Properties

Label 4998.2.a.x.1.1
Level $4998$
Weight $2$
Character 4998.1
Self dual yes
Analytic conductor $39.909$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4998,2,Mod(1,4998)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4998, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4998.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4998 = 2 \cdot 3 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4998.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.9092309302\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 102)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4998.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +4.00000 q^{5} -1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} -4.00000 q^{10} +1.00000 q^{12} +6.00000 q^{13} +4.00000 q^{15} +1.00000 q^{16} +1.00000 q^{17} -1.00000 q^{18} -4.00000 q^{19} +4.00000 q^{20} +6.00000 q^{23} -1.00000 q^{24} +11.0000 q^{25} -6.00000 q^{26} +1.00000 q^{27} -4.00000 q^{29} -4.00000 q^{30} +6.00000 q^{31} -1.00000 q^{32} -1.00000 q^{34} +1.00000 q^{36} -4.00000 q^{37} +4.00000 q^{38} +6.00000 q^{39} -4.00000 q^{40} +10.0000 q^{41} -4.00000 q^{43} +4.00000 q^{45} -6.00000 q^{46} -4.00000 q^{47} +1.00000 q^{48} -11.0000 q^{50} +1.00000 q^{51} +6.00000 q^{52} -2.00000 q^{53} -1.00000 q^{54} -4.00000 q^{57} +4.00000 q^{58} -12.0000 q^{59} +4.00000 q^{60} +4.00000 q^{61} -6.00000 q^{62} +1.00000 q^{64} +24.0000 q^{65} -12.0000 q^{67} +1.00000 q^{68} +6.00000 q^{69} -6.00000 q^{71} -1.00000 q^{72} -2.00000 q^{73} +4.00000 q^{74} +11.0000 q^{75} -4.00000 q^{76} -6.00000 q^{78} +10.0000 q^{79} +4.00000 q^{80} +1.00000 q^{81} -10.0000 q^{82} +12.0000 q^{83} +4.00000 q^{85} +4.00000 q^{86} -4.00000 q^{87} +2.00000 q^{89} -4.00000 q^{90} +6.00000 q^{92} +6.00000 q^{93} +4.00000 q^{94} -16.0000 q^{95} -1.00000 q^{96} -6.00000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 4.00000 1.78885 0.894427 0.447214i \(-0.147584\pi\)
0.894427 + 0.447214i \(0.147584\pi\)
\(6\) −1.00000 −0.408248
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −4.00000 −1.26491
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 1.00000 0.288675
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 0 0
\(15\) 4.00000 1.03280
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) −1.00000 −0.235702
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 4.00000 0.894427
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) −1.00000 −0.204124
\(25\) 11.0000 2.20000
\(26\) −6.00000 −1.17670
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) −4.00000 −0.730297
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 4.00000 0.648886
\(39\) 6.00000 0.960769
\(40\) −4.00000 −0.632456
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 4.00000 0.596285
\(46\) −6.00000 −0.884652
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 1.00000 0.144338
\(49\) 0 0
\(50\) −11.0000 −1.55563
\(51\) 1.00000 0.140028
\(52\) 6.00000 0.832050
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 4.00000 0.525226
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 4.00000 0.516398
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) −6.00000 −0.762001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 24.0000 2.97683
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 1.00000 0.121268
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) −1.00000 −0.117851
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 4.00000 0.464991
\(75\) 11.0000 1.27017
\(76\) −4.00000 −0.458831
\(77\) 0 0
\(78\) −6.00000 −0.679366
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 4.00000 0.447214
\(81\) 1.00000 0.111111
\(82\) −10.0000 −1.10432
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) 4.00000 0.431331
\(87\) −4.00000 −0.428845
\(88\) 0 0
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) −4.00000 −0.421637
\(91\) 0 0
\(92\) 6.00000 0.625543
\(93\) 6.00000 0.622171
\(94\) 4.00000 0.412568
\(95\) −16.0000 −1.64157
\(96\) −1.00000 −0.102062
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 11.0000 1.10000
