.705733\pi\)
0.602260 0.798300i \(-0.294267\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) − 3.00000i − 0.224860i
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 20.0000 1.48659 0.743294 0.668965i \(-0.233262\pi\)
0.743294 + 0.668965i \(0.233262\pi\)
\(182\) 20.0000i 1.48250i
\(183\) 0 0
\(184\) 3.00000 0.221163
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −15.0000 −1.08536 −0.542681 0.839939i \(-0.682591\pi\)
−0.542681 + 0.839939i \(0.682591\pi\)
\(192\) 0 0
\(193\) − 4.00000i − 0.287926i −0.989583 0.143963i \(-0.954015\pi\)
0.989583 0.143963i \(-0.0459847\pi\)
\(194\) 13.0000 0.933346
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) 3.00000i 0.213741i 0.994273 + 0.106871i \(0.0340831\pi\)
−0.994273 + 0.106871i \(0.965917\pi\)
\(198\) 0 0
\(199\) −11.0000 −0.779769 −0.389885 0.920864i \(-0.627485\pi\)
−0.389885 + 0.920864i \(0.627485\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 9.00000i − 0.633238i
\(203\) 12.0000i 0.842235i
\(204\) 0 0
\(205\) 0 0
\(206\) −7.00000 −0.487713
\(207\) 0 0
\(208\) 5.00000i 0.346688i
\(209\) 7.00000 0.484200
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 6.00000i 0.412082i
\(213\) 0 0
\(214\) 15.0000 1.02538
\(215\) 0 0
\(216\) 0 0
\(217\) 20.0000i 1.35769i
\(218\) 5.00000i 0.338643i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 8.00000i 0.535720i 0.963458 + 0.267860i \(0.0863164\pi\)
−0.963458 + 0.267860i \(0.913684\pi\)
\(224\) 4.00000 0.267261
\(225\) 0 0
\(226\) 6.00000 0.399114
\(227\) − 3.00000i − 0.199117i −0.995032 0.0995585i \(-0.968257\pi\)
0.995032 0.0995585i \(-0.0317430\pi\)
\(228\) 0 0
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.00000i 0.196960i
\(233\) 18.0000i 1.17922i 0.807688 + 0.589610i \(0.200718\pi\)
−0.807688 + 0.589610i \(0.799282\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −12.0000 −0.781133
\(237\) 0 0
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) − 1.00000i − 0.0642824i
\(243\) 0 0
\(244\) 10.0000 0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) 35.0000i 2.22700i
\(248\) 5.00000i 0.317500i
\(249\) 0 0
\(250\) 0 0
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) − 3.00000i − 0.188608i
\(254\) 16.0000 1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 9.00000i − 0.561405i −0.959795 0.280702i \(-0.909433\pi\)
0.959795 0.280702i \(-0.0905674\pi\)
\(258\) 0 0
\(259\) −16.0000 −0.994192
\(260\) 0 0
\(261\) 0 0
\(262\) 21.0000i 1.29738i
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 28.0000 1.71679
\(267\) 0 0
\(268\) 14.0000i 0.855186i
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 3.00000 0.181237
\(275\) 0 0
\(276\) 0 0
\(277\) − 26.0000i − 1.56219i −0.624413 0.781094i \(-0.714662\pi\)
0.624413 0.781094i \(-0.285338\pi\)
\(278\) − 13.0000i − 0.779688i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) − 4.00000i − 0.237775i −0.992908 0.118888i \(-0.962067\pi\)
0.992908 0.118888i \(-0.0379328\pi\)
\(284\) 3.00000 0.178017
\(285\) 0 0
\(286\) 5.00000 0.295656
\(287\) − 48.0000i − 2.83335i
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) − 8.00000i − 0.468165i
