Properties

Label 5.12.a.b
Level $5$
Weight $12$
Character orbit 5.a
Self dual yes
Analytic conductor $3.842$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5,12,Mod(1,5)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 5.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.84171590280\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{151}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 151 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{151}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (3 \beta - 10) q^{2} + (16 \beta - 110) q^{3} + ( - 60 \beta + 3488) q^{4} - 3125 q^{5} + ( - 490 \beta + 30092) q^{6} + (528 \beta + 28950) q^{7} + (4920 \beta - 123120) q^{8} + ( - 3520 \beta - 10423) q^{9}+ \cdots + (1363156960 \beta + 59350136224) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 20 q^{2} - 220 q^{3} + 6976 q^{4} - 6250 q^{5} + 60184 q^{6} + 57900 q^{7} - 246240 q^{8} - 20846 q^{9} + 62500 q^{10} - 618176 q^{11} - 1927040 q^{12} + 3414260 q^{13} + 1334472 q^{14} + 687500 q^{15}+ \cdots + 118700272448 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−12.2882
12.2882
−83.7292 −503.223 4962.58 −3125.00 42134.4 15973.7 −244036. 76086.0 261654.
1.2 63.7292 283.223 2013.42 −3125.00 18049.6 41926.3 −2204.06 −96932.0 −199154.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5.12.a.b 2
3.b odd 2 1 45.12.a.d 2
4.b odd 2 1 80.12.a.j 2
5.b even 2 1 25.12.a.c 2
5.c odd 4 2 25.12.b.c 4
7.b odd 2 1 245.12.a.b 2
15.d odd 2 1 225.12.a.h 2
15.e even 4 2 225.12.b.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.12.a.b 2 1.a even 1 1 trivial
25.12.a.c 2 5.b even 2 1
25.12.b.c 4 5.c odd 4 2
45.12.a.d 2 3.b odd 2 1
80.12.a.j 2 4.b odd 2 1
225.12.a.h 2 15.d odd 2 1
225.12.b.f 4 15.e even 4 2
245.12.a.b 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 20T_{2} - 5336 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(5))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 20T - 5336 \) Copy content Toggle raw display
$3$ \( T^{2} + 220T - 142524 \) Copy content Toggle raw display
$5$ \( (T + 3125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 57900 T + 669716964 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 325428448256 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 2814341409316 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 9235396748636 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 38441690658800 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 867920956103556 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 974669100314300 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 16\!\cdots\!76 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 21\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 17\!\cdots\!36 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 17\!\cdots\!64 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 23\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 20\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 52\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 11\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 56\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 26\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 15\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 19\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 68\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 12\!\cdots\!36 \) Copy content Toggle raw display
show more
show less