Properties

Label 50.18.b.f.49.4
Level $50$
Weight $18$
Character 50.49
Analytic conductor $91.611$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,18,Mod(49,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.49");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(91.6110436723\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{2941})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1471x^{2} + 540225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.4
Root \(27.6155i\) of defining polynomial
Character \(\chi\) \(=\) 50.49
Dual form 50.18.b.f.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+256.000i q^{2} +4201.44i q^{3} -65536.0 q^{4} -1.07557e6 q^{6} +1.23193e7i q^{7} -1.67772e7i q^{8} +1.11488e8 q^{9} +1.21513e9 q^{11} -2.75345e8i q^{12} -2.42392e9i q^{13} -3.15374e9 q^{14} +4.29497e9 q^{16} -1.73631e10i q^{17} +2.85410e10i q^{18} -1.15322e11 q^{19} -5.17587e10 q^{21} +3.11072e11i q^{22} -5.47905e11i q^{23} +7.04884e10 q^{24} +6.20524e11 q^{26} +1.01098e12i q^{27} -8.07357e11i q^{28} -2.02736e12 q^{29} -3.37643e12 q^{31} +1.09951e12i q^{32} +5.10528e12i q^{33} +4.44497e12 q^{34} -7.30648e12 q^{36} -2.48073e13i q^{37} -2.95225e13i q^{38} +1.01840e13 q^{39} -5.37038e13 q^{41} -1.32502e13i q^{42} +2.49397e13i q^{43} -7.96345e13 q^{44} +1.40264e14 q^{46} -1.57049e14i q^{47} +1.80450e13i q^{48} +8.08656e13 q^{49} +7.29502e13 q^{51} +1.58854e14i q^{52} -5.06856e14i q^{53} -2.58812e14 q^{54} +2.06683e14 q^{56} -4.84519e14i q^{57} -5.19005e14i q^{58} -1.29796e15 q^{59} +4.35989e14 q^{61} -8.64366e14i q^{62} +1.37345e15i q^{63} -2.81475e14 q^{64} -1.30695e15 q^{66} -2.50888e15i q^{67} +1.13791e15i q^{68} +2.30199e15 q^{69} -3.06603e15 q^{71} -1.87046e15i q^{72} -4.56009e15i q^{73} +6.35068e15 q^{74} +7.55776e15 q^{76} +1.49695e16i q^{77} +2.60709e15i q^{78} -1.40515e16 q^{79} +1.01500e16 q^{81} -1.37482e16i q^{82} -2.52434e16i q^{83} +3.39206e15 q^{84} -6.38456e15 q^{86} -8.51784e15i q^{87} -2.03864e16i q^{88} +6.68155e16 q^{89} +2.98610e16 q^{91} +3.59075e16i q^{92} -1.41859e16i q^{93} +4.02045e16 q^{94} -4.61953e15 q^{96} +6.24209e16i q^{97} +2.07016e16i q^{98} +1.35472e17 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 262144 q^{4} + 9025536 q^{6} - 471792132 q^{9} + 129030528 q^{11} - 14174308352 q^{14} + 17179869184 q^{16} - 88427425520 q^{19} + 567296955888 q^{21} - 591497527296 q^{24} + 1482669295616 q^{26}+ \cdots + 10\!\cdots\!76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 256.000i 0.707107i
\(3\) 4201.44i 0.369715i 0.982765 + 0.184858i \(0.0591824\pi\)
−0.982765 + 0.184858i \(0.940818\pi\)
\(4\) −65536.0 −0.500000
\(5\) 0 0
\(6\) −1.07557e6 −0.261428
\(7\) 1.23193e7i 0.807704i 0.914824 + 0.403852i \(0.132329\pi\)
−0.914824 + 0.403852i \(0.867671\pi\)
\(8\) − 1.67772e7i − 0.353553i
\(9\) 1.11488e8 0.863311
\(10\) 0 0
\(11\) 1.21513e9 1.70916 0.854582 0.519317i \(-0.173813\pi\)
0.854582 + 0.519317i \(0.173813\pi\)
\(12\) − 2.75345e8i − 0.184858i
\(13\) − 2.42392e9i − 0.824138i −0.911153 0.412069i \(-0.864806\pi\)
0.911153 0.412069i \(-0.135194\pi\)
\(14\) −3.15374e9 −0.571133
\(15\) 0 0
\(16\) 4.29497e9 0.250000
\(17\) − 1.73631e10i − 0.603688i −0.953357 0.301844i \(-0.902398\pi\)
0.953357 0.301844i \(-0.0976022\pi\)
\(18\) 2.85410e10i 0.610453i
\(19\) −1.15322e11 −1.55779 −0.778893 0.627157i \(-0.784218\pi\)
−0.778893 + 0.627157i \(0.784218\pi\)
\(20\) 0 0
\(21\) −5.17587e10 −0.298620
\(22\) 3.11072e11i 1.20856i
\(23\) − 5.47905e11i − 1.45888i −0.684046 0.729439i \(-0.739781\pi\)
0.684046 0.729439i \(-0.260219\pi\)
\(24\) 7.04884e10 0.130714
\(25\) 0 0
\(26\) 6.20524e11 0.582754
\(27\) 1.01098e12i 0.688894i