\(293\) 18.0000i 1.05157i 0.850617 + 0.525786i \(0.176229\pi\)
−0.850617 + 0.525786i \(0.823771\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.00000 −0.232495
\(297\) 0 0
\(298\) 6.00000i 0.347571i
\(299\) 15.0000 0.867472
\(300\) 0 0
\(301\) −20.0000 −1.15278
\(302\) 16.0000i 0.920697i
\(303\) 0 0
\(304\) 7.00000 0.401478
\(305\) 0 0
\(306\) 0 0
\(307\) 16.0000i 0.913168i 0.889680 + 0.456584i \(0.150927\pi\)
−0.889680 + 0.456584i \(0.849073\pi\)
\(308\) − 4.00000i − 0.227921i
\(309\) 0 0
\(310\) 0 0
\(311\) −3.00000 −0.170114 −0.0850572 0.996376i \(-0.527107\pi\)
−0.0850572 + 0.996376i \(0.527107\pi\)
\(312\) 0 0
\(313\) 26.0000i 1.46961i 0.678280 + 0.734803i \(0.262726\pi\)
−0.678280 + 0.734803i \(0.737274\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) 12.0000i 0.673987i 0.941507 + 0.336994i \(0.109410\pi\)
−0.941507 + 0.336994i \(0.890590\pi\)
\(318\) 0 0
\(319\) 3.00000 0.167968
\(320\) 0 0
\(321\) 0 0
\(322\) − 12.0000i − 0.668734i
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) −16.0000 −0.886158
\(327\) 0 0
\(328\) − 12.0000i − 0.662589i
\(329\) 0 0
\(330\) 0 0
\(331\) 32.0000 1.75888 0.879440 0.476011i \(-0.157918\pi\)
0.879440 + 0.476011i \(0.157918\pi\)
\(332\) − 15.0000i − 0.823232i
\(333\) 0 0
\(334\) 24.0000 1.31322
\(335\) 0 0
\(336\) 0 0
\(337\) − 14.0000i − 0.762629i −0.924445 0.381314i \(-0.875472\pi\)
0.924445 0.381314i \(-0.124528\pi\)
\(338\) 12.0000i 0.652714i
\(339\) 0 0
\(340\) 0 0
\(341\) 5.00000 0.270765
\(342\) 0 0
\(343\) − 8.00000i − 0.431959i
\(344\) −5.00000 −0.269582
\(345\) 0 0
\(346\) −21.0000 −1.12897
\(347\) − 12.0000i − 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) −11.0000 −0.588817 −0.294408 0.955680i \(-0.595123\pi\)
−0.294408 + 0.955680i \(0.595123\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 1.00000i − 0.0533002i
\(353\) 9.00000i 0.479022i 0.970894 + 0.239511i \(0.0769871\pi\)
−0.970894 + 0.239511i \(0.923013\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −3.00000 −0.159000
\(357\) 0 0
\(358\) − 12.0000i − 0.634220i
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) − 20.0000i − 1.05118i
\(363\) 0 0
\(364\) 20.0000 1.04828
\(365\) 0 0
\(366\) 0 0
\(367\) − 17.0000i − 0.887393i −0.896177 0.443696i \(-0.853667\pi\)
0.896177 0.443696i \(-0.146333\pi\)
\(368\) − 3.00000i − 0.156386i
\(369\) 0 0
\(370\) 0 0
\(371\) 24.0000 1.24602
\(372\) 0 0
\(373\) 2.00000i 0.103556i 0.998659 + 0.0517780i \(0.0164888\pi\)
−0.998659 + 0.0517780i \(0.983511\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15.0000i 0.772539i
\(378\) 0 0
\(379\) −2.00000 −0.102733 −0.0513665 0.998680i \(-0.516358\pi\)
−0.0513665 + 0.998680i \(0.516358\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 15.0000i 0.767467i
\(383\) 3.00000i 0.153293i 0.997058 + 0.0766464i \(0.0244213\pi\)
−0.997058 + 0.0766464i \(0.975579\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4.00000 −0.203595
\(387\) 0 0
\(388\) − 13.0000i − 0.659975i
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 9.00000i − 0.454569i
\(393\) 0 0
\(394\) 3.00000 0.151138
