Properties

Label 50.12.a.f
Level $50$
Weight $12$
Character orbit 50.a
Self dual yes
Analytic conductor $38.417$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,12,Mod(1,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.4171590280\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1969}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 492 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2}\cdot 5 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 10\sqrt{1969}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 32 q^{2} + ( - \beta - 302) q^{3} + 1024 q^{4} + (32 \beta + 9664) q^{6} + (177 \beta - 7046) q^{7} - 32768 q^{8} + (604 \beta + 110957) q^{9} + ( - 1254 \beta + 210792) q^{11} + ( - 1024 \beta - 309248) q^{12}+ \cdots + ( - 11821710 \beta - 125746362456) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 64 q^{2} - 604 q^{3} + 2048 q^{4} + 19328 q^{6} - 14092 q^{7} - 65536 q^{8} + 221914 q^{9} + 421584 q^{11} - 618496 q^{12} - 1730524 q^{13} + 450944 q^{14} + 2097152 q^{16} + 6323628 q^{17} - 7101248 q^{18}+ \cdots - 251492724912 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
22.6867
−21.6867
−32.0000 −745.734 1024.00 0 23863.5 71494.9 −32768.0 378972. 0
1.2 −32.0000 141.734 1024.00 0 −4535.49 −85586.9 −32768.0 −157058. 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.12.a.f 2
5.b even 2 1 10.12.a.d 2
5.c odd 4 2 50.12.b.f 4
15.d odd 2 1 90.12.a.l 2
20.d odd 2 1 80.12.a.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.12.a.d 2 5.b even 2 1
50.12.a.f 2 1.a even 1 1 trivial
50.12.b.f 4 5.c odd 4 2
80.12.a.g 2 20.d odd 2 1
90.12.a.l 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 604T_{3} - 105696 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(50))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 32)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 604T - 105696 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 6119033984 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 265195133136 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 333553271044 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 5019281400996 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 197971028059600 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 210845436908544 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 21\!\cdots\!36 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 17\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 11\!\cdots\!76 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 33\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 44\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 16\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 10\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 60\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 35\!\cdots\!64 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 94\!\cdots\!36 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 75\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 20\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 51\!\cdots\!04 \) Copy content Toggle raw display
show more
show less