\(101\) −14.0000 −1.39305 −0.696526 0.717532i \(-0.745272\pi\)
−0.696526 + 0.717532i \(0.745272\pi\)
\(102\) −1.00000 −0.0990148
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) 2.00000 0.194257
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 1.00000 0.0962250
\(109\) 16.0000 1.53252 0.766261 0.642529i \(-0.222115\pi\)
0.766261 + 0.642529i \(0.222115\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 4.00000 0.374634
\(115\) 24.0000 2.23801
\(116\) −4.00000 −0.371391
\(117\) 6.00000 0.554700
\(118\) 12.0000 1.10469
\(119\) 0 0
\(120\) −4.00000 −0.365148
\(121\) −11.0000 −1.00000
\(122\) −4.00000 −0.362143
\(123\) 10.0000 0.901670
\(124\) 6.00000 0.538816
\(125\) 24.0000 2.14663
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −4.00000 −0.352180
\(130\) −24.0000 −2.10494
\(131\) 16.0000 1.39793 0.698963 0.715158i \(-0.253645\pi\)
0.698963 + 0.715158i \(0.253645\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.0000 1.03664
\(135\) 4.00000 0.344265
\(136\) −1.00000 −0.0857493
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) −6.00000 −0.510754
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) 0 0
\(141\) −4.00000 −0.336861
\(142\) 6.00000 0.503509
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) −16.0000 −1.32873
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) −4.00000 −0.328798
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) −11.0000 −0.898146
\(151\) −24.0000 −1.95309 −0.976546 0.215308i \(-0.930924\pi\)
−0.976546 + 0.215308i \(0.930924\pi\)
\(152\) 4.00000 0.324443
\(153\) 1.00000 0.0808452
\(154\) 0 0
\(155\) 24.0000 1.92773
\(156\) 6.00000 0.480384
\(157\) −6.00000 −0.478852 −0.239426 0.970915i \(-0.576959\pi\)
−0.239426 + 0.970915i \(0.576959\pi\)
\(158\) −10.0000 −0.795557
\(159\) −2.00000 −0.158610
\(160\) −4.00000 −0.316228
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) 10.0000 0.780869
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 2.00000 0.154765 0.0773823 0.997001i \(-0.475344\pi\)
0.0773823 + 0.997001i \(0.475344\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) −4.00000 −0.306786
\(171\) −4.00000 −0.305888
\(172\) −4.00000 −0.304997
\(173\) 4.00000 0.304114 0.152057 0.988372i \(-0.451410\pi\)
0.152057 + 0.988372i \(0.451410\pi\)
\(174\) 4.00000 0.303239
\(175\) 0 0
\(176\) 0 0
\(177\) −12.0000 −0.901975
\(178\) −2.00000 −0.149906
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 4.00000 0.298142
\(181\) 20.0000 1.48659 0.743294 0.668965i \(-0.233262\pi\)
0.743294 + 0.668965i \(0.233262\pi\)
\(182\) 0 0
\(183\) 4.00000 0.295689
\(184\) −6.00000 −0.442326
\(185\) −16.0000 −1.17634
\(186\) −6.00000 −0.439941
\(187\) 0 0
\(188\) −4.00000 −0.291730
\(189\) 0 0
\(190\) 16.0000 1.16076
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 1.00000 0.0721688
\(193\) 6.00000 0.431889 0.215945 0.976406i \(-0.430717\pi\)
0.215945 + 0.976406i \(0.430717\pi\)
\(194\) 6.00000 0.430775
\(195\) 24.0000 1.71868
\(196\) 0 0
\(197\) 8.00000 0.569976 0.284988 0.958531i \(-0.408010\pi\)
0.284988 + 0.958531i \(0.408010\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) −11.0000 −0.777817
\(201\) −12.0000 −0.846415
\(202\) 14.0000 0.985037
\(203\) 0 0
\(204\) 1.00000 0.0700140
\(205\) 40.0000 2.79372
\(206\) 4.00000 0.278693
\(207\) 6.00000 0.417029
\(208\) 6.00000 0.416025
\(209\) 0 0
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) −2.00000 −0.137361
\(213\) −6.00000 −0.411113
\(214\) 0 0
\(215\) −16.0000 −1.09119
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) −16.0000 −1.08366
\(219\) −2.00000 −0.135147
\(220\) 0 0
\(221\) 6.00000 0.403604
\(222\) 4.00000 0.268462
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) 11.0000 0.733333
\(226\) −2.00000 −0.133038
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) −4.00000 −0.264906
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) −24.0000 −1.58251
\(231\) 0 0
\(232\) 4.00000 0.262613
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) −6.00000 −0.392232
\(235\) −16.0000 −1.04372
\(236\) −12.0000 −0.781133
\(237\) 10.0000 0.649570