\(395\) 0 0
\(396\) 0 0
\(397\) − 14.0000i − 0.702640i −0.936255 0.351320i \(-0.885733\pi\)
0.936255 0.351320i \(-0.114267\pi\)
\(398\) 11.0000i 0.551380i
\(399\) 0 0
\(400\) 0 0
\(401\) 9.00000 0.449439 0.224719 0.974424i \(-0.427853\pi\)
0.224719 + 0.974424i \(0.427853\pi\)
\(402\) 0 0
\(403\) 25.0000i 1.24534i
\(404\) −9.00000 −0.447767
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) 4.00000i 0.198273i
\(408\) 0 0
\(409\) 4.00000 0.197787 0.0988936 0.995098i \(-0.468470\pi\)
0.0988936 + 0.995098i \(0.468470\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 7.00000i 0.344865i
\(413\) 48.0000i 2.36193i
\(414\) 0 0
\(415\) 0 0
\(416\) 5.00000 0.245145
\(417\) 0 0
\(418\) − 7.00000i − 0.342381i
\(419\) 30.0000 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 4.00000i 0.194717i
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) − 40.0000i − 1.93574i
\(428\) − 15.0000i − 0.725052i
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 0 0
\(433\) 11.0000i 0.528626i 0.964437 + 0.264313i \(0.0851452\pi\)
−0.964437 + 0.264313i \(0.914855\pi\)
\(434\) 20.0000 0.960031
\(435\) 0 0
\(436\) 5.00000 0.239457
\(437\) − 21.0000i − 1.00457i
\(438\) 0 0
\(439\) −20.0000 −0.954548 −0.477274 0.878755i \(-0.658375\pi\)
−0.477274 + 0.878755i \(0.658375\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 24.0000i 1.14027i 0.821549 + 0.570137i \(0.193110\pi\)
−0.821549 + 0.570137i \(0.806890\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 8.00000 0.378811
\(447\) 0 0
\(448\) − 4.00000i − 0.188982i
\(449\) −27.0000 −1.27421 −0.637104 0.770778i \(-0.719868\pi\)
−0.637104 + 0.770778i \(0.719868\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) − 6.00000i − 0.282216i
\(453\) 0 0
\(454\) −3.00000 −0.140797
\(455\) 0 0
\(456\) 0 0
\(457\) 28.0000i 1.30978i 0.755722 + 0.654892i \(0.227286\pi\)
−0.755722 + 0.654892i \(0.772714\pi\)
\(458\) 2.00000i 0.0934539i
\(459\) 0 0
\(460\) 0 0
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) − 13.0000i − 0.604161i −0.953282 0.302081i \(-0.902319\pi\)
0.953282 0.302081i \(-0.0976812\pi\)
\(464\) 3.00000 0.139272
\(465\) 0 0
\(466\) 18.0000 0.833834
\(467\) 18.0000i 0.832941i 0.909149 + 0.416470i \(0.136733\pi\)
−0.909149 + 0.416470i \(0.863267\pi\)
\(468\) 0 0
\(469\) 56.0000 2.58584
\(470\) 0 0
\(471\) 0 0
\(472\) 12.0000i 0.552345i
\(473\) 5.00000i 0.229900i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 6.00000i 0.274434i
\(479\) 6.00000 0.274147 0.137073 0.990561i \(-0.456230\pi\)
0.137073 + 0.990561i \(0.456230\pi\)
\(480\) 0 0
\(481\) −20.0000 −0.911922
\(482\) 10.0000i 0.455488i
\(483\) 0 0
\(484\) −1.00000 −0.0454545
\(485\) 0 0
\(486\) 0 0
\(487\) − 29.0000i − 1.31412i −0.753840 0.657058i \(-0.771801\pi\)
0.753840 0.657058i \(-0.228199\pi\)
\(488\) − 10.0000i − 0.452679i
\(489\) 0 0
\(490\) 0 0
\(491\) −9.00000 −0.406164 −0.203082 0.979162i \(-0.565096\pi\)
−0.203082 + 0.979162i \(0.565096\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 35.0000 1.57472
\(495\) 0 0
\(496\) 5.00000 0.224507
\(497\) − 12.0000i − 0.538274i
\(498\) 0 0
