Properties

Label 50.18.b.e.49.3
Level $50$
Weight $18$
Character 50.49
Analytic conductor $91.611$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,18,Mod(49,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.49");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(91.6110436723\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 18031x^{2} + 81270225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{12}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.3
Root \(95.4487i\) of defining polynomial
Character \(\chi\) \(=\) 50.49
Dual form 50.18.b.e.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+256.000i q^{2} -18345.8i q^{3} -65536.0 q^{4} +4.69652e6 q^{6} -1.60786e7i q^{7} -1.67772e7i q^{8} -2.07428e8 q^{9} +7.88217e8 q^{11} +1.20231e9i q^{12} -2.87409e9i q^{13} +4.11612e9 q^{14} +4.29497e9 q^{16} -2.01570e10i q^{17} -5.31015e10i q^{18} +2.28657e10 q^{19} -2.94975e11 q^{21} +2.01784e11i q^{22} -6.65718e11i q^{23} -3.07791e11 q^{24} +7.35766e11 q^{26} +1.43625e12i q^{27} +1.05373e12i q^{28} +2.42182e12 q^{29} +8.75874e12 q^{31} +1.09951e12i q^{32} -1.44605e13i q^{33} +5.16020e12 q^{34} +1.35940e13 q^{36} -2.75298e13i q^{37} +5.85361e12i q^{38} -5.27274e13 q^{39} +3.91759e13 q^{41} -7.55135e13i q^{42} -1.29981e14i q^{43} -5.16566e13 q^{44} +1.70424e14 q^{46} +3.00620e14i q^{47} -7.87946e13i q^{48} -2.58908e13 q^{49} -3.69796e14 q^{51} +1.88356e14i q^{52} +1.01926e14i q^{53} -3.67679e14 q^{54} -2.69754e14 q^{56} -4.19488e14i q^{57} +6.19987e14i q^{58} +9.67154e14 q^{59} -1.14011e15 q^{61} +2.24224e15i q^{62} +3.33515e15i q^{63} -2.81475e14 q^{64} +3.70188e15 q^{66} +4.04577e15i q^{67} +1.32101e15i q^{68} -1.22131e16 q^{69} -7.35604e15 q^{71} +3.48006e15i q^{72} +6.99946e14i q^{73} +7.04762e15 q^{74} -1.49852e15 q^{76} -1.26734e16i q^{77} -1.34982e16i q^{78} -1.08787e16 q^{79} -4.38165e14 q^{81} +1.00290e16i q^{82} -1.23277e16i q^{83} +1.93315e16 q^{84} +3.32752e16 q^{86} -4.44303e16i q^{87} -1.32241e16i q^{88} +2.21332e16 q^{89} -4.62113e16 q^{91} +4.36285e16i q^{92} -1.60686e17i q^{93} -7.69588e16 q^{94} +2.01714e16 q^{96} -9.41354e16i q^{97} -6.62805e15i q^{98} -1.63498e17 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 262144 q^{4} + 3229696 q^{6} - 446391812 q^{9} + 2378817408 q^{11} + 3350448128 q^{14} + 17179869184 q^{16} + 273409661200 q^{19} - 819503796752 q^{21} - 211661357056 q^{24} + 1033174644736 q^{26}+ \cdots - 33\!\cdots\!24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 256.000i 0.707107i
\(3\) − 18345.8i − 1.61438i −0.590292 0.807190i \(-0.700987\pi\)
0.590292 0.807190i \(-0.299013\pi\)
\(4\) −65536.0 −0.500000
\(5\) 0 0
\(6\) 4.69652e6 1.14154
\(7\) − 1.60786e7i − 1.05418i −0.849809 0.527090i \(-0.823283\pi\)
0.849809 0.527090i \(-0.176717\pi\)
\(8\) − 1.67772e7i − 0.353553i
\(9\) −2.07428e8 −1.60622
\(10\) 0 0
\(11\) 7.88217e8 1.10868 0.554342 0.832289i \(-0.312970\pi\)
0.554342 + 0.832289i \(0.312970\pi\)
\(12\) 1.20231e9i 0.807190i
\(13\) − 2.87409e9i − 0.977195i −0.872509 0.488597i \(-0.837509\pi\)
0.872509 0.488597i \(-0.162491\pi\)
\(14\) 4.11612e9 0.745418
\(15\) 0 0
\(16\) 4.29497e9 0.250000
\(17\) − 2.01570e10i − 0.700826i −0.936595 0.350413i \(-0.886041\pi\)
0.936595 0.350413i \(-0.113959\pi\)
\(18\) − 5.31015e10i − 1.13577i
\(19\) 2.28657e10 0.308872 0.154436 0.988003i \(-0.450644\pi\)
0.154436 + 0.988003i \(0.450644\pi\)
\(20\) 0 0
\(21\) −2.94975e11 −1.70185
\(22\) 2.01784e11i 0.783959i
\(23\) − 6.65718e11i − 1.77257i −0.463140 0.886285i \(-0.653277\pi\)
0.463140 0.886285i \(-0.346723\pi\)
\(24\) −3.07791e11 −0.570769
\(25\) 0 0
\(26\) 7.35766e11 0.690981
\(27\) 1.43625e12i 0.978672i
\(28\) 1.05373e12i 0.527090i
\(29\) 2.42182e12 0.899000 0.449500 0.893280i \(-0.351602\pi\)
0.449500 + 0.893280i \(0.351602\pi\)
\(30\) 0 0
\(31\) 8.75874e12 1.84445 0.922226 0.386651i \(-0.126368\pi\)
0.922226 + 0.386651i \(0.126368\pi\)
\(32\) 1.09951e12i 0.176777i
\(33\) − 1.44605e13i − 1.78984i
\(34\) 5.16020e12 0.495559
\(35\) 0 0
\(36\) 1.35940e13 0.803111
\(37\) − 2.75298e13i − 1.28851i −0.764810 0.644255i \(-0.777167\pi\)
0.764810 0.644255i \(-0.222833\pi\)
\(38\) 5.85361e12i 0.218405i
\(39\) −5.27274e13 −1.57756
\(40\) 0 0
\(41\) 3.91759e13 0.766225 0.383112 0.923702i \(-0.374852\pi\)
0.383112 + 0.923702i \(0.374852\pi\)
\(42\) − 7.55135e13i − 1.20339i
\(43\) − 1.29981e14i − 1.69589i −0.530082 0.847947i \(-0.677839\pi\)
0.530082 0.847947i \(-0.322161\pi\)
\(44\) −5.16566e13 −0.554342
\(45\) 0 0
\(46\) 1.70424e14 1.25340
\(47\) 3.00620e14i 1.84156i 0.390079 + 0.920781i \(0.372448\pi\)
−0.390079 + 0.920781i \(0.627552\pi\)
\(48\) − 7.87946e13i − 0.403595i
\(49\) −2.58908e13 −0.111296
\(50\) 0 0
\(51\) −3.69796e14 −1.13140
\(52\) 1.88356e14i 0.488597i
\(53\) 1.01926e14i 0.224874i 0.993659 + 0.112437i \(0.0358657\pi\)
−0.993659 + 0.112437i \(0.964134\pi\)
\(54\) −3.67679e14 −0.692026
\(55\) 0 0
\(56\) −2.69754e14 −0.372709
\(57\) − 4.19488e14i − 0.498636i
\(58\) 6.19987e14i 0.635689i
\(59\) 9.67154e14 0.857538 0.428769 0.903414i \(-0.358947\pi\)
0.428769 + 0.903414i \(0.358947\pi\)
\(60\) 0 0
\(61\) −1.14011e15 −0.761455 −0.380727 0.924687i \(-0.624326\pi\)
−0.380727 + 0.924687i \(0.624326\pi\)
\(62\) 2.24224e15i 1.30422i
\(63\) 3.33515e15i 1.69325i
\(64\) −2.81475e14 −0.125000