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 4.00000 0.258199
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 11.0000 0.707107
\(243\) 1.00000 0.0641500
\(244\) 4.00000 0.256074
\(245\) 0 0
\(246\) −10.0000 −0.637577
\(247\) −24.0000 −1.52708
\(248\) −6.00000 −0.381000
\(249\) 12.0000 0.760469
\(250\) −24.0000 −1.51789
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −8.00000 −0.501965
\(255\) 4.00000 0.250490
\(256\) 1.00000 0.0625000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 4.00000 0.249029
\(259\) 0 0
\(260\) 24.0000 1.48842
\(261\) −4.00000 −0.247594
\(262\) −16.0000 −0.988483
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) −8.00000 −0.491436
\(266\) 0 0
\(267\) 2.00000 0.122398
\(268\) −12.0000 −0.733017
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) −4.00000 −0.243432
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) 0 0
\(276\) 6.00000 0.361158
\(277\) −8.00000 −0.480673 −0.240337 0.970690i \(-0.577258\pi\)
−0.240337 + 0.970690i \(0.577258\pi\)
\(278\) 8.00000 0.479808
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 4.00000 0.238197
\(283\) −32.0000 −1.90220 −0.951101 0.308879i \(-0.900046\pi\)
−0.951101 + 0.308879i \(0.900046\pi\)
\(284\) −6.00000 −0.356034
\(285\) −16.0000 −0.947758
\(286\) 0 0
\(287\) 0 0
\(288\) −1.00000 −0.0589256
\(289\) 1.00000 0.0588235
\(290\) 16.0000 0.939552
\(291\) −6.00000 −0.351726
\(292\) −2.00000 −0.117041
\(293\) −2.00000 −0.116841 −0.0584206 0.998292i \(-0.518606\pi\)
−0.0584206 + 0.998292i \(0.518606\pi\)
\(294\) 0 0
\(295\) −48.0000 −2.79467
\(296\) 4.00000 0.232495
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 36.0000 2.08193
\(300\) 11.0000 0.635085
\(301\) 0 0
\(302\) 24.0000 1.38104
\(303\) −14.0000 −0.804279
\(304\) −4.00000 −0.229416
\(305\) 16.0000 0.916157
\(306\) −1.00000 −0.0571662
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) −24.0000 −1.36311
\(311\) −30.0000 −1.70114 −0.850572 0.525859i \(-0.823744\pi\)
−0.850572 + 0.525859i \(0.823744\pi\)
\(312\) −6.00000 −0.339683
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 6.00000 0.338600
\(315\) 0 0
\(316\) 10.0000 0.562544
\(317\) −16.0000 −0.898650 −0.449325 0.893368i \(-0.648335\pi\)
−0.449325 + 0.893368i \(0.648335\pi\)
\(318\) 2.00000 0.112154
\(319\) 0 0
\(320\) 4.00000 0.223607
\(321\) 0 0
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 1.00000 0.0555556
\(325\) 66.0000 3.66102
\(326\) −12.0000 −0.664619
\(327\) 16.0000 0.884802
\(328\) −10.0000 −0.552158
\(329\) 0 0
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 12.0000 0.658586
\(333\) −4.00000 −0.219199
\(334\) −2.00000 −0.109435
\(335\) −48.0000 −2.62252
\(336\) 0 0
\(337\) −6.00000 −0.326841 −0.163420 0.986557i \(-0.552253\pi\)
−0.163420 + 0.986557i \(0.552253\pi\)
\(338\) −23.0000 −1.25104
\(339\) 2.00000 0.108625
\(340\) 4.00000 0.216930
\(341\) 0 0
\(342\) 4.00000 0.216295
\(343\) 0 0
\(344\) 4.00000 0.215666
\(345\) 24.0000 1.29212
\(346\) −4.00000 −0.215041
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) −4.00000 −0.214423
\(349\) 30.0000 1.60586 0.802932 0.596071i \(-0.203272\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(350\) 0 0
\(351\) 6.00000 0.320256
\(352\) 0 0
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 12.0000 0.637793
\(355\) −24.0000 −1.27379
\(356\) 2.00000 0.106000
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −4.00000 −0.210819
\(361\) −3.00000 −0.157895
\(362\) −20.0000 −1.05118
\(363\) −11.0000 −0.577350
\(364\) 0 0
\(365\) −8.00000 −0.418739
\(366\) −4.00000 −0.209083
\(367\) −10.0000 −0.521996 −0.260998 0.965339i \(-0.584052\pi\)
−0.260998 + 0.965339i \(0.584052\pi\)
\(368\) 6.00000 0.312772
\(369\) 10.0000 0.520579
\(370\) 16.0000 0.831800
\(371\) 0 0
\(372\) 6.00000 0.311086
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) 24.0000 1.23935
\(376\) 4.00000 0.206284
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) −16.0000 −0.820783
\(381\) 8.00000 0.409852
\(382\) 4.00000 0.204658
\(383\) −28.0000 −1.43073 −0.715367 0.698749i \(-0.753740\pi\)