\(499\) 10.0000 0.447661 0.223831 0.974628i \(-0.428144\pi\)
0.223831 + 0.974628i \(0.428144\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 24.0000i 1.07117i
\(503\) 6.00000i 0.267527i 0.991013 + 0.133763i \(0.0427062\pi\)
−0.991013 + 0.133763i \(0.957294\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −3.00000 −0.133366
\(507\) 0 0
\(508\) − 16.0000i − 0.709885i
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) −32.0000 −1.41560
\(512\) − 1.00000i − 0.0441942i
\(513\) 0 0
\(514\) −9.00000 −0.396973
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 16.0000i 0.703000i
\(519\) 0 0
\(520\) 0 0
\(521\) 33.0000 1.44576 0.722878 0.690976i \(-0.242819\pi\)
0.722878 + 0.690976i \(0.242819\pi\)
\(522\) 0 0
\(523\) 11.0000i 0.480996i 0.970650 + 0.240498i \(0.0773108\pi\)
−0.970650 + 0.240498i \(0.922689\pi\)
\(524\) 21.0000 0.917389
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 14.0000 0.608696
\(530\) 0 0
\(531\) 0 0
\(532\) − 28.0000i − 1.21395i
\(533\) − 60.0000i − 2.59889i
\(534\) 0 0
\(535\) 0 0
\(536\) 14.0000 0.604708
\(537\) 0 0
\(538\) − 30.0000i − 1.29339i
\(539\) −9.00000 −0.387657
\(540\) 0 0
\(541\) −31.0000 −1.33279 −0.666397 0.745597i \(-0.732164\pi\)
−0.666397 + 0.745597i \(0.732164\pi\)
\(542\) − 2.00000i − 0.0859074i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.00000i 0.0427569i 0.999771 + 0.0213785i \(0.00680549\pi\)
−0.999771 + 0.0213785i \(0.993195\pi\)
\(548\) − 3.00000i − 0.128154i
\(549\) 0 0
\(550\) 0 0
\(551\) 21.0000 0.894630
\(552\) 0 0
\(553\) 16.0000i 0.680389i
\(554\) −26.0000 −1.10463
\(555\) 0 0
\(556\) −13.0000 −0.551323
\(557\) 27.0000i 1.14403i 0.820244 + 0.572013i \(0.193837\pi\)
−0.820244 + 0.572013i \(0.806163\pi\)
\(558\) 0 0
\(559\) −25.0000 −1.05739
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 12.0000i − 0.505740i −0.967500 0.252870i \(-0.918626\pi\)
0.967500 0.252870i \(-0.0813744\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) − 3.00000i − 0.125877i
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −7.00000 −0.292941 −0.146470 0.989215i \(-0.546791\pi\)
−0.146470 + 0.989215i \(0.546791\pi\)
\(572\) − 5.00000i − 0.209061i
\(573\) 0 0
\(574\) −48.0000 −2.00348
\(575\) 0 0
\(576\) 0 0
\(577\) − 2.00000i − 0.0832611i −0.999133 0.0416305i \(-0.986745\pi\)
0.999133 0.0416305i \(-0.0132552\pi\)
\(578\) − 17.0000i − 0.707107i
\(579\) 0 0
\(580\) 0 0
\(581\) −60.0000 −2.48922
\(582\) 0 0
\(583\) − 6.00000i − 0.248495i
\(584\) −8.00000 −0.331042
\(585\) 0 0
\(586\) 18.0000 0.743573
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 35.0000 1.44215
\(590\) 0 0
\(591\) 0 0
\(592\) 4.00000i 0.164399i
\(593\) 6.00000i 0.246390i 0.992382 + 0.123195i \(0.0393141\pi\)
−0.992382 + 0.123195i \(0.960686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) − 15.0000i − 0.613396i
\(599\) −36.0000 −1.47092 −0.735460 0.677568i \(-0.763034\pi\)
−0.735460 + 0.677568i \(0.763034\pi\)
\(600\) 0 0
\(601\) 44.0000 1.79480 0.897399 0.441221i \(-0.145454\pi\)
0.897399 + 0.441221i \(0.145454\pi\)
\(602\) 20.0000i 0.815139i
\(603\) 0 0
\(604\) 16.0000 0.651031