\(65\) 0 0
\(66\) 3.70188e15 1.26561
\(67\) 4.04577e15i 1.21721i 0.793473 + 0.608605i \(0.208271\pi\)
−0.793473 + 0.608605i \(0.791729\pi\)
\(68\) 1.32101e15i 0.350413i
\(69\) −1.22131e16 −2.86160
\(70\) 0 0
\(71\) −7.35604e15 −1.35191 −0.675955 0.736943i \(-0.736269\pi\)
−0.675955 + 0.736943i \(0.736269\pi\)
\(72\) 3.48006e15i 0.567885i
\(73\) 6.99946e14i 0.101583i 0.998709 + 0.0507914i \(0.0161744\pi\)
−0.998709 + 0.0507914i \(0.983826\pi\)
\(74\) 7.04762e15 0.911115
\(75\) 0 0
\(76\) −1.49852e15 −0.154436
\(77\) − 1.26734e16i − 1.16875i
\(78\) − 1.34982e16i − 1.11551i
\(79\) −1.08787e16 −0.806761 −0.403381 0.915032i \(-0.632165\pi\)
−0.403381 + 0.915032i \(0.632165\pi\)
\(80\) 0 0
\(81\) −4.38165e14 −0.0262733
\(82\) 1.00290e16i 0.541803i
\(83\) − 1.23277e16i − 0.600783i −0.953816 0.300391i \(-0.902883\pi\)
0.953816 0.300391i \(-0.0971173\pi\)
\(84\) 1.93315e16 0.850924
\(85\) 0 0
\(86\) 3.32752e16 1.19918
\(87\) − 4.44303e16i − 1.45133i
\(88\) − 1.32241e16i − 0.391979i
\(89\) 2.21332e16 0.595976 0.297988 0.954570i \(-0.403684\pi\)
0.297988 + 0.954570i \(0.403684\pi\)
\(90\) 0 0
\(91\) −4.62113e16 −1.03014
\(92\) 4.36285e16i 0.886285i
\(93\) − 1.60686e17i − 2.97765i
\(94\) −7.69588e16 −1.30218
\(95\) 0 0
\(96\) 2.01714e16 0.285385
\(97\) − 9.41354e16i − 1.21953i −0.792581 0.609766i \(-0.791263\pi\)
0.792581 0.609766i \(-0.208737\pi\)
\(98\) − 6.62805e15i − 0.0786981i
\(99\) −1.63498e17 −1.78079
\(100\) 0 0
\(101\) 3.77746e16 0.347111 0.173556 0.984824i \(-0.444474\pi\)
0.173556 + 0.984824i \(0.444474\pi\)
\(102\) − 9.46679e16i − 0.800021i
\(103\) 1.63051e17i 1.26826i 0.773226 + 0.634130i \(0.218642\pi\)
−0.773226 + 0.634130i \(0.781358\pi\)
\(104\) −4.82192e16 −0.345491
\(105\) 0 0
\(106\) −2.60930e16 −0.159010
\(107\) 2.33848e17i 1.31574i 0.753131 + 0.657871i \(0.228543\pi\)
−0.753131 + 0.657871i \(0.771457\pi\)
\(108\) − 9.41259e16i − 0.489336i
\(109\) 4.47257e16 0.214997 0.107498 0.994205i \(-0.465716\pi\)
0.107498 + 0.994205i \(0.465716\pi\)
\(110\) 0 0
\(111\) −5.05055e17 −2.08015
\(112\) − 6.90571e16i − 0.263545i
\(113\) − 2.41764e17i − 0.855510i −0.903895 0.427755i \(-0.859305\pi\)
0.903895 0.427755i \(-0.140695\pi\)
\(114\) 1.07389e17 0.352589
\(115\) 0 0
\(116\) −1.58717e17 −0.449500
\(117\) 5.96165e17i 1.56959i
\(118\) 2.47591e17i 0.606371i
\(119\) −3.24097e17 −0.738797
\(120\) 0 0
\(121\) 1.15840e17 0.229182
\(122\) − 2.91869e17i − 0.538430i
\(123\) − 7.18713e17i − 1.23698i
\(124\) −5.74013e17 −0.922226
\(125\) 0 0
\(126\) −8.53798e17 −1.19731
\(127\) − 1.14453e17i − 0.150070i −0.997181 0.0750352i \(-0.976093\pi\)
0.997181 0.0750352i \(-0.0239069\pi\)
\(128\) − 7.20576e16i − 0.0883883i
\(129\) −2.38461e18 −2.73782
\(130\) 0 0
\(131\) 4.93656e16 0.0497300 0.0248650 0.999691i \(-0.492084\pi\)
0.0248650 + 0.999691i \(0.492084\pi\)
\(132\) 9.47681e17i 0.894919i
\(133\) − 3.67648e17i − 0.325606i
\(134\) −1.03572e18 −0.860698
\(135\) 0 0
\(136\) −3.38179e17 −0.247780
\(137\) 4.16706e17i 0.286883i 0.989659 + 0.143442i \(0.0458169\pi\)
−0.989659 + 0.143442i \(0.954183\pi\)
\(138\) − 3.12656e18i − 2.02346i
\(139\) −5.01647e17 −0.305332 −0.152666 0.988278i \(-0.548786\pi\)
−0.152666 + 0.988278i \(0.548786\pi\)
\(140\) 0 0
\(141\) 5.51512e18 2.97298
\(142\) − 1.88315e18i − 0.955945i
\(143\) − 2.26540e18i − 1.08340i
\(144\) −8.90895e17 −0.401555
\(145\) 0 0
\(146\) −1.79186e17 −0.0718298
\(147\) 4.74987e17i 0.179674i
\(148\) 1.80419e18i 0.644255i
\(149\) 1.16146e18 0.391670 0.195835 0.980637i \(-0.437258\pi\)
0.195835 + 0.980637i \(0.437258\pi\)
\(150\) 0 0
\(151\) −5.58219e18 −1.68074 −0.840371 0.542012i \(-0.817663\pi\)
−0.840371 + 0.542012i \(0.817663\pi\)
\(152\) − 3.83622e17i − 0.109203i
\(153\) 4.18113e18i 1.12568i
\(154\) 3.24440e18 0.826434
\(155\) 0 0
\(156\) 3.45554e18 0.788782
\(157\) 2.25949e18i 0.488499i 0.969712 + 0.244249i \(0.0785415\pi\)
−0.969712 + 0.244249i \(0.921458\pi\)
\(158\) − 2.78494e18i − 0.570466i
\(159\) 1.86991e18 0.363033
\(160\) 0 0
\(161\) −1.07038e19 −1.86861
\(162\) − 1.12170e17i − 0.0185780i
\(163\) − 2.17080e18i − 0.341212i −0.985339 0.170606i \(-0.945427\pi\)
0.985339 0.170606i \(-0.0545725\pi\)
\(164\) −2.56743e18 −0.383112
\(165\) 0 0
\(166\) 3.15589e18 0.424818
\(167\) − 2.02306e18i − 0.258772i −0.991594 0.129386i \(-0.958699\pi\)
0.991594 0.129386i \(-0.0413007\pi\)
\(168\) 4.94885e18i 0.601694i
\(169\) 3.90047e17 0.0450900
\(170\) 0 0
\(171\) −4.74297e18 −0.496116
\(172\) 8.51844e18i 0.847947i
\(173\) 1.22669e19i 1.16237i 0.813773 + 0.581183i \(0.197410\pi\)
−0.813773 + 0.581183i \(0.802590\pi\)
\(174\) 1.13741e19 1.02624
\(175\) 0 0
\(176\) 3.38537e18 0.277171
\(177\) − 1.77432e19i − 1.38439i
\(178\) 5.66610e18i 0.421419i
\(179\) 1.77359e19 1.25778 0.628888 0.777496i \(-0.283510\pi\)
0.628888 + 0.777496i \(0.283510\pi\)
\(180\) 0 0
\(181\) −1.40303e19 −0.905315 −0.452657 0.891684i \(-0.649524\pi\)
−0.452657 + 0.891684i \(0.649524\pi\)
\(182\) − 1.18301e19i − 0.728419i
\(183\) 2.09163e19i 1.22928i
\(184\) −1.11689e19 −0.626698
\(185\) 0 0
\(186\) 4.11356e19 2.10551
\(187\) − 1.58881e19i − 0.776996i
\(188\) − 1.97015e19i − 0.920781i
\(189\) 2.30928e19 1.03170
\(190\) 0 0
\(191\) 1.22487e19 0.500387 0.250194 0.968196i \(-0.419506\pi\)
0.250194 + 0.968196i \(0.419506\pi\)