−0.715367 + 0.698749i \(0.753740\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) −6.00000 −0.305392
\(387\) −4.00000 −0.203331
\(388\) −6.00000 −0.304604
\(389\) −14.0000 −0.709828 −0.354914 0.934899i \(-0.615490\pi\)
−0.354914 + 0.934899i \(0.615490\pi\)
\(390\) −24.0000 −1.21529
\(391\) 6.00000 0.303433
\(392\) 0 0
\(393\) 16.0000 0.807093
\(394\) −8.00000 −0.403034
\(395\) 40.0000 2.01262
\(396\) 0 0
\(397\) −20.0000 −1.00377 −0.501886 0.864934i \(-0.667360\pi\)
−0.501886 + 0.864934i \(0.667360\pi\)
\(398\) 14.0000 0.701757
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 12.0000 0.598506
\(403\) 36.0000 1.79329
\(404\) −14.0000 −0.696526
\(405\) 4.00000 0.198762
\(406\) 0 0
\(407\) 0 0
\(408\) −1.00000 −0.0495074
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) −40.0000 −1.97546
\(411\) −6.00000 −0.295958
\(412\) −4.00000 −0.197066
\(413\) 0 0
\(414\) −6.00000 −0.294884
\(415\) 48.0000 2.35623
\(416\) −6.00000 −0.294174
\(417\) −8.00000 −0.391762
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) 34.0000 1.65706 0.828529 0.559946i \(-0.189178\pi\)
0.828529 + 0.559946i \(0.189178\pi\)
\(422\) −8.00000 −0.389434
\(423\) −4.00000 −0.194487
\(424\) 2.00000 0.0971286
\(425\) 11.0000 0.533578
\(426\) 6.00000 0.290701
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 16.0000 0.771589
\(431\) 14.0000 0.674356 0.337178 0.941441i \(-0.390528\pi\)
0.337178 + 0.941441i \(0.390528\pi\)
\(432\) 1.00000 0.0481125
\(433\) 18.0000 0.865025 0.432512 0.901628i \(-0.357627\pi\)
0.432512 + 0.901628i \(0.357627\pi\)
\(434\) 0 0
\(435\) −16.0000 −0.767141
\(436\) 16.0000 0.766261
\(437\) −24.0000 −1.14808
\(438\) 2.00000 0.0955637
\(439\) 10.0000 0.477274 0.238637 0.971109i \(-0.423299\pi\)
0.238637 + 0.971109i \(0.423299\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −6.00000 −0.285391
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) −4.00000 −0.189832
\(445\) 8.00000 0.379236
\(446\) −4.00000 −0.189405
\(447\) −6.00000 −0.283790
\(448\) 0 0
\(449\) −26.0000 −1.22702 −0.613508 0.789689i \(-0.710242\pi\)
−0.613508 + 0.789689i \(0.710242\pi\)
\(450\) −11.0000 −0.518545
\(451\) 0 0
\(452\) 2.00000 0.0940721
\(453\) −24.0000 −1.12762
\(454\) 4.00000 0.187729
\(455\) 0 0
\(456\) 4.00000 0.187317
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) −2.00000 −0.0934539
\(459\) 1.00000 0.0466760
\(460\) 24.0000 1.11901
\(461\) 10.0000 0.465746 0.232873 0.972507i \(-0.425187\pi\)
0.232873 + 0.972507i \(0.425187\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) −4.00000 −0.185695
\(465\) 24.0000 1.11297
\(466\) 6.00000 0.277945
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 6.00000 0.277350
\(469\) 0 0
\(470\) 16.0000 0.738025
\(471\) −6.00000 −0.276465
\(472\) 12.0000 0.552345
\(473\) 0 0
\(474\) −10.0000 −0.459315
\(475\) −44.0000 −2.01886
\(476\) 0 0
\(477\) −2.00000 −0.0915737
\(478\) 20.0000 0.914779
\(479\) −10.0000 −0.456912 −0.228456 0.973554i \(-0.573368\pi\)
−0.228456 + 0.973554i \(0.573368\pi\)
\(480\) −4.00000 −0.182574
\(481\) −24.0000 −1.09431
\(482\) −18.0000 −0.819878
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) −24.0000 −1.08978
\(486\) −1.00000 −0.0453609
\(487\) −38.0000 −1.72194 −0.860972 0.508652i \(-0.830144\pi\)
−0.860972 + 0.508652i \(0.830144\pi\)
\(488\) −4.00000 −0.181071
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 10.0000 0.450835
\(493\) −4.00000 −0.180151
\(494\) 24.0000 1.07981
\(495\) 0 0
\(496\) 6.00000 0.269408
\(497\) 0 0
\(498\) −12.0000 −0.537733
\(499\) 32.0000 1.43252 0.716258 0.697835i \(-0.245853\pi\)
0.716258 + 0.697835i \(0.245853\pi\)
\(500\) 24.0000 1.07331
\(501\) 2.00000 0.0893534
\(502\) 12.0000 0.535586
\(503\) 26.0000 1.15928 0.579641 0.814872i \(-0.303193\pi\)
0.579641 + 0.814872i \(0.303193\pi\)
\(504\) 0 0
\(505\) −56.0000 −2.49197
\(506\) 0 0
\(507\) 23.0000 1.02147
\(508\) 8.00000 0.354943
\(509\) −26.0000 −1.15243 −0.576215 0.817298i \(-0.695471\pi\)
−0.576215 + 0.817298i \(0.695471\pi\)
\(510\) −4.00000 −0.177123
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) −4.00000 −0.176604