\(605\) 0 0
\(606\) 0 0
\(607\) − 14.0000i − 0.568242i −0.958788 0.284121i \(-0.908298\pi\)
0.958788 0.284121i \(-0.0917018\pi\)
\(608\) − 7.00000i − 0.283887i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 26.0000i 1.05013i 0.851062 + 0.525065i \(0.175959\pi\)
−0.851062 + 0.525065i \(0.824041\pi\)
\(614\) 16.0000 0.645707
\(615\) 0 0
\(616\) −4.00000 −0.161165
\(617\) − 27.0000i − 1.08698i −0.839416 0.543490i \(-0.817103\pi\)
0.839416 0.543490i \(-0.182897\pi\)
\(618\) 0 0
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 3.00000i 0.120289i
\(623\) 12.0000i 0.480770i
\(624\) 0 0
\(625\) 0 0
\(626\) 26.0000 1.03917
\(627\) 0 0
\(628\) 14.0000i 0.558661i
\(629\) 0 0
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 4.00000i 0.159111i
\(633\) 0 0
\(634\) 12.0000 0.476581
\(635\) 0 0
\(636\) 0 0
\(637\) − 45.0000i − 1.78296i
\(638\) − 3.00000i − 0.118771i
\(639\) 0 0
\(640\) 0 0
\(641\) 27.0000 1.06644 0.533218 0.845978i \(-0.320983\pi\)
0.533218 + 0.845978i \(0.320983\pi\)
\(642\) 0 0
\(643\) − 4.00000i − 0.157745i −0.996885 0.0788723i \(-0.974868\pi\)
0.996885 0.0788723i \(-0.0251319\pi\)
\(644\) −12.0000 −0.472866
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 16.0000i 0.626608i
\(653\) − 30.0000i − 1.17399i −0.809590 0.586995i \(-0.800311\pi\)
0.809590 0.586995i \(-0.199689\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −12.0000 −0.468521
\(657\) 0 0
\(658\) 0 0
\(659\) 3.00000 0.116863 0.0584317 0.998291i \(-0.481390\pi\)
0.0584317 + 0.998291i \(0.481390\pi\)
\(660\) 0 0
\(661\) −16.0000 −0.622328 −0.311164 0.950356i \(-0.600719\pi\)
−0.311164 + 0.950356i \(0.600719\pi\)
\(662\) − 32.0000i − 1.24372i
\(663\) 0 0
\(664\) −15.0000 −0.582113
\(665\) 0 0
\(666\) 0 0
\(667\) − 9.00000i − 0.348481i
\(668\) − 24.0000i − 0.928588i
\(669\) 0 0
\(670\) 0 0
\(671\) −10.0000 −0.386046
\(672\) 0 0
\(673\) − 4.00000i − 0.154189i −0.997024 0.0770943i \(-0.975436\pi\)
0.997024 0.0770943i \(-0.0245643\pi\)
\(674\) −14.0000 −0.539260
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) 9.00000i 0.345898i 0.984931 + 0.172949i \(0.0553296\pi\)
−0.984931 + 0.172949i \(0.944670\pi\)
\(678\) 0 0
\(679\) −52.0000 −1.99558
\(680\) 0 0
\(681\) 0 0
\(682\) − 5.00000i − 0.191460i
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −8.00000 −0.305441
\(687\) 0 0
\(688\) 5.00000i 0.190623i
\(689\) 30.0000 1.14291
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) 21.0000i 0.798300i
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 11.0000i 0.416356i
\(699\) 0 0
\(700\) 0 0
\(701\) −45.0000 −1.69963 −0.849813 0.527084i \(-0.823285\pi\)
−0.849813 + 0.527084i \(0.823285\pi\)
\(702\) 0 0
\(703\) 28.0000i 1.05604i
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) 9.00000 0.338719
\(707\) 36.0000i 1.35392i
\(708\) 0 0
\(709\) 16.0000 0.600893 0.300446 0.953799i \(-0.402864\pi\)
0.300446 + 0.953799i \(0.402864\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 3.00000i 0.112430i
\(713\) − 15.0000i − 0.561754i
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 0 0
\(718\) 24.0000i 0.895672i