\(192\) 5.16388e18i 0.201797i
\(193\) 3.98799e19i 1.49114i 0.666430 + 0.745568i \(0.267821\pi\)
−0.666430 + 0.745568i \(0.732179\pi\)
\(194\) 2.40987e19 0.862340
\(195\) 0 0
\(196\) 1.69678e18 0.0556479
\(197\) 1.32923e19i 0.417481i 0.977971 + 0.208740i \(0.0669364\pi\)
−0.977971 + 0.208740i \(0.933064\pi\)
\(198\) − 4.18555e19i − 1.25921i
\(199\) −6.95301e18 −0.200411 −0.100206 0.994967i \(-0.531950\pi\)
−0.100206 + 0.994967i \(0.531950\pi\)
\(200\) 0 0
\(201\) 7.42229e19 1.96504
\(202\) 9.67031e18i 0.245445i
\(203\) − 3.89395e19i − 0.947708i
\(204\) 2.42350e19 0.565700
\(205\) 0 0
\(206\) −4.17412e19 −0.896795
\(207\) 1.38088e20i 2.84714i
\(208\) − 1.23441e19i − 0.244299i
\(209\) 1.80231e19 0.342441
\(210\) 0 0
\(211\) −1.70414e19 −0.298611 −0.149305 0.988791i \(-0.547704\pi\)
−0.149305 + 0.988791i \(0.547704\pi\)
\(212\) − 6.67982e18i − 0.112437i
\(213\) 1.34952e20i 2.18250i
\(214\) −5.98650e19 −0.930370
\(215\) 0 0
\(216\) 2.40962e19 0.346013
\(217\) − 1.40828e20i − 1.94439i
\(218\) 1.14498e19i 0.152026i
\(219\) 1.28411e19 0.163993
\(220\) 0 0
\(221\) −5.79330e19 −0.684844
\(222\) − 1.29294e20i − 1.47088i
\(223\) 2.89177e19i 0.316645i 0.987387 + 0.158322i \(0.0506086\pi\)
−0.987387 + 0.158322i \(0.949391\pi\)
\(224\) 1.76786e19 0.186354
\(225\) 0 0
\(226\) 6.18916e19 0.604937
\(227\) 1.32244e20i 1.24496i 0.782635 + 0.622481i \(0.213875\pi\)
−0.782635 + 0.622481i \(0.786125\pi\)
\(228\) 2.74916e19i 0.249318i
\(229\) 1.21349e19 0.106031 0.0530157 0.998594i \(-0.483117\pi\)
0.0530157 + 0.998594i \(0.483117\pi\)
\(230\) 0 0
\(231\) −2.32504e20 −1.88681
\(232\) − 4.06315e19i − 0.317844i
\(233\) 1.12741e20i 0.850271i 0.905130 + 0.425135i \(0.139773\pi\)
−0.905130 + 0.425135i \(0.860227\pi\)
\(234\) −1.52618e20 −1.10987
\(235\) 0 0
\(236\) −6.33834e19 −0.428769
\(237\) 1.99578e20i 1.30242i
\(238\) − 8.29687e19i − 0.522409i
\(239\) 1.64296e20 0.998261 0.499131 0.866527i \(-0.333653\pi\)
0.499131 + 0.866527i \(0.333653\pi\)
\(240\) 0 0
\(241\) 1.25647e20 0.711223 0.355612 0.934634i \(-0.384273\pi\)
0.355612 + 0.934634i \(0.384273\pi\)
\(242\) 2.96549e19i 0.162056i
\(243\) 1.93516e20i 1.02109i
\(244\) 7.47184e19 0.380727
\(245\) 0 0
\(246\) 1.83990e20 0.874675
\(247\) − 6.57178e19i − 0.301828i
\(248\) − 1.46947e20i − 0.652112i
\(249\) −2.26161e20 −0.969892
\(250\) 0 0
\(251\) −1.37960e20 −0.552746 −0.276373 0.961050i \(-0.589133\pi\)
−0.276373 + 0.961050i \(0.589133\pi\)
\(252\) − 2.18572e20i − 0.846624i
\(253\) − 5.24730e20i − 1.96522i
\(254\) 2.92999e19 0.106116
\(255\) 0 0
\(256\) 1.84467e19 0.0625000
\(257\) 1.08129e19i 0.0354414i 0.999843 + 0.0177207i \(0.00564097\pi\)
−0.999843 + 0.0177207i \(0.994359\pi\)
\(258\) − 6.10459e20i − 1.93593i
\(259\) −4.42640e20 −1.35832
\(260\) 0 0
\(261\) −5.02353e20 −1.44399
\(262\) 1.26376e19i 0.0351644i
\(263\) − 7.17651e20i − 1.93326i −0.256185 0.966628i \(-0.582466\pi\)
0.256185 0.966628i \(-0.417534\pi\)
\(264\) −2.42606e20 −0.632803
\(265\) 0 0
\(266\) 9.41178e19 0.230238
\(267\) − 4.06051e20i − 0.962132i
\(268\) − 2.65144e20i − 0.608605i
\(269\) 5.80280e20 1.29046 0.645228 0.763990i \(-0.276762\pi\)
0.645228 + 0.763990i \(0.276762\pi\)
\(270\) 0 0
\(271\) 1.64836e20 0.344201 0.172101 0.985079i \(-0.444945\pi\)
0.172101 + 0.985079i \(0.444945\pi\)
\(272\) − 8.65737e19i − 0.175207i
\(273\) 8.47782e20i 1.66304i
\(274\) −1.06677e20 −0.202857
\(275\) 0 0
\(276\) 8.00399e20 1.43080
\(277\) − 1.52391e20i − 0.264168i −0.991239 0.132084i \(-0.957833\pi\)
0.991239 0.132084i \(-0.0421669\pi\)
\(278\) − 1.28422e20i − 0.215902i
\(279\) −1.81681e21 −2.96260
\(280\) 0 0
\(281\) 1.60032e20 0.245586 0.122793 0.992432i \(-0.460815\pi\)
0.122793 + 0.992432i \(0.460815\pi\)
\(282\) 1.41187e21i 2.10222i
\(283\) 2.34430e20i 0.338711i 0.985555 + 0.169356i \(0.0541686\pi\)
−0.985555 + 0.169356i \(0.945831\pi\)
\(284\) 4.82085e20 0.675955
\(285\) 0 0
\(286\) 5.79943e20 0.766080
\(287\) − 6.29894e20i − 0.807739i
\(288\) − 2.28069e20i − 0.283943i
\(289\) 4.20935e20 0.508842
\(290\) 0 0
\(291\) −1.72699e21 −1.96879
\(292\) − 4.58716e19i − 0.0507914i
\(293\) 1.57885e21i 1.69811i 0.528303 + 0.849056i \(0.322828\pi\)
−0.528303 + 0.849056i \(0.677172\pi\)
\(294\) −1.21597e20 −0.127049
\(295\) 0 0
\(296\) −4.61873e20 −0.455557
\(297\) 1.13208e21i 1.08504i
\(298\) 2.97333e20i 0.276952i
\(299\) −1.91333e21 −1.73215
\(300\) 0 0
\(301\) −2.08991e21 −1.78778
\(302\) − 1.42904e21i − 1.18846i
\(303\) − 6.93005e20i − 0.560369i
\(304\) 9.82072e19 0.0772179
\(305\) 0 0
\(306\) −1.07037e21 −0.795978
\(307\) 2.38391e21i 1.72430i 0.506650 + 0.862152i \(0.330884\pi\)
−0.506650 + 0.862152i \(0.669116\pi\)
\(308\) 8.30566e20i 0.584377i
\(309\) 2.99131e21 2.04745
\(310\) 0 0
\(311\) 1.58302e21 1.02570 0.512852 0.858477i \(-0.328589\pi\)
0.512852 + 0.858477i \(0.328589\pi\)
\(312\) 8.84618e20i 0.557753i
\(313\) − 2.98369e20i − 0.183074i −0.995802 0.0915370i \(-0.970822\pi\)
0.995802 0.0915370i \(-0.0291780\pi\)
\(314\) −5.78430e20 −0.345421
\(315\) 0 0
\(316\) 7.12944e20 0.403381
\(317\) 1.01873e21i 0.561117i 0.959837 + 0.280559i \(0.0905197\pi\)
−0.959837 + 0.280559i \(0.909480\pi\)
\(318\) 4.78697e20i 0.256703i
\(319\) 1.90892e21 0.996707
\(320\) 0 0
\(321\) 4.29012e21 2.12411
\(322\) − 2.74017e21i − 1.32131i