\(514\) 18.0000 0.793946
\(515\) −16.0000 −0.705044
\(516\) −4.00000 −0.176090
\(517\) 0 0
\(518\) 0 0
\(519\) 4.00000 0.175581
\(520\) −24.0000 −1.05247
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 4.00000 0.175075
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 16.0000 0.698963
\(525\) 0 0
\(526\) 12.0000 0.523225
\(527\) 6.00000 0.261364
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 8.00000 0.347498
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) 60.0000 2.59889
\(534\) −2.00000 −0.0865485
\(535\) 0 0
\(536\) 12.0000 0.518321
\(537\) −12.0000 −0.517838
\(538\) −12.0000 −0.517357
\(539\) 0 0
\(540\) 4.00000 0.172133
\(541\) −12.0000 −0.515920 −0.257960 0.966156i \(-0.583050\pi\)
−0.257960 + 0.966156i \(0.583050\pi\)
\(542\) −16.0000 −0.687259
\(543\) 20.0000 0.858282
\(544\) −1.00000 −0.0428746
\(545\) 64.0000 2.74146
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) −6.00000 −0.256307
\(549\) 4.00000 0.170716
\(550\) 0 0
\(551\) 16.0000 0.681623
\(552\) −6.00000 −0.255377
\(553\) 0 0
\(554\) 8.00000 0.339887
\(555\) −16.0000 −0.679162
\(556\) −8.00000 −0.339276
\(557\) 14.0000 0.593199 0.296600 0.955002i \(-0.404147\pi\)
0.296600 + 0.955002i \(0.404147\pi\)
\(558\) −6.00000 −0.254000
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) 18.0000 0.759284
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) −4.00000 −0.168430
\(565\) 8.00000 0.336563
\(566\) 32.0000 1.34506
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 16.0000 0.670166
\(571\) 44.0000 1.84134 0.920671 0.390339i \(-0.127642\pi\)
0.920671 + 0.390339i \(0.127642\pi\)
\(572\) 0 0
\(573\) −4.00000 −0.167102
\(574\) 0 0
\(575\) 66.0000 2.75239
\(576\) 1.00000 0.0416667
\(577\) 30.0000 1.24892 0.624458 0.781058i \(-0.285320\pi\)
0.624458 + 0.781058i \(0.285320\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 6.00000 0.249351
\(580\) −16.0000 −0.664364
\(581\) 0 0
\(582\) 6.00000 0.248708
\(583\) 0 0
\(584\) 2.00000 0.0827606
\(585\) 24.0000 0.992278
\(586\) 2.00000 0.0826192
\(587\) −36.0000 −1.48588 −0.742940 0.669359i \(-0.766569\pi\)
−0.742940 + 0.669359i \(0.766569\pi\)
\(588\) 0 0
\(589\) −24.0000 −0.988903
\(590\) 48.0000 1.97613
\(591\) 8.00000 0.329076
\(592\) −4.00000 −0.164399
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) −14.0000 −0.572982
\(598\) −36.0000 −1.47215
\(599\) −16.0000 −0.653742 −0.326871 0.945069i \(-0.605994\pi\)
−0.326871 + 0.945069i \(0.605994\pi\)
\(600\) −11.0000 −0.449073
\(601\) 38.0000 1.55005 0.775026 0.631929i \(-0.217737\pi\)
0.775026 + 0.631929i \(0.217737\pi\)
\(602\) 0 0
\(603\) −12.0000 −0.488678
\(604\) −24.0000 −0.976546
\(605\) −44.0000 −1.78885
\(606\) 14.0000 0.568711
\(607\) 38.0000 1.54237 0.771186 0.636610i \(-0.219664\pi\)
0.771186 + 0.636610i \(0.219664\pi\)
\(608\) 4.00000 0.162221
\(609\) 0 0
\(610\) −16.0000 −0.647821
\(611\) −24.0000 −0.970936
\(612\) 1.00000 0.0404226
\(613\) 30.0000 1.21169 0.605844 0.795583i \(-0.292835\pi\)
0.605844 + 0.795583i \(0.292835\pi\)
\(614\) −12.0000 −0.484281
\(615\) 40.0000 1.61296
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 4.00000 0.160904
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 24.0000 0.963863
\(621\) 6.00000 0.240772
\(622\) 30.0000 1.20289
\(623\) 0 0
\(624\) 6.00000 0.240192
\(625\) 41.0000 1.64000
\(626\) −26.0000 −1.03917
\(627\) 0 0
\(628\) −6.00000 −0.239426
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) −10.0000 −0.397779
\(633\) 8.00000 0.317971
\(634\) 16.0000 0.635441
\(635\) 32.0000 1.26988
\(636\) −2.00000 −0.0793052
\(637\) 0 0
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) −4.00000 −0.158114
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) 0 0
\(645\) −16.0000 −0.629999
\(646\) 4.00000 0.157378
\(647\) −28.0000 −1.10079 −0.550397 0.834903i \(-0.685524\pi\)
−0.550397 + 0.834903i \(0.685524\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 0 0
\(650\) −66.0000 −2.58873
\(651\) 0 0
\(652\) 12.0000 0.469956
\(653\) 20.0000 0.782660 0.391330 0.920250i \(-0.372015\pi\)