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) 28.0000 1.04277
\(722\) − 30.0000i − 1.11648i
\(723\) 0 0
\(724\) −20.0000 −0.743294
\(725\) 0 0
\(726\) 0 0
\(727\) − 5.00000i − 0.185440i −0.995692 0.0927199i \(-0.970444\pi\)
0.995692 0.0927199i \(-0.0295561\pi\)
\(728\) − 20.0000i − 0.741249i
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 5.00000i 0.184679i 0.995728 + 0.0923396i \(0.0294345\pi\)
−0.995728 + 0.0923396i \(0.970565\pi\)
\(734\) −17.0000 −0.627481
\(735\) 0 0
\(736\) −3.00000 −0.110581
\(737\) − 14.0000i − 0.515697i
\(738\) 0 0
\(739\) 16.0000 0.588570 0.294285 0.955718i \(-0.404919\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 24.0000i − 0.881068i
\(743\) − 54.0000i − 1.98107i −0.137268 0.990534i \(-0.543832\pi\)
0.137268 0.990534i \(-0.456168\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 2.00000 0.0732252
\(747\) 0 0
\(748\) 0 0
\(749\) −60.0000 −2.19235
\(750\) 0 0
\(751\) −25.0000 −0.912263 −0.456131 0.889912i \(-0.650765\pi\)
−0.456131 + 0.889912i \(0.650765\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 15.0000 0.546268
\(755\) 0 0
\(756\) 0 0
\(757\) − 8.00000i − 0.290765i −0.989376 0.145382i \(-0.953559\pi\)
0.989376 0.145382i \(-0.0464413\pi\)
\(758\) 2.00000i 0.0726433i
\(759\) 0 0
\(760\) 0 0
\(761\) −12.0000 −0.435000 −0.217500 0.976060i \(-0.569790\pi\)
−0.217500 + 0.976060i \(0.569790\pi\)
\(762\) 0 0
\(763\) − 20.0000i − 0.724049i
\(764\) 15.0000 0.542681
\(765\) 0 0
\(766\) 3.00000 0.108394
\(767\) 60.0000i 2.16647i
\(768\) 0 0
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 4.00000i 0.143963i
\(773\) 36.0000i 1.29483i 0.762138 + 0.647415i \(0.224150\pi\)
−0.762138 + 0.647415i \(0.775850\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −13.0000 −0.466673
\(777\) 0 0
\(778\) 24.0000i 0.860442i
\(779\) −84.0000 −3.00961
\(780\) 0 0
\(781\) −3.00000 −0.107348
\(782\) 0 0
\(783\) 0 0
\(784\) −9.00000 −0.321429
\(785\) 0 0
\(786\) 0 0
\(787\) 28.0000i 0.998092i 0.866575 + 0.499046i \(0.166316\pi\)
−0.866575 + 0.499046i \(0.833684\pi\)
\(788\) − 3.00000i − 0.106871i
\(789\) 0 0
\(790\) 0 0
\(791\) −24.0000 −0.853342
\(792\) 0 0
\(793\) − 50.0000i − 1.77555i
\(794\) −14.0000 −0.496841
\(795\) 0 0
\(796\) 11.0000 0.389885
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) − 9.00000i − 0.317801i
\(803\) 8.00000i 0.282314i
\(804\) 0 0
\(805\) 0 0
\(806\) 25.0000 0.880587
\(807\) 0 0
\(808\) 9.00000i 0.316619i
\(809\) 42.0000 1.47664 0.738321 0.674450i \(-0.235619\pi\)
0.738321 + 0.674450i \(0.235619\pi\)
\(810\) 0 0
\(811\) −4.00000 −0.140459 −0.0702295 0.997531i \(-0.522373\pi\)
−0.0702295 + 0.997531i \(0.522373\pi\)
\(812\) − 12.0000i − 0.421117i
\(813\) 0 0
\(814\) 4.00000 0.140200
\(815\) 0 0
\(816\) 0 0
\(817\) 35.0000i 1.22449i
\(818\) − 4.00000i − 0.139857i
\(819\) 0 0
\(820\) 0 0
\(821\) 9.00000 0.314102 0.157051 0.987590i \(-0.449801\pi\)
0.157051 + 0.987590i \(0.449801\pi\)
\(822\) 0 0
\(823\) − 40.0000i − 1.39431i −0.716919 0.697156i \(-0.754448\pi\)
0.716919 0.697156i \(-0.245552\pi\)
\(824\) 7.00000 0.243857
\(825\) 0 0