\(323\) − 4.60903e20i − 0.216465i
\(324\) 2.87156e19 0.0131366
\(325\) 0 0
\(326\) 5.55724e20 0.241273
\(327\) − 8.20527e20i − 0.347086i
\(328\) − 6.57263e20i − 0.270901i
\(329\) 4.83355e21 1.94134
\(330\) 0 0
\(331\) −6.27305e20 −0.239299 −0.119649 0.992816i \(-0.538177\pi\)
−0.119649 + 0.992816i \(0.538177\pi\)
\(332\) 8.07907e20i 0.300391i
\(333\) 5.71044e21i 2.06963i
\(334\) 5.17903e20 0.182980
\(335\) 0 0
\(336\) −1.26691e21 −0.425462
\(337\) − 3.61857e21i − 1.18490i −0.805606 0.592451i \(-0.798160\pi\)
0.805606 0.592451i \(-0.201840\pi\)
\(338\) 9.98521e19i 0.0318834i
\(339\) −4.43535e21 −1.38112
\(340\) 0 0
\(341\) 6.90379e21 2.04492
\(342\) − 1.21420e21i − 0.350807i
\(343\) − 3.32408e21i − 0.936854i
\(344\) −2.18072e21 −0.599589
\(345\) 0 0
\(346\) −3.14033e21 −0.821917
\(347\) − 7.74896e21i − 1.97899i −0.144579 0.989493i \(-0.546183\pi\)
0.144579 0.989493i \(-0.453817\pi\)
\(348\) 2.91178e21i 0.725663i
\(349\) 7.13117e21 1.73438 0.867191 0.497976i \(-0.165923\pi\)
0.867191 + 0.497976i \(0.165923\pi\)
\(350\) 0 0
\(351\) 4.12790e21 0.956354
\(352\) 8.66654e20i 0.195990i
\(353\) − 7.70298e21i − 1.70049i −0.526388 0.850244i \(-0.676454\pi\)
0.526388 0.850244i \(-0.323546\pi\)
\(354\) 4.54226e21 0.978913
\(355\) 0 0
\(356\) −1.45052e21 −0.297988
\(357\) 5.94581e21i 1.19270i
\(358\) 4.54040e21i 0.889382i
\(359\) 4.55697e21 0.871712 0.435856 0.900016i \(-0.356446\pi\)
0.435856 + 0.900016i \(0.356446\pi\)
\(360\) 0 0
\(361\) −4.95755e21 −0.904598
\(362\) − 3.59176e21i − 0.640154i
\(363\) − 2.12517e21i − 0.369987i
\(364\) 3.02850e21 0.515070
\(365\) 0 0
\(366\) −5.35456e21 −0.869230
\(367\) 6.69643e19i 0.0106214i 0.999986 + 0.00531070i \(0.00169046\pi\)
−0.999986 + 0.00531070i \(0.998310\pi\)
\(368\) − 2.85924e21i − 0.443142i
\(369\) −8.12617e21 −1.23073
\(370\) 0 0
\(371\) 1.63883e21 0.237058
\(372\) 1.05307e22i 1.48882i
\(373\) 5.61068e21i 0.775336i 0.921799 + 0.387668i \(0.126719\pi\)
−0.921799 + 0.387668i \(0.873281\pi\)
\(374\) 4.06736e21 0.549419
\(375\) 0 0
\(376\) 5.04357e21 0.651091
\(377\) − 6.96053e21i − 0.878498i
\(378\) 5.91177e21i 0.729520i
\(379\) −6.43379e21 −0.776307 −0.388153 0.921595i \(-0.626887\pi\)
−0.388153 + 0.921595i \(0.626887\pi\)
\(380\) 0 0
\(381\) −2.09973e21 −0.242271
\(382\) 3.13567e21i 0.353827i
\(383\) 1.11213e22i 1.22735i 0.789560 + 0.613674i \(0.210309\pi\)
−0.789560 + 0.613674i \(0.789691\pi\)
\(384\) −1.32195e21 −0.142692
\(385\) 0 0
\(386\) −1.02093e22 −1.05439
\(387\) 2.69617e22i 2.72398i
\(388\) 6.16926e21i 0.609766i
\(389\) −6.91791e21 −0.668965 −0.334483 0.942402i \(-0.608562\pi\)
−0.334483 + 0.942402i \(0.608562\pi\)
\(390\) 0 0
\(391\) −1.34189e22 −1.24226
\(392\) 4.34376e20i 0.0393490i
\(393\) − 9.05651e20i − 0.0802831i
\(394\) −3.40282e21 −0.295204
\(395\) 0 0
\(396\) 1.07150e22 0.890397
\(397\) − 2.17800e22i − 1.77149i −0.464171 0.885746i \(-0.653648\pi\)
0.464171 0.885746i \(-0.346352\pi\)
\(398\) − 1.77997e21i − 0.141712i
\(399\) −6.74479e21 −0.525652
\(400\) 0 0
\(401\) 4.05717e21 0.303037 0.151519 0.988454i \(-0.451584\pi\)
0.151519 + 0.988454i \(0.451584\pi\)
\(402\) 1.90011e22i 1.38949i
\(403\) − 2.51734e22i − 1.80239i
\(404\) −2.47560e21 −0.173556
\(405\) 0 0
\(406\) 9.96852e21 0.670130
\(407\) − 2.16994e22i − 1.42855i
\(408\) 6.20415e21i 0.400010i
\(409\) 6.48833e21 0.409717 0.204859 0.978792i \(-0.434327\pi\)
0.204859 + 0.978792i \(0.434327\pi\)
\(410\) 0 0
\(411\) 7.64480e21 0.463138
\(412\) − 1.06857e22i − 0.634130i
\(413\) − 1.55505e22i − 0.904000i
\(414\) −3.53506e22 −2.01323
\(415\) 0 0
\(416\) 3.16009e21 0.172745
\(417\) 9.20310e21i 0.492922i
\(418\) 4.61391e21i 0.242143i
\(419\) −2.17453e22 −1.11827 −0.559135 0.829077i \(-0.688867\pi\)
−0.559135 + 0.829077i \(0.688867\pi\)
\(420\) 0 0
\(421\) 1.45920e22 0.720638 0.360319 0.932829i \(-0.382668\pi\)
0.360319 + 0.932829i \(0.382668\pi\)
\(422\) − 4.36261e21i − 0.211150i
\(423\) − 6.23570e22i − 2.95796i
\(424\) 1.71003e21 0.0795051
\(425\) 0 0
\(426\) −3.45478e22 −1.54326
\(427\) 1.83314e22i 0.802710i
\(428\) − 1.53254e22i − 0.657871i
\(429\) −4.15606e22 −1.74902
\(430\) 0 0
\(431\) −2.61293e22 −1.05699 −0.528495 0.848937i \(-0.677243\pi\)
−0.528495 + 0.848937i \(0.677243\pi\)
\(432\) 6.16864e21i 0.244668i
\(433\) − 1.27697e22i − 0.496632i −0.968679 0.248316i \(-0.920123\pi\)
0.968679 0.248316i \(-0.0798772\pi\)
\(434\) 3.60521e22 1.37489
\(435\) 0 0
\(436\) −2.93114e21 −0.107498
\(437\) − 1.52221e22i − 0.547497i
\(438\) 3.28731e21i 0.115961i
\(439\) 2.83409e22 0.980540 0.490270 0.871571i \(-0.336898\pi\)
0.490270 + 0.871571i \(0.336898\pi\)
\(440\) 0 0
\(441\) 5.37047e21 0.178766
\(442\) − 1.48308e22i − 0.484258i
\(443\) − 1.45222e22i − 0.465158i −0.972578 0.232579i \(-0.925284\pi\)
0.972578 0.232579i \(-0.0747164\pi\)
\(444\) 3.30993e22 1.04007
\(445\) 0 0
\(446\) −7.40293e21 −0.223902
\(447\) − 2.13078e22i − 0.632303i
\(448\) 4.52572e21i 0.131773i
\(449\) −1.38898e22 −0.396828 −0.198414 0.980118i \(-0.563579\pi\)
−0.198414 + 0.980118i \(0.563579\pi\)
\(450\) 0 0
\(451\) 3.08791e22 0.849502
\(452\) 1.58443e22i 0.427755i
\(453\) 1.02410e23i 2.71335i
\(454\) −3.38544e22 −0.880321
\(455\) 0 0
\(456\) −7.03785e21 −0.176294
\(457\) 3.72555e22i 0.916016i 0.888948 + 0.458008i \(0.151437\pi\)
−0.888948 + 0.458008i \(0.848563\pi\)