0.391330 + 0.920250i \(0.372015\pi\)
\(654\) −16.0000 −0.625650
\(655\) 64.0000 2.50069
\(656\) 10.0000 0.390434
\(657\) −2.00000 −0.0780274
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) −20.0000 −0.777322
\(663\) 6.00000 0.233021
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 4.00000 0.154997
\(667\) −24.0000 −0.929284
\(668\) 2.00000 0.0773823
\(669\) 4.00000 0.154649
\(670\) 48.0000 1.85440
\(671\) 0 0
\(672\) 0 0
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) 6.00000 0.231111
\(675\) 11.0000 0.423390
\(676\) 23.0000 0.884615
\(677\) −8.00000 −0.307465 −0.153732 0.988113i \(-0.549129\pi\)
−0.153732 + 0.988113i \(0.549129\pi\)
\(678\) −2.00000 −0.0768095
\(679\) 0 0
\(680\) −4.00000 −0.153393
\(681\) −4.00000 −0.153280
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) −4.00000 −0.152944
\(685\) −24.0000 −0.916993
\(686\) 0 0
\(687\) 2.00000 0.0763048
\(688\) −4.00000 −0.152499
\(689\) −12.0000 −0.457164
\(690\) −24.0000 −0.913664
\(691\) −16.0000 −0.608669 −0.304334 0.952565i \(-0.598434\pi\)
−0.304334 + 0.952565i \(0.598434\pi\)
\(692\) 4.00000 0.152057
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) −32.0000 −1.21383
\(696\) 4.00000 0.151620
\(697\) 10.0000 0.378777
\(698\) −30.0000 −1.13552
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) −6.00000 −0.226455
\(703\) 16.0000 0.603451
\(704\) 0 0
\(705\) −16.0000 −0.602595
\(706\) 14.0000 0.526897
\(707\) 0 0
\(708\) −12.0000 −0.450988
\(709\) −16.0000 −0.600893 −0.300446 0.953799i \(-0.597136\pi\)
−0.300446 + 0.953799i \(0.597136\pi\)
\(710\) 24.0000 0.900704
\(711\) 10.0000 0.375029
\(712\) −2.00000 −0.0749532
\(713\) 36.0000 1.34821
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) −20.0000 −0.746914
\(718\) 0 0
\(719\) −42.0000 −1.56634 −0.783168 0.621810i \(-0.786397\pi\)
−0.783168 + 0.621810i \(0.786397\pi\)
\(720\) 4.00000 0.149071
\(721\) 0 0
\(722\) 3.00000 0.111648
\(723\) 18.0000 0.669427
\(724\) 20.0000 0.743294
\(725\) −44.0000 −1.63412
\(726\) 11.0000 0.408248
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 8.00000 0.296093
\(731\) −4.00000 −0.147945
\(732\) 4.00000 0.147844
\(733\) −18.0000 −0.664845 −0.332423 0.943131i \(-0.607866\pi\)
−0.332423 + 0.943131i \(0.607866\pi\)
\(734\) 10.0000 0.369107
\(735\) 0 0
\(736\) −6.00000 −0.221163
\(737\) 0 0
\(738\) −10.0000 −0.368105
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) −16.0000 −0.588172
\(741\) −24.0000 −0.881662
\(742\) 0 0
\(743\) 38.0000 1.39408 0.697042 0.717030i \(-0.254499\pi\)
0.697042 + 0.717030i \(0.254499\pi\)
\(744\) −6.00000 −0.219971
\(745\) −24.0000 −0.879292
\(746\) 14.0000 0.512576
\(747\) 12.0000 0.439057
\(748\) 0 0
\(749\) 0 0
\(750\) −24.0000 −0.876356
\(751\) −34.0000 −1.24068 −0.620339 0.784334i \(-0.713005\pi\)
−0.620339 + 0.784334i \(0.713005\pi\)
\(752\) −4.00000 −0.145865
\(753\) −12.0000 −0.437304
\(754\) 24.0000 0.874028
\(755\) −96.0000 −3.49380
\(756\) 0 0
\(757\) 14.0000 0.508839 0.254419 0.967094i \(-0.418116\pi\)
0.254419 + 0.967094i \(0.418116\pi\)
\(758\) 4.00000 0.145287
\(759\) 0 0
\(760\) 16.0000 0.580381
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) −8.00000 −0.289809
\(763\) 0 0
\(764\) −4.00000 −0.144715
\(765\) 4.00000 0.144620
\(766\) 28.0000 1.01168
\(767\) −72.0000 −2.59977
\(768\) 1.00000 0.0360844
\(769\) −26.0000 −0.937584 −0.468792 0.883309i \(-0.655311\pi\)
−0.468792 + 0.883309i \(0.655311\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 6.00000 0.215945
\(773\) −42.0000 −1.51064 −0.755318 0.655359i \(-0.772517\pi\)
−0.755318 + 0.655359i \(0.772517\pi\)
\(774\) 4.00000 0.143777
\(775\) 66.0000 2.37079
\(776\) 6.00000 0.215387
\(777\) 0 0
\(778\) 14.0000 0.501924
\(779\) −40.0000 −1.43315
\(780\) 24.0000 0.859338
\(781\) 0 0
\(782\) −6.00000 −0.214560
\(783\) −4.00000 −0.142948
\(784\) 0 0
\(785\) −24.0000 −0.856597
\(786\) −16.0000 −0.570701
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 8.00000 0.284988
\(789\) −12.0000 −0.427211
\(790\) −40.0000 −1.42314
\(791\) 0 0
\(792\) 0 0
\(793\) 24.0000 0.852265
\(794\) 20.0000 0.709773