\(826\) 48.0000 1.67013
\(827\) − 27.0000i − 0.938882i −0.882964 0.469441i \(-0.844455\pi\)
0.882964 0.469441i \(-0.155545\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 5.00000i − 0.173344i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) −7.00000 −0.242100
\(837\) 0 0
\(838\) − 30.0000i − 1.03633i
\(839\) 48.0000 1.65714 0.828572 0.559883i \(-0.189154\pi\)
0.828572 + 0.559883i \(0.189154\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) − 26.0000i − 0.896019i
\(843\) 0 0
\(844\) 4.00000 0.137686
\(845\) 0 0
\(846\) 0 0
\(847\) 4.00000i 0.137442i
\(848\) − 6.00000i − 0.206041i
\(849\) 0 0
\(850\) 0 0
\(851\) 12.0000 0.411355
\(852\) 0 0
\(853\) − 10.0000i − 0.342393i −0.985237 0.171197i \(-0.945237\pi\)
0.985237 0.171197i \(-0.0547634\pi\)
\(854\) −40.0000 −1.36877
\(855\) 0 0
\(856\) −15.0000 −0.512689
\(857\) − 48.0000i − 1.63965i −0.572615 0.819824i \(-0.694071\pi\)
0.572615 0.819824i \(-0.305929\pi\)
\(858\) 0 0
\(859\) −26.0000 −0.887109 −0.443554 0.896248i \(-0.646283\pi\)
−0.443554 + 0.896248i \(0.646283\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 12.0000i 0.408722i
\(863\) 39.0000i 1.32758i 0.747921 + 0.663788i \(0.231052\pi\)
−0.747921 + 0.663788i \(0.768948\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 11.0000 0.373795
\(867\) 0 0
\(868\) − 20.0000i − 0.678844i
\(869\) 4.00000 0.135691
\(870\) 0 0
\(871\) 70.0000 2.37186
\(872\) − 5.00000i − 0.169321i
\(873\) 0 0
\(874\) −21.0000 −0.710336
\(875\) 0 0
\(876\) 0 0
\(877\) − 23.0000i − 0.776655i −0.921521 0.388327i \(-0.873053\pi\)
0.921521 0.388327i \(-0.126947\pi\)
\(878\) 20.0000i 0.674967i
\(879\) 0 0
\(880\) 0 0
\(881\) 27.0000 0.909653 0.454827 0.890580i \(-0.349701\pi\)
0.454827 + 0.890580i \(0.349701\pi\)
\(882\) 0 0
\(883\) 44.0000i 1.48072i 0.672212 + 0.740359i \(0.265344\pi\)
−0.672212 + 0.740359i \(0.734656\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 24.0000 0.806296
\(887\) 6.00000i 0.201460i 0.994914 + 0.100730i \(0.0321179\pi\)
−0.994914 + 0.100730i \(0.967882\pi\)
\(888\) 0 0
\(889\) −64.0000 −2.14649
\(890\) 0 0
\(891\) 0 0
\(892\) − 8.00000i − 0.267860i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −4.00000 −0.133631
\(897\) 0 0
\(898\) 27.0000i 0.901002i
\(899\) 15.0000 0.500278
\(900\) 0 0
\(901\) 0 0
\(902\) 12.0000i 0.399556i
\(903\) 0 0
\(904\) −6.00000 −0.199557
\(905\) 0 0
\(906\) 0 0
\(907\) 34.0000i 1.12895i 0.825450 + 0.564476i \(0.190922\pi\)
−0.825450 + 0.564476i \(0.809078\pi\)
\(908\) 3.00000i 0.0995585i
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) 15.0000i 0.496428i
\(914\) 28.0000 0.926158
\(915\) 0 0
\(916\) 2.00000 0.0660819
\(917\) − 84.0000i − 2.77392i
\(918\) 0 0
\(919\) −32.0000 −1.05558 −0.527791 0.849374i \(-0.676980\pi\)
−0.527791 + 0.849374i \(0.676980\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 6.00000i − 0.197599i
\(923\) − 15.0000i − 0.493731i
\(924\) 0 0
\(925\) 0 0
\(926\) −13.0000 −0.427207
\(927\) 0 0
\(928\) − 3.00000i − 0.0984798i
\(929\) −33.0000 −1.08269 −0.541347 0.840799i \(-0.682086\pi\)
−0.541347 + 0.840799i \(0.682086\pi\)
