Properties

Label 5.18.a.a
Level $5$
Weight $18$
Character orbit 5.a
Self dual yes
Analytic conductor $9.161$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5,18,Mod(1,5)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5.1");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 5.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.16110436723\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{39}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 39 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 36\sqrt{39}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 340) q^{2} + ( - 52 \beta - 5490) q^{3} + (680 \beta + 35072) q^{4} - 390625 q^{5} + ( - 23170 \beta - 4494888) q^{6} + ( - 47684 \beta - 11410350) q^{7} + (135200 \beta + 1729920) q^{8} + (570960 \beta + 37670913) q^{9}+ \cdots + ( - 334427382713880 \beta - 45\!\cdots\!64) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 680 q^{2} - 10980 q^{3} + 70144 q^{4} - 781250 q^{5} - 8989776 q^{6} - 22820700 q^{7} + 3459840 q^{8} + 75341826 q^{9} - 265625000 q^{10} - 1053355456 q^{11} - 3959562240 q^{12} - 1637425660 q^{13}+ \cdots - 91\!\cdots\!28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.24500
6.24500
115.180 6200.64 −117806. −390625. 714190. −690037. −2.86657e7 −9.06923e7 −4.49922e7
1.2 564.820 −17180.6 187950. −390625. −9.70397e6 −2.21307e7 3.21256e7 1.66034e8 −2.20633e8
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5.18.a.a 2
3.b odd 2 1 45.18.a.a 2
4.b odd 2 1 80.18.a.f 2
5.b even 2 1 25.18.a.b 2
5.c odd 4 2 25.18.b.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.18.a.a 2 1.a even 1 1 trivial
25.18.a.b 2 5.b even 2 1
25.18.b.b 4 5.c odd 4 2
45.18.a.a 2 3.b odd 2 1
80.18.a.f 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 680T_{2} + 65056 \) acting on \(S_{18}^{\mathrm{new}}(\Gamma_0(5))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 680T + 65056 \) Copy content Toggle raw display
$3$ \( T^{2} + 10980 T - 106530876 \) Copy content Toggle raw display
$5$ \( (T + 390625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots + 15270966784836 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 23\!\cdots\!84 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 18\!\cdots\!16 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 38\!\cdots\!96 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 64\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 95\!\cdots\!44 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 42\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 44\!\cdots\!56 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 72\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 52\!\cdots\!24 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 19\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 62\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 28\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 19\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 13\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 49\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 75\!\cdots\!36 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 51\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 71\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 63\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 32\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 16\!\cdots\!76 \) Copy content Toggle raw display
show more
show less