\(458\) 3.10653e21i 0.0749755i
\(459\) 2.89505e22 0.685879
\(460\) 0 0
\(461\) 1.60242e22 0.365864 0.182932 0.983126i \(-0.441441\pi\)
0.182932 + 0.983126i \(0.441441\pi\)
\(462\) − 5.95210e22i − 1.33418i
\(463\) 6.01797e22i 1.32438i 0.749337 + 0.662189i \(0.230372\pi\)
−0.749337 + 0.662189i \(0.769628\pi\)
\(464\) 1.04017e22 0.224750
\(465\) 0 0
\(466\) −2.88617e22 −0.601232
\(467\) 4.21105e22i 0.861384i 0.902499 + 0.430692i \(0.141730\pi\)
−0.902499 + 0.430692i \(0.858270\pi\)
\(468\) − 3.90703e22i − 0.784796i
\(469\) 6.50504e22 1.28316
\(470\) 0 0
\(471\) 4.14521e22 0.788622
\(472\) − 1.62262e22i − 0.303186i
\(473\) − 1.02453e23i − 1.88021i
\(474\) −5.10919e22 −0.920949
\(475\) 0 0
\(476\) 2.12400e22 0.369399
\(477\) − 2.11423e22i − 0.361198i
\(478\) 4.20597e22i 0.705877i
\(479\) 4.13412e22 0.681603 0.340801 0.940135i \(-0.389302\pi\)
0.340801 + 0.940135i \(0.389302\pi\)
\(480\) 0 0
\(481\) −7.91229e22 −1.25913
\(482\) 3.21655e22i 0.502911i
\(483\) 1.96370e23i 3.01664i
\(484\) −7.59166e21 −0.114591
\(485\) 0 0
\(486\) −4.95400e22 −0.722018
\(487\) − 9.82373e22i − 1.40696i −0.710717 0.703478i \(-0.751630\pi\)
0.710717 0.703478i \(-0.248370\pi\)
\(488\) 1.91279e22i 0.269215i
\(489\) −3.98250e22 −0.550846
\(490\) 0 0
\(491\) −2.86911e21 −0.0383314 −0.0191657 0.999816i \(-0.506101\pi\)
−0.0191657 + 0.999816i \(0.506101\pi\)
\(492\) 4.71016e22i 0.618489i
\(493\) − 4.88167e22i − 0.630043i
\(494\) 1.68238e22 0.213424
\(495\) 0 0
\(496\) 3.76185e22 0.461113
\(497\) 1.18275e23i 1.42516i
\(498\) − 5.78972e22i − 0.685817i
\(499\) 8.68275e22 1.01112 0.505560 0.862791i \(-0.331286\pi\)
0.505560 + 0.862791i \(0.331286\pi\)
\(500\) 0 0
\(501\) −3.71146e22 −0.417757
\(502\) − 3.53177e22i − 0.390851i
\(503\) 2.63166e22i 0.286353i 0.989697 + 0.143177i \(0.0457317\pi\)
−0.989697 + 0.143177i \(0.954268\pi\)
\(504\) 5.59545e22 0.598653
\(505\) 0 0
\(506\) 1.34331e23 1.38962
\(507\) − 7.15572e21i − 0.0727924i
\(508\) 7.50078e21i 0.0750352i
\(509\) −2.52122e22 −0.248033 −0.124017 0.992280i \(-0.539578\pi\)
−0.124017 + 0.992280i \(0.539578\pi\)
\(510\) 0 0
\(511\) 1.12541e22 0.107087
\(512\) 4.72237e21i 0.0441942i
\(513\) 3.28407e22i 0.302284i
\(514\) −2.76810e21 −0.0250608
\(515\) 0 0
\(516\) 1.56278e23 1.36891
\(517\) 2.36954e23i 2.04171i
\(518\) − 1.13316e23i − 0.960479i
\(519\) 2.25046e23 1.87650
\(520\) 0 0
\(521\) 8.93522e22 0.721082 0.360541 0.932743i \(-0.382592\pi\)
0.360541 + 0.932743i \(0.382592\pi\)
\(522\) − 1.28602e23i − 1.02106i
\(523\) 9.62048e22i 0.751506i 0.926720 + 0.375753i \(0.122616\pi\)
−0.926720 + 0.375753i \(0.877384\pi\)
\(524\) −3.23523e21 −0.0248650
\(525\) 0 0
\(526\) 1.83719e23 1.36702
\(527\) − 1.76550e23i − 1.29264i
\(528\) − 6.21072e22i − 0.447460i
\(529\) −3.02130e23 −2.14200
\(530\) 0 0
\(531\) −2.00615e23 −1.37740
\(532\) 2.40942e22i 0.162803i
\(533\) − 1.12595e23i − 0.748751i
\(534\) 1.03949e23 0.680330
\(535\) 0 0
\(536\) 6.78768e22 0.430349
\(537\) − 3.25380e23i − 2.03053i
\(538\) 1.48552e23i 0.912490i
\(539\) −2.04076e22 −0.123392
\(540\) 0 0
\(541\) −1.09224e23 −0.639944 −0.319972 0.947427i \(-0.603673\pi\)
−0.319972 + 0.947427i \(0.603673\pi\)
\(542\) 4.21979e22i 0.243387i
\(543\) 2.57397e23i 1.46152i
\(544\) 2.21629e22 0.123890
\(545\) 0 0
\(546\) −2.17032e23 −1.17594
\(547\) 2.52518e23i 1.34710i 0.739140 + 0.673551i \(0.235232\pi\)
−0.739140 + 0.673551i \(0.764768\pi\)
\(548\) − 2.73092e22i − 0.143442i
\(549\) 2.36491e23 1.22307
\(550\) 0 0
\(551\) 5.53766e22 0.277675
\(552\) 2.04902e23i 1.01173i
\(553\) 1.74914e23i 0.850472i
\(554\) 3.90120e22 0.186795
\(555\) 0 0
\(556\) 3.28759e22 0.152666
\(557\) − 1.44437e23i − 0.660554i −0.943884 0.330277i \(-0.892858\pi\)
0.943884 0.330277i \(-0.107142\pi\)
\(558\) − 4.65102e23i − 2.09487i
\(559\) −3.73577e23 −1.65722
\(560\) 0 0
\(561\) −2.91480e23 −1.25437
\(562\) 4.09682e22i 0.173655i
\(563\) 7.42080e22i 0.309834i 0.987927 + 0.154917i \(0.0495111\pi\)
−0.987927 + 0.154917i \(0.950489\pi\)
\(564\) −3.61439e23 −1.48649
\(565\) 0 0
\(566\) −6.00142e22 −0.239505
\(567\) 7.04507e21i 0.0276968i
\(568\) 1.23414e23i 0.477972i
\(569\) −1.99386e23 −0.760747 −0.380373 0.924833i \(-0.624205\pi\)
−0.380373 + 0.924833i \(0.624205\pi\)
\(570\) 0 0
\(571\) 5.76243e22 0.213402 0.106701 0.994291i \(-0.465971\pi\)
0.106701 + 0.994291i \(0.465971\pi\)
\(572\) 1.48466e23i 0.541701i
\(573\) − 2.24712e23i − 0.807815i
\(574\) 1.61253e23 0.571158
\(575\) 0 0
\(576\) 5.83857e22 0.200778
\(577\) 2.51358e23i 0.851722i 0.904789 + 0.425861i \(0.140029\pi\)
−0.904789 + 0.425861i \(0.859971\pi\)
\(578\) 1.07759e23i 0.359806i
\(579\) 7.31628e23 2.40726
\(580\) 0 0
\(581\) −1.98212e23 −0.633333
\(582\) − 4.42109e23i − 1.39214i
\(583\) 8.03398e22i 0.249315i
\(584\) 1.17431e22 0.0359149
\(585\) 0 0
\(586\) −4.04186e23 −1.20075
\(587\) − 2.04262e23i − 0.598087i −0.954240 0.299043i \(-0.903332\pi\)
0.954240 0.299043i \(-0.0966675\pi\)
\(588\) − 3.11288e22i − 0.0898369i
\(589\) 2.00274e23 0.569699
\(590\) 0 0
\(591\) 2.43857e23 0.673973
\(592\) − 1.18239e23i − 0.322128i
\(593\) − 2.40118e23i − 0.644851i −0.946595 0.322425i \(-0.895502\pi\)
0.946595 0.322425i \(-0.104498\pi\)
\(594\) −2.89811e23 −0.767239
\(595\) 0 0
\(596\) −7.61172e22 −0.195835
\(597\) 1.27558e23i 0.323539i