\(795\) −8.00000 −0.283731
\(796\) −14.0000 −0.496217
\(797\) −46.0000 −1.62940 −0.814702 0.579880i \(-0.803099\pi\)
−0.814702 + 0.579880i \(0.803099\pi\)
\(798\) 0 0
\(799\) −4.00000 −0.141510
\(800\) −11.0000 −0.388909
\(801\) 2.00000 0.0706665
\(802\) −30.0000 −1.05934
\(803\) 0 0
\(804\) −12.0000 −0.423207
\(805\) 0 0
\(806\) −36.0000 −1.26805
\(807\) 12.0000 0.422420
\(808\) 14.0000 0.492518
\(809\) −26.0000 −0.914111 −0.457056 0.889438i \(-0.651096\pi\)
−0.457056 + 0.889438i \(0.651096\pi\)
\(810\) −4.00000 −0.140546
\(811\) 12.0000 0.421377 0.210688 0.977553i \(-0.432429\pi\)
0.210688 + 0.977553i \(0.432429\pi\)
\(812\) 0 0
\(813\) 16.0000 0.561144
\(814\) 0 0
\(815\) 48.0000 1.68137
\(816\) 1.00000 0.0350070
\(817\) 16.0000 0.559769
\(818\) −26.0000 −0.909069
\(819\) 0 0
\(820\) 40.0000 1.39686
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 6.00000 0.209274
\(823\) 18.0000 0.627441 0.313720 0.949515i \(-0.398425\pi\)
0.313720 + 0.949515i \(0.398425\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) 0 0
\(827\) 16.0000 0.556375 0.278187 0.960527i \(-0.410266\pi\)
0.278187 + 0.960527i \(0.410266\pi\)
\(828\) 6.00000 0.208514
\(829\) −6.00000 −0.208389 −0.104194 0.994557i \(-0.533226\pi\)
−0.104194 + 0.994557i \(0.533226\pi\)
\(830\) −48.0000 −1.66610
\(831\) −8.00000 −0.277517
\(832\) 6.00000 0.208013
\(833\) 0 0
\(834\) 8.00000 0.277017
\(835\) 8.00000 0.276851
\(836\) 0 0
\(837\) 6.00000 0.207390
\(838\) −12.0000 −0.414533
\(839\) 30.0000 1.03572 0.517858 0.855467i \(-0.326730\pi\)
0.517858 + 0.855467i \(0.326730\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) −34.0000 −1.17172
\(843\) −18.0000 −0.619953
\(844\) 8.00000 0.275371
\(845\) 92.0000 3.16490
\(846\) 4.00000 0.137523
\(847\) 0 0
\(848\) −2.00000 −0.0686803
\(849\) −32.0000 −1.09824
\(850\) −11.0000 −0.377297
\(851\) −24.0000 −0.822709
\(852\) −6.00000 −0.205557
\(853\) 16.0000 0.547830 0.273915 0.961754i \(-0.411681\pi\)
0.273915 + 0.961754i \(0.411681\pi\)
\(854\) 0 0
\(855\) −16.0000 −0.547188
\(856\) 0 0
\(857\) 10.0000 0.341593 0.170797 0.985306i \(-0.445366\pi\)
0.170797 + 0.985306i \(0.445366\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) −16.0000 −0.545595
\(861\) 0 0
\(862\) −14.0000 −0.476842
\(863\) −48.0000 −1.63394 −0.816970 0.576681i \(-0.804348\pi\)
−0.816970 + 0.576681i \(0.804348\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 16.0000 0.544016
\(866\) −18.0000 −0.611665
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) 0 0
\(870\) 16.0000 0.542451
\(871\) −72.0000 −2.43963
\(872\) −16.0000 −0.541828
\(873\) −6.00000 −0.203069
\(874\) 24.0000 0.811812
\(875\) 0 0
\(876\) −2.00000 −0.0675737
\(877\) −24.0000 −0.810422 −0.405211 0.914223i \(-0.632802\pi\)
−0.405211 + 0.914223i \(0.632802\pi\)
\(878\) −10.0000 −0.337484
\(879\) −2.00000 −0.0674583
\(880\) 0 0
\(881\) −50.0000 −1.68454 −0.842271 0.539054i \(-0.818782\pi\)
−0.842271 + 0.539054i \(0.818782\pi\)
\(882\) 0 0
\(883\) −52.0000 −1.74994 −0.874970 0.484178i \(-0.839119\pi\)
−0.874970 + 0.484178i \(0.839119\pi\)
\(884\) 6.00000 0.201802
\(885\) −48.0000 −1.61350
\(886\) −12.0000 −0.403148
\(887\) −18.0000 −0.604381 −0.302190 0.953248i \(-0.597718\pi\)
−0.302190 + 0.953248i \(0.597718\pi\)
\(888\) 4.00000 0.134231
\(889\) 0 0
\(890\) −8.00000 −0.268161
\(891\) 0 0
\(892\) 4.00000 0.133930
\(893\) 16.0000 0.535420
\(894\) 6.00000 0.200670
\(895\) −48.0000 −1.60446
\(896\) 0 0
\(897\) 36.0000 1.20201
\(898\) 26.0000 0.867631
\(899\) −24.0000 −0.800445
\(900\) 11.0000 0.366667
\(901\) −2.00000 −0.0666297
\(902\) 0 0
\(903\) 0 0
\(904\) −2.00000 −0.0665190
\(905\) 80.0000 2.65929
\(906\) 24.0000 0.797347
\(907\) 24.0000 0.796907 0.398453 0.917189i \(-0.369547\pi\)
0.398453 + 0.917189i \(0.369547\pi\)
\(908\) −4.00000 −0.132745
\(909\) −14.0000 −0.464351
\(910\) 0 0
\(911\) 26.0000 0.861418 0.430709 0.902491i \(-0.358263\pi\)
0.430709 + 0.902491i \(0.358263\pi\)
\(912\) −4.00000 −0.132453
\(913\) 0 0
\(914\) −22.0000 −0.727695
\(915\) 16.0000 0.528944
\(916\) 2.00000 0.0660819
\(917\) 0 0