\(930\) 0 0
\(931\) −63.0000 −2.06474
\(932\) − 18.0000i − 0.589610i
\(933\) 0 0
\(934\) 18.0000 0.588978
\(935\) 0 0
\(936\) 0 0
\(937\) − 26.0000i − 0.849383i −0.905338 0.424691i \(-0.860383\pi\)
0.905338 0.424691i \(-0.139617\pi\)
\(938\) − 56.0000i − 1.82846i
\(939\) 0 0
\(940\) 0 0
\(941\) −6.00000 −0.195594 −0.0977972 0.995206i \(-0.531180\pi\)
−0.0977972 + 0.995206i \(0.531180\pi\)
\(942\) 0 0
\(943\) 36.0000i 1.17232i
\(944\) 12.0000 0.390567
\(945\) 0 0
\(946\) 5.00000 0.162564
\(947\) 30.0000i 0.974869i 0.873160 + 0.487435i \(0.162067\pi\)
−0.873160 + 0.487435i \(0.837933\pi\)
\(948\) 0 0
\(949\) −40.0000 −1.29845
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 6.00000i − 0.194359i −0.995267 0.0971795i \(-0.969018\pi\)
0.995267 0.0971795i \(-0.0309821\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 6.00000 0.194054
\(957\) 0 0
\(958\) − 6.00000i − 0.193851i
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 20.0000i 0.644826i
\(963\) 0 0
\(964\) 10.0000 0.322078
\(965\) 0 0
\(966\) 0 0
\(967\) − 26.0000i − 0.836104i −0.908423 0.418052i \(-0.862713\pi\)
0.908423 0.418052i \(-0.137287\pi\)
\(968\) 1.00000i 0.0321412i
\(969\) 0 0
\(970\) 0 0
\(971\) 6.00000 0.192549 0.0962746 0.995355i \(-0.469307\pi\)
0.0962746 + 0.995355i \(0.469307\pi\)
\(972\) 0 0
\(973\) 52.0000i 1.66704i
\(974\) −29.0000 −0.929220
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) − 42.0000i − 1.34370i −0.740688 0.671850i \(-0.765500\pi\)
0.740688 0.671850i \(-0.234500\pi\)
\(978\) 0 0
\(979\) 3.00000 0.0958804
\(980\) 0 0
\(981\) 0 0
\(982\) 9.00000i 0.287202i
\(983\) − 39.0000i − 1.24391i −0.783054 0.621953i \(-0.786339\pi\)
0.783054 0.621953i \(-0.213661\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) − 35.0000i − 1.11350i
\(989\) 15.0000 0.476972
\(990\) 0 0
\(991\) 32.0000 1.01651 0.508257 0.861206i \(-0.330290\pi\)
0.508257 + 0.861206i \(0.330290\pi\)
\(992\) − 5.00000i − 0.158750i
\(993\) 0 0
\(994\) −12.0000 −0.380617
\(995\) 0 0
\(996\) 0 0
\(997\) 46.0000i 1.45683i 0.685134 + 0.728417i \(0.259744\pi\)
−0.685134 + 0.728417i \(0.740256\pi\)
\(998\) − 10.0000i − 0.316544i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4950.2.c.ba.199.1 2
3.2 odd 2 550.2.b.d.199.2 2
5.2 odd 4 4950.2.a.y.1.1 1
5.3 odd 4 4950.2.a.u.1.1 1
5.4 even 2 inner 4950.2.c.ba.199.2 2
12.11 even 2 4400.2.b.e.4049.2 2
15.2 even 4 550.2.a.a.1.1 1
15.8 even 4 550.2.a.m.1.1 yes 1
15.14 odd 2 550.2.b.d.199.1 2
60.23 odd 4 4400.2.a.d.1.1 1
60.47 odd 4 4400.2.a.bc.1.1 1
60.59 even 2 4400.2.b.e.4049.1 2
165.32 odd 4 6050.2.a.bb.1.1 1
165.98 odd 4 6050.2.a.n.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
550.2.a.a.1.1 1 15.2 even 4
550.2.a.m.1.1 yes 1 15.8 even 4
550.2.b.d.199.1 2 15.14 odd 2
550.2.b.d.199.2 2 3.2 odd 2
4400.2.a.d.1.1 1 60.23 odd 4
4400.2.a.bc.1.1 1 60.47 odd 4
4400.2.b.e.4049.1 2 60.59 even 2
4400.2.b.e.4049.2 2 12.11 even 2
4950.2.a.u.1.1 1 5.3 odd 4
4950.2.a.y.1.1 1 5.2 odd 4
4950.2.c.ba.199.1 2 1.1 even 1 trivial
4950.2.c.ba.199.2 2 5.4 even 2 inner
6050.2.a.n.1.1 1 165.98 odd 4
6050.2.a.bb.1.1 1 165.32 odd 4