\(598\) − 4.89812e23i − 1.22481i
\(599\) −6.64163e23 −1.63737 −0.818684 0.574244i \(-0.805296\pi\)
−0.818684 + 0.574244i \(0.805296\pi\)
\(600\) 0 0
\(601\) −5.64984e23 −1.35395 −0.676975 0.736006i \(-0.736710\pi\)
−0.676975 + 0.736006i \(0.736710\pi\)
\(602\) − 5.35018e23i − 1.26415i
\(603\) − 8.39206e23i − 1.95511i
\(604\) 3.65835e23 0.840371
\(605\) 0 0
\(606\) 1.77409e23 0.396241
\(607\) 2.77451e23i 0.611057i 0.952183 + 0.305529i \(0.0988331\pi\)
−0.952183 + 0.305529i \(0.901167\pi\)
\(608\) 2.51411e22i 0.0546013i
\(609\) −7.14376e23 −1.52996
\(610\) 0 0
\(611\) 8.64009e23 1.79957
\(612\) − 2.74014e23i − 0.562841i
\(613\) − 3.66032e23i − 0.741491i −0.928735 0.370745i \(-0.879102\pi\)
0.928735 0.370745i \(-0.120898\pi\)
\(614\) −6.10281e23 −1.21927
\(615\) 0 0
\(616\) −2.12625e23 −0.413217
\(617\) 5.54311e23i 1.06250i 0.847215 + 0.531251i \(0.178278\pi\)
−0.847215 + 0.531251i \(0.821722\pi\)
\(618\) 7.65775e23i 1.44777i
\(619\) −7.96802e23 −1.48587 −0.742934 0.669365i \(-0.766566\pi\)
−0.742934 + 0.669365i \(0.766566\pi\)
\(620\) 0 0
\(621\) 9.56135e23 1.73476
\(622\) 4.05252e23i 0.725282i
\(623\) − 3.55871e23i − 0.628266i
\(624\) −2.26462e23 −0.394391
\(625\) 0 0
\(626\) 7.63825e22 0.129453
\(627\) − 3.30648e23i − 0.552830i
\(628\) − 1.48078e23i − 0.244249i
\(629\) −5.54918e23 −0.903022
\(630\) 0 0
\(631\) 4.62634e23 0.732804 0.366402 0.930457i \(-0.380590\pi\)
0.366402 + 0.930457i \(0.380590\pi\)
\(632\) 1.82514e23i 0.285233i
\(633\) 3.12639e23i 0.482071i
\(634\) −2.60794e23 −0.396770
\(635\) 0 0
\(636\) −1.22547e23 −0.181516
\(637\) 7.44124e22i 0.108758i
\(638\) 4.88684e23i 0.704779i
\(639\) 1.52585e24 2.17147
\(640\) 0 0
\(641\) 2.38553e23 0.330592 0.165296 0.986244i \(-0.447142\pi\)
0.165296 + 0.986244i \(0.447142\pi\)
\(642\) 1.09827e24i 1.50197i
\(643\) − 1.39064e24i − 1.87681i −0.345536 0.938405i \(-0.612303\pi\)
0.345536 0.938405i \(-0.387697\pi\)
\(644\) 7.01485e23 0.934304
\(645\) 0 0
\(646\) 1.17991e23 0.153064
\(647\) 1.93162e23i 0.247306i 0.992325 + 0.123653i \(0.0394610\pi\)
−0.992325 + 0.123653i \(0.960539\pi\)
\(648\) 7.35118e21i 0.00928901i
\(649\) 7.62328e23 0.950740
\(650\) 0 0
\(651\) −2.58361e24 −3.13898
\(652\) 1.42265e23i 0.170606i
\(653\) 1.41423e24i 1.67401i 0.547192 + 0.837007i \(0.315697\pi\)
−0.547192 + 0.837007i \(0.684303\pi\)
\(654\) 2.10055e23 0.245427
\(655\) 0 0
\(656\) 1.68259e23 0.191556
\(657\) − 1.45188e23i − 0.163164i
\(658\) 1.23739e24i 1.37273i
\(659\) 3.77712e23 0.413651 0.206826 0.978378i \(-0.433687\pi\)
0.206826 + 0.978378i \(0.433687\pi\)
\(660\) 0 0
\(661\) 6.30952e23 0.673416 0.336708 0.941609i \(-0.390686\pi\)
0.336708 + 0.941609i \(0.390686\pi\)
\(662\) − 1.60590e23i − 0.169210i
\(663\) 1.06283e24i 1.10560i
\(664\) −2.06824e23 −0.212409
\(665\) 0 0
\(666\) −1.46187e24 −1.46345
\(667\) − 1.61225e24i − 1.59354i
\(668\) 1.32583e23i 0.129386i
\(669\) 5.30518e23 0.511185
\(670\) 0 0
\(671\) −8.98656e23 −0.844213
\(672\) − 3.24328e23i − 0.300847i
\(673\) 1.46706e24i 1.34375i 0.740663 + 0.671876i \(0.234511\pi\)
−0.740663 + 0.671876i \(0.765489\pi\)
\(674\) 9.26353e23 0.837852
\(675\) 0 0
\(676\) −2.55621e22 −0.0225450
\(677\) − 8.89634e22i − 0.0774832i −0.999249 0.0387416i \(-0.987665\pi\)
0.999249 0.0387416i \(-0.0123349\pi\)
\(678\) − 1.13545e24i − 0.976598i
\(679\) −1.51357e24 −1.28561
\(680\) 0 0
\(681\) 2.42612e24 2.00984
\(682\) 1.76737e24i 1.44597i
\(683\) − 8.93594e23i − 0.722045i −0.932557 0.361022i \(-0.882428\pi\)
0.932557 0.361022i \(-0.117572\pi\)
\(684\) 3.10835e23 0.248058
\(685\) 0 0
\(686\) 8.50966e23 0.662456
\(687\) − 2.22624e23i − 0.171175i
\(688\) − 5.58265e23i − 0.423973i
\(689\) 2.92944e23 0.219746
\(690\) 0 0
\(691\) −7.89975e23 −0.578162 −0.289081 0.957305i \(-0.593350\pi\)
−0.289081 + 0.957305i \(0.593350\pi\)
\(692\) − 8.03924e23i − 0.581183i
\(693\) 2.62882e24i 1.87728i
\(694\) 1.98373e24 1.39935
\(695\) 0 0
\(696\) −7.45416e23 −0.513121
\(697\) − 7.89669e23i − 0.536991i
\(698\) 1.82558e24i 1.22639i
\(699\) 2.06833e24 1.37266
\(700\) 0 0
\(701\) 3.61705e23 0.234288 0.117144 0.993115i \(-0.462626\pi\)
0.117144 + 0.993115i \(0.462626\pi\)
\(702\) 1.05674e24i 0.676244i
\(703\) − 6.29486e23i − 0.397984i
\(704\) −2.21863e23 −0.138586
\(705\) 0 0
\(706\) 1.97196e24 1.20243
\(707\) − 6.07363e23i − 0.365918i
\(708\) 1.16282e24i 0.692196i
\(709\) −4.46298e23 −0.262501 −0.131251 0.991349i \(-0.541899\pi\)
−0.131251 + 0.991349i \(0.541899\pi\)
\(710\) 0 0
\(711\) 2.25654e24 1.29584
\(712\) − 3.71333e23i − 0.210709i
\(713\) − 5.83085e24i − 3.26942i
\(714\) −1.52213e24 −0.843366
\(715\) 0 0
\(716\) −1.16234e24 −0.628888
\(717\) − 3.01414e24i − 1.61157i
\(718\) 1.16658e24i 0.616393i
\(719\) −1.55258e24 −0.810698 −0.405349 0.914162i \(-0.632850\pi\)
−0.405349 + 0.914162i \(0.632850\pi\)
\(720\) 0 0
\(721\) 2.62164e24 1.33697
\(722\) − 1.26913e24i − 0.639648i
\(723\) − 2.30509e24i − 1.14818i
\(724\) 9.19491e23 0.452657
\(725\) 0 0
\(726\) 5.44043e23 0.261621
\(727\) − 1.38114e23i − 0.0656439i −0.999461 0.0328219i \(-0.989551\pi\)
0.999461 0.0328219i \(-0.0104494\pi\)
\(728\) 7.75296e23i 0.364209i
\(729\) 3.49361e24 1.62215
\(730\) 0 0
\(731\) −2.62003e24 −1.18853
\(732\) − 1.37077e24i − 0.614639i
\(733\) 1.51067e24i 0.669555i 0.942297 + 0.334778i \(0.108661\pi\)