\(918\) −1.00000 −0.0330049
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) −24.0000 −0.791257
\(921\) 12.0000 0.395413
\(922\) −10.0000 −0.329332
\(923\) −36.0000 −1.18495
\(924\) 0 0
\(925\) −44.0000 −1.44671
\(926\) 4.00000 0.131448
\(927\) −4.00000 −0.131377
\(928\) 4.00000 0.131306
\(929\) 34.0000 1.11550 0.557752 0.830008i \(-0.311664\pi\)
0.557752 + 0.830008i \(0.311664\pi\)
\(930\) −24.0000 −0.786991
\(931\) 0 0
\(932\) −6.00000 −0.196537
\(933\) −30.0000 −0.982156
\(934\) −36.0000 −1.17796
\(935\) 0 0
\(936\) −6.00000 −0.196116
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) 0 0
\(939\) 26.0000 0.848478
\(940\) −16.0000 −0.521862
\(941\) −48.0000 −1.56476 −0.782378 0.622804i \(-0.785993\pi\)
−0.782378 + 0.622804i \(0.785993\pi\)
\(942\) 6.00000 0.195491
\(943\) 60.0000 1.95387
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 0 0
\(947\) −24.0000 −0.779895 −0.389948 0.920837i \(-0.627507\pi\)
−0.389948 + 0.920837i \(0.627507\pi\)
\(948\) 10.0000 0.324785
\(949\) −12.0000 −0.389536
\(950\) 44.0000 1.42755
\(951\) −16.0000 −0.518836
\(952\) 0 0
\(953\) 22.0000 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(954\) 2.00000 0.0647524
\(955\) −16.0000 −0.517748
\(956\) −20.0000 −0.646846
\(957\) 0 0
\(958\) 10.0000 0.323085
\(959\) 0 0
\(960\) 4.00000 0.129099
\(961\) 5.00000 0.161290
\(962\) 24.0000 0.773791
\(963\) 0 0
\(964\) 18.0000 0.579741
\(965\) 24.0000 0.772587
\(966\) 0 0
\(967\) −44.0000 −1.41494 −0.707472 0.706741i \(-0.750165\pi\)
−0.707472 + 0.706741i \(0.750165\pi\)
\(968\) 11.0000 0.353553
\(969\) −4.00000 −0.128499
\(970\) 24.0000 0.770594
\(971\) −20.0000 −0.641831 −0.320915 0.947108i \(-0.603990\pi\)
−0.320915 + 0.947108i \(0.603990\pi\)
\(972\) 1.00000 0.0320750
\(973\) 0 0
\(974\) 38.0000 1.21760
\(975\) 66.0000 2.11369
\(976\) 4.00000 0.128037
\(977\) 2.00000 0.0639857 0.0319928 0.999488i \(-0.489815\pi\)
0.0319928 + 0.999488i \(0.489815\pi\)
\(978\) −12.0000 −0.383718
\(979\) 0 0
\(980\) 0 0
\(981\) 16.0000 0.510841
\(982\) 20.0000 0.638226
\(983\) 38.0000 1.21201 0.606006 0.795460i \(-0.292771\pi\)
0.606006 + 0.795460i \(0.292771\pi\)
\(984\) −10.0000 −0.318788
\(985\) 32.0000 1.01960
\(986\) 4.00000 0.127386
\(987\) 0 0
\(988\) −24.0000 −0.763542
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −34.0000 −1.08005 −0.540023 0.841650i \(-0.681584\pi\)
−0.540023 + 0.841650i \(0.681584\pi\)
\(992\) −6.00000 −0.190500
\(993\) 20.0000 0.634681
\(994\) 0 0
\(995\) −56.0000 −1.77532
\(996\) 12.0000 0.380235
\(997\) 20.0000 0.633406 0.316703 0.948525i \(-0.397424\pi\)
0.316703 + 0.948525i \(0.397424\pi\)
\(998\) −32.0000 −1.01294
\(999\) −4.00000 −0.126554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4998.2.a.x.1.1 1
7.6 odd 2 102.2.a.a.1.1 1
21.20 even 2 306.2.a.d.1.1 1
28.27 even 2 816.2.a.h.1.1 1
35.13 even 4 2550.2.d.q.2449.2 2
35.27 even 4 2550.2.d.q.2449.1 2
35.34 odd 2 2550.2.a.be.1.1 1
56.13 odd 2 3264.2.a.bf.1.1 1
56.27 even 2 3264.2.a.p.1.1 1
84.83 odd 2 2448.2.a.t.1.1 1
105.104 even 2 7650.2.a.z.1.1 1
119.13 odd 4 1734.2.b.d.577.1 2
119.55 odd 4 1734.2.b.d.577.2 2
119.76 odd 8 1734.2.f.g.829.2 4
119.83 odd 8 1734.2.f.g.1483.2 4
119.104 odd 8 1734.2.f.g.1483.1 4
119.111 odd 8 1734.2.f.g.829.1 4
119.118 odd 2 1734.2.a.h.1.1 1
168.83 odd 2 9792.2.a.b.1.1 1
168.125 even 2 9792.2.a.a.1.1 1
357.356 even 2 5202.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.2.a.a.1.1 1 7.6 odd 2
306.2.a.d.1.1 1 21.20 even 2
816.2.a.h.1.1 1 28.27 even 2
1734.2.a.h.1.1 1 119.118 odd 2
1734.2.b.d.577.1 2 119.13 odd 4
1734.2.b.d.577.2 2 119.55 odd 4
1734.2.f.g.829.1 4 119.111 odd 8
1734.2.f.g.829.2 4 119.76 odd 8
1734.2.f.g.1483.1 4 119.104 odd 8
1734.2.f.g.1483.2 4 119.83 odd 8
2448.2.a.t.1.1 1 84.83 odd 2
2550.2.a.be.1.1 1 35.34 odd 2
2550.2.d.q.2449.1 2 35.27 even 4
2550.2.d.q.2449.2 2 35.13 even 4
3264.2.a.p.1.1 1 56.27 even 2
3264.2.a.bf.1.1 1 56.13 odd 2
4998.2.a.x.1.1 1 1.1 even 1 trivial
5202.2.a.g.1.1 1 357.356 even 2
7650.2.a.z.1.1 1 105.104 even 2
9792.2.a.a.1.1 1 168.125 even 2
9792.2.a.b.1.1 1 168.83 odd 2