−0.942297 + 0.334778i \(0.891339\pi\)
\(734\) −1.71428e22 −0.00751046
\(735\) 0 0
\(736\) 7.31964e23 0.313349
\(737\) 3.18895e24i 1.34950i
\(738\) − 2.08030e24i − 0.870255i
\(739\) 3.13836e24 1.29785 0.648926 0.760851i \(-0.275218\pi\)
0.648926 + 0.760851i \(0.275218\pi\)
\(740\) 0 0
\(741\) −1.20565e24 −0.487265
\(742\) 4.19540e23i 0.167625i
\(743\) − 4.99845e23i − 0.197438i −0.995115 0.0987190i \(-0.968526\pi\)
0.995115 0.0987190i \(-0.0314745\pi\)
\(744\) −2.69586e24 −1.05276
\(745\) 0 0
\(746\) −1.43633e24 −0.548246
\(747\) 2.55710e24i 0.964991i
\(748\) 1.04124e24i 0.388498i
\(749\) 3.75994e24 1.38703
\(750\) 0 0
\(751\) 4.01494e24 1.44790 0.723952 0.689851i \(-0.242324\pi\)
0.723952 + 0.689851i \(0.242324\pi\)
\(752\) 1.29115e24i 0.460391i
\(753\) 2.53098e24i 0.892342i
\(754\) 1.78190e24 0.621192
\(755\) 0 0
\(756\) −1.51341e24 −0.515848
\(757\) 3.79032e24i 1.27750i 0.769414 + 0.638750i \(0.220548\pi\)
−0.769414 + 0.638750i \(0.779452\pi\)
\(758\) − 1.64705e24i − 0.548932i
\(759\) −9.62659e24 −3.17261
\(760\) 0 0
\(761\) −1.23826e24 −0.399065 −0.199532 0.979891i \(-0.563942\pi\)
−0.199532 + 0.979891i \(0.563942\pi\)
\(762\) − 5.37530e23i − 0.171311i
\(763\) − 7.19126e23i − 0.226645i
\(764\) −8.02731e23 −0.250194
\(765\) 0 0
\(766\) −2.84706e24 −0.867866
\(767\) − 2.77968e24i − 0.837982i
\(768\) − 3.38420e23i − 0.100899i
\(769\) −3.58282e24 −1.05646 −0.528228 0.849102i \(-0.677143\pi\)
−0.528228 + 0.849102i \(0.677143\pi\)
\(770\) 0 0
\(771\) 1.98371e23 0.0572158
\(772\) − 2.61357e24i − 0.745568i
\(773\) 1.21994e24i 0.344203i 0.985079 + 0.172101i \(0.0550557\pi\)
−0.985079 + 0.172101i \(0.944944\pi\)
\(774\) −6.90219e24 −1.92615
\(775\) 0 0
\(776\) −1.57933e24 −0.431170
\(777\) 8.12058e24i 2.19285i
\(778\) − 1.77099e24i − 0.473030i
\(779\) 8.95783e23 0.236665
\(780\) 0 0
\(781\) −5.79815e24 −1.49884
\(782\) − 3.43523e24i − 0.878413i
\(783\) 3.47834e24i 0.879826i
\(784\) −1.11200e23 −0.0278240
\(785\) 0 0
\(786\) 2.31847e23 0.0567688
\(787\) 1.07097e24i 0.259414i 0.991552 + 0.129707i \(0.0414036\pi\)
−0.991552 + 0.129707i \(0.958596\pi\)
\(788\) − 8.71123e23i − 0.208740i
\(789\) −1.31659e25 −3.12101
\(790\) 0 0
\(791\) −3.88723e24 −0.901862
\(792\) 2.74304e24i 0.629606i
\(793\) 3.27678e24i 0.744090i
\(794\) 5.57569e24 1.25263
\(795\) 0 0
\(796\) 4.55672e23 0.100206
\(797\) − 5.86608e22i − 0.0127630i −0.999980 0.00638149i \(-0.997969\pi\)
0.999980 0.00638149i \(-0.00203130\pi\)
\(798\) − 1.72667e24i − 0.371692i
\(799\) 6.05961e24 1.29062
\(800\) 0 0
\(801\) −4.59104e24 −0.957270
\(802\) 1.03864e24i 0.214280i
\(803\) 5.51709e23i 0.112623i
\(804\) −4.86427e24 −0.982520
\(805\) 0 0
\(806\) 6.44439e24 1.27448
\(807\) − 1.06457e25i − 2.08329i
\(808\) − 6.33753e23i − 0.122722i
\(809\) −2.47056e24 −0.473406 −0.236703 0.971582i \(-0.576067\pi\)
−0.236703 + 0.971582i \(0.576067\pi\)
\(810\) 0 0
\(811\) 9.80457e24 1.83972 0.919859 0.392249i \(-0.128303\pi\)
0.919859 + 0.392249i \(0.128303\pi\)
\(812\) 2.55194e24i 0.473854i
\(813\) − 3.02404e24i − 0.555671i
\(814\) 5.55506e24 1.01014
\(815\) 0 0
\(816\) −1.58826e24 −0.282850
\(817\) − 2.97210e24i − 0.523813i
\(818\) 1.66101e24i 0.289714i
\(819\) 9.58550e24 1.65463
\(820\) 0 0
\(821\) 3.65428e23 0.0617853 0.0308927 0.999523i \(-0.490165\pi\)
0.0308927 + 0.999523i \(0.490165\pi\)
\(822\) 1.95707e24i 0.327488i
\(823\) − 9.20886e24i − 1.52513i −0.646911 0.762565i \(-0.723940\pi\)
0.646911 0.762565i \(-0.276060\pi\)
\(824\) 2.73555e24 0.448398
\(825\) 0 0
\(826\) 3.98092e24 0.639224
\(827\) − 2.05375e24i − 0.326400i −0.986593 0.163200i \(-0.947818\pi\)
0.986593 0.163200i \(-0.0521816\pi\)
\(828\) − 9.04975e24i − 1.42357i
\(829\) −2.35707e24 −0.366994 −0.183497 0.983020i \(-0.558742\pi\)
−0.183497 + 0.983020i \(0.558742\pi\)
\(830\) 0 0
\(831\) −2.79573e24 −0.426468
\(832\) 8.08983e23i 0.122149i
\(833\) 5.21882e23i 0.0779991i
\(834\) −2.35599e24 −0.348548
\(835\) 0 0
\(836\) −1.18116e24 −0.171221
\(837\) 1.25797e25i 1.80511i
\(838\) − 5.56680e24i − 0.790736i
\(839\) −4.69193e24 −0.659743 −0.329872 0.944026i \(-0.607006\pi\)
−0.329872 + 0.944026i \(0.607006\pi\)
\(840\) 0 0
\(841\) −1.39192e24 −0.191800
\(842\) 3.73555e24i 0.509568i
\(843\) − 2.93591e24i − 0.396469i
\(844\) 1.11683e24 0.149305
\(845\) 0 0
\(846\) 1.59634e25 2.09159
\(847\) − 1.86254e24i − 0.241600i
\(848\) 4.37769e23i 0.0562186i
\(849\) 4.30081e24 0.546808
\(850\) 0 0
\(851\) −1.83271e25 −2.28398
\(852\) − 8.84423e24i − 1.09125i
\(853\) − 8.89565e24i − 1.08670i −0.839505 0.543352i \(-0.817155\pi\)
0.839505 0.543352i \(-0.182845\pi\)
\(854\) −4.69284e24 −0.567602
\(855\) 0 0
\(856\) 3.92331e24 0.465185
\(857\) − 1.23863e25i − 1.45413i −0.686567 0.727066i \(-0.740883\pi\)
0.686567 0.727066i \(-0.259117\pi\)
\(858\) − 1.06395e25i − 1.23674i
\(859\) −3.17743e24 −0.365708 −0.182854 0.983140i \(-0.558534\pi\)
−0.182854 + 0.983140i \(0.558534\pi\)
\(860\) 0 0
\(861\) −1.15559e25 −1.30400
\(862\) − 6.68909e24i − 0.747404i
\(863\) 1.42021e25i 1.57130i 0.618669 + 0.785652i \(0.287672\pi\)
−0.618669 + 0.785652i \(0.712328\pi\)
\(864\) −1.57917e24 −0.173006
\(865\) 0 0
\(866\) 3.26905e24 0.351172
\(867\) − 7.72238e24i − 0.821465i
\(868\) 9.22933e24i 0.972193i
\(869\) −8.57475e24 −0.894444
\(870\) 0 0
\(871\) 1.16279e25 1.18945
\(872\) − 7.50372e23i − 0.0760128i
\(873\) 1.95263e25i 1.95884i
\(874\) 3.89685e24 0.387139
\(875\) 0 0
\(876\) −8.41551e23 −0.0819966
\(877\) 8.28800e24i 0.799748i 0.916570 + 0.399874i \(0.130946\pi\)
−0.916570 + 0.399874i \(0.869054\pi\)
\(878\) 7.25527e24i 0.693347i
\(879\) 2.89653e25 2.74140
\(880\) 0 0
\(881\) 7.02937e24 0.652561 0.326281 0.945273i \(-0.394205\pi\)
0.326281 + 0.945273i \(0.394205\pi\)
\(882\) 1.37484e24i 0.126407i
\(883\) − 3.64222e23i − 0.0331665i −0.999862 0.0165833i \(-0.994721\pi\)
0.999862 0.0165833i \(-0.00527886\pi\)
\(884\) 3.79670e24 0.342422
\(885\) 0 0
\(886\) 3.71768e24 0.328916
\(887\) − 1.85309e25i − 1.62385i −0.583765 0.811923i \(-0.698421\pi\)
0.583765 0.811923i \(-0.301579\pi\)
\(888\) 8.47342e24i 0.735442i
\(889\) −1.84024e24 −0.158201
\(890\) 0 0
\(891\) −3.45369e23 −0.0291288
\(892\) − 1.89515e24i − 0.158322i
\(893\) 6.87388e24i 0.568807i
\(894\) 5.45481e24 0.447106
\(895\) 0 0
\(896\) −1.15859e24 −0.0931772
\(897\) 3.51015e25i 2.79634i
\(898\) − 3.55579e24i − 0.280600i
\(899\) 2.12121e25 1.65816
\(900\) 0 0
\(901\) 2.05452e24 0.157598
\(902\) 7.90506e24i 0.600689i
\(903\) 3.83411e25i 2.88615i
\(904\) −4.05613e24 −0.302469
\(905\) 0 0
\(906\) −2.62169e25 −1.91863
\(907\) 1.87024e25i 1.35592i 0.735097 + 0.677962i \(0.237137\pi\)
−0.735097 + 0.677962i \(0.762863\pi\)
\(908\) − 8.66674e24i − 0.622481i
\(909\) −7.83551e24 −0.557538
\(910\) 0 0
\(911\) −1.41129e25 −0.985620 −0.492810 0.870137i \(-0.664030\pi\)
−0.492810 + 0.870137i \(0.664030\pi\)
\(912\) − 1.80169e24i − 0.124659i
\(913\) − 9.71689e24i − 0.666079i
\(914\) −9.53741e24 −0.647721
\(915\) 0 0
\(916\) −7.95273e23 −0.0530157
\(917\) − 7.93730e23i − 0.0524244i
\(918\) 7.41132e24i 0.484990i
\(919\) 2.33638e25 1.51482 0.757411 0.652938i \(-0.226464\pi\)
0.757411 + 0.652938i \(0.226464\pi\)
\(920\) 0 0
\(921\) 4.37347e25 2.78368
\(922\) 4.10221e24i 0.258705i
\(923\) 2.11419e25i 1.32108i
\(924\) 1.52374e25 0.943406
\(925\) 0 0
\(926\) −1.54060e25 −0.936476
\(927\) − 3.38214e25i − 2.03711i
\(928\) 2.66282e24i 0.158922i
\(929\) −2.98004e25 −1.76234 −0.881169 0.472802i \(-0.843243\pi\)
−0.881169 + 0.472802i \(0.843243\pi\)
\(930\) 0 0
\(931\) −5.92010e23 −0.0343761
\(932\) − 7.38860e24i − 0.425135i
\(933\) − 2.90417e25i − 1.65588i
\(934\) −1.07803e25 −0.609090
\(935\) 0 0
\(936\) 1.00020e25 0.554935
\(937\) 2.48730e25i 1.36755i 0.729694 + 0.683774i \(0.239663\pi\)
−0.729694 + 0.683774i \(0.760337\pi\)
\(938\) 1.66529e25i 0.907331i
\(939\) −5.47381e24 −0.295551
\(940\) 0 0
\(941\) −3.05795e25 −1.62150 −0.810752 0.585390i \(-0.800941\pi\)
−0.810752 + 0.585390i \(0.800941\pi\)
\(942\) 1.06117e25i 0.557640i
\(943\) − 2.60801e25i − 1.35819i
\(944\) 4.15389e24 0.214385
\(945\) 0 0
\(946\) 2.62281e25 1.32951
\(947\) 3.09044e25i 1.55255i 0.630393 + 0.776276i \(0.282894\pi\)
−0.630393 + 0.776276i \(0.717106\pi\)
\(948\) − 1.30795e25i − 0.651210i
\(949\) 2.01170e24 0.0992661
\(950\) 0 0
\(951\) 1.86893e25 0.905856
\(952\) 5.43744e24i 0.261204i
\(953\) 2.50647e24i 0.119337i 0.998218 + 0.0596683i \(0.0190043\pi\)
−0.998218 + 0.0596683i \(0.980996\pi\)
\(954\) 5.41242e24 0.255406
\(955\) 0 0
\(956\) −1.07673e25 −0.499131
\(957\) − 3.50207e25i − 1.60906i
\(958\) 1.05834e25i 0.481966i
\(959\) 6.70005e24 0.302426
\(960\) 0 0
\(961\) 5.41655e25 2.40200
\(962\) − 2.02555e25i − 0.890337i
\(963\) − 4.85065e25i − 2.11337i
\(964\) −8.23438e24 −0.355612
\(965\) 0 0
\(966\) −5.02707e25 −2.13309
\(967\) 1.13278e25i 0.476455i 0.971209 + 0.238228i \(0.0765664\pi\)
−0.971209 + 0.238228i \(0.923434\pi\)
\(968\) − 1.94347e24i − 0.0810282i
\(969\) −8.45564e24 −0.349457
\(970\) 0 0
\(971\) 4.00712e25 1.62731 0.813653 0.581351i \(-0.197476\pi\)
0.813653 + 0.581351i \(0.197476\pi\)
\(972\) − 1.26822e25i − 0.510544i
\(973\) 8.06578e24i 0.321875i
\(974\) 2.51488e25 0.994868
\(975\) 0 0
\(976\) −4.89675e24 −0.190364
\(977\) − 8.86356e24i − 0.341589i −0.985307 0.170795i \(-0.945367\pi\)
0.985307 0.170795i \(-0.0546335\pi\)
\(978\) − 1.01952e25i − 0.389507i
\(979\) 1.74458e25 0.660750
\(980\) 0 0
\(981\) −9.27734e24 −0.345332
\(982\) − 7.34492e23i − 0.0271044i
\(983\) − 1.56885e25i − 0.573954i −0.957938 0.286977i \(-0.907350\pi\)
0.957938 0.286977i \(-0.0926503\pi\)
\(984\) −1.20580e25 −0.437338
\(985\) 0 0
\(986\) 1.24971e25 0.445507
\(987\) − 8.86754e25i − 3.13406i
\(988\) 4.30688e24i 0.150914i
\(989\) −8.65307e25 −3.00609
\(990\) 0 0
\(991\) −2.85830e25 −0.976073 −0.488037 0.872823i \(-0.662287\pi\)
−0.488037 + 0.872823i \(0.662287\pi\)
\(992\) 9.63034e24i 0.326056i
\(993\) 1.15084e25i 0.386319i
\(994\) −3.02783e25 −1.00774
\(995\) 0 0
\(996\) 1.48217e25 0.484946
\(997\) 6.58977e24i 0.213777i 0.994271 + 0.106889i \(0.0340888\pi\)
−0.994271 + 0.106889i \(0.965911\pi\)
\(998\) 2.22278e25i 0.714970i
\(999\) 3.95396e25 1.26103
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.18.b.e.49.3 4
5.2 odd 4 10.18.a.b.1.1 2
5.3 odd 4 50.18.a.g.1.2 2
5.4 even 2 inner 50.18.b.e.49.2 4
15.2 even 4 90.18.a.n.1.2 2
20.7 even 4 80.18.a.e.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.18.a.b.1.1 2 5.2 odd 4
50.18.a.g.1.2 2 5.3 odd 4
50.18.b.e.49.2 4 5.4 even 2 inner
50.18.b.e.49.3 4 1.1 even 1 trivial
80.18.a.e.1.2 2 20.7 even 4
90.18.a.n.1.2 2 15.2 even 4