\(28\) − 8.07357e11i − 0.403852i
\(29\) −2.02736e12 −0.752573 −0.376286 0.926503i \(-0.622799\pi\)
−0.376286 + 0.926503i \(0.622799\pi\)
\(30\) 0 0
\(31\) −3.37643e12 −0.711022 −0.355511 0.934672i \(-0.615693\pi\)
−0.355511 + 0.934672i \(0.615693\pi\)
\(32\) 1.09951e12i 0.176777i
\(33\) 5.10528e12i 0.631904i
\(34\) 4.44497e12 0.426872
\(35\) 0 0
\(36\) −7.30648e12 −0.431655
\(37\) − 2.48073e13i − 1.16109i −0.814228 0.580545i \(-0.802840\pi\)
0.814228 0.580545i \(-0.197160\pi\)
\(38\) − 2.95225e13i − 1.10152i
\(39\) 1.01840e13 0.304696
\(40\) 0 0
\(41\) −5.37038e13 −1.05037 −0.525185 0.850988i \(-0.676004\pi\)
−0.525185 + 0.850988i \(0.676004\pi\)
\(42\) − 1.32502e13i − 0.211157i
\(43\) 2.49397e13i 0.325394i 0.986676 + 0.162697i \(0.0520193\pi\)
−0.986676 + 0.162697i \(0.947981\pi\)
\(44\) −7.96345e13 −0.854582
\(45\) 0 0
\(46\) 1.40264e14 1.03158
\(47\) − 1.57049e14i − 0.962062i −0.876704 0.481031i \(-0.840262\pi\)
0.876704 0.481031i \(-0.159738\pi\)
\(48\) 1.80450e13i 0.0924288i
\(49\) 8.08656e13 0.347614
\(50\) 0 0
\(51\) 7.29502e13 0.223193
\(52\) 1.58854e14i 0.412069i
\(53\) − 5.06856e14i − 1.11825i −0.829083 0.559126i \(-0.811137\pi\)
0.829083 0.559126i \(-0.188863\pi\)
\(54\) −2.58812e14 −0.487122
\(55\) 0 0
\(56\) 2.06683e14 0.285567
\(57\) − 4.84519e14i − 0.575937i
\(58\) − 5.19005e14i − 0.532149i
\(59\) −1.29796e15 −1.15085 −0.575424 0.817856i \(-0.695163\pi\)
−0.575424 + 0.817856i \(0.695163\pi\)
\(60\) 0 0
\(61\) 4.35989e14 0.291187 0.145593 0.989344i \(-0.453491\pi\)
0.145593 + 0.989344i \(0.453491\pi\)
\(62\) − 8.64366e14i − 0.502769i
\(63\) 1.37345e15i 0.697300i
\(64\) −2.81475e14 −0.125000
\(65\) 0 0
\(66\) −1.30695e15 −0.446823
\(67\) − 2.50888e15i − 0.754820i −0.926046 0.377410i \(-0.876815\pi\)
0.926046 0.377410i \(-0.123185\pi\)
\(68\) 1.13791e15i 0.301844i
\(69\) 2.30199e15 0.539369
\(70\) 0 0
\(71\) −3.06603e15 −0.563483 −0.281742 0.959490i \(-0.590912\pi\)
−0.281742 + 0.959490i \(0.590912\pi\)
\(72\) − 1.87046e15i − 0.305226i
\(73\) − 4.56009e15i − 0.661804i −0.943665 0.330902i \(-0.892647\pi\)
0.943665 0.330902i \(-0.107353\pi\)
\(74\) 6.35068e15 0.821014
\(75\) 0 0
\(76\) 7.55776e15 0.778893
\(77\) 1.49695e16i 1.38050i
\(78\) 2.60709e15i 0.215453i
\(79\) −1.40515e16 −1.04206 −0.521031 0.853538i \(-0.674452\pi\)
−0.521031 + 0.853538i \(0.674452\pi\)
\(80\) 0 0
\(81\) 1.01500e16 0.608616
\(82\) − 1.37482e16i − 0.742724i
\(83\) − 2.52434e16i − 1.23023i −0.788439 0.615113i \(-0.789111\pi\)
0.788439 0.615113i \(-0.210889\pi\)
\(84\) 3.39206e15 0.149310
\(85\) 0 0
\(86\) −6.38456e15 −0.230088
\(87\) − 8.51784e15i − 0.278237i
\(88\) − 2.03864e16i − 0.604281i
\(89\) 6.68155e16 1.79913 0.899564 0.436790i \(-0.143885\pi\)
0.899564 + 0.436790i \(0.143885\pi\)
\(90\) 0 0
\(91\) 2.98610e16 0.665660
\(92\) 3.59075e16i 0.729439i
\(93\) − 1.41859e16i − 0.262876i
\(94\) 4.02045e16 0.680281
\(95\) 0 0
\(96\) −4.61953e15 −0.0653570
\(97\) 6.24209e16i 0.808667i 0.914612 + 0.404334i \(0.132497\pi\)
−0.914612 + 0.404334i \(0.867503\pi\)
\(98\) 2.07016e16i 0.245800i
\(99\) 1.35472e17 1.47554
\(100\) 0 0
\(101\) −1.29437e17 −1.18940 −0.594701 0.803947i \(-0.702729\pi\)
−0.594701 + 0.803947i \(0.702729\pi\)
\(102\) 1.86752e16i 0.157821i
\(103\) 1.62161e16i 0.126134i 0.998009 + 0.0630668i \(0.0200881\pi\)
−0.998009 + 0.0630668i \(0.979912\pi\)
\(104\) −4.06666e16 −0.291377
\(105\) 0 0
\(106\) 1.29755e17 0.790724
\(107\) 7.54294e16i 0.424403i 0.977226 + 0.212201i \(0.0680633\pi\)
−0.977226 + 0.212201i \(0.931937\pi\)
\(108\) − 6.62559e16i − 0.344447i
\(109\) 3.29149e17 1.58222 0.791112 0.611672i \(-0.209503\pi\)
0.791112 + 0.611672i \(0.209503\pi\)
\(110\) 0 0
\(111\) 1.04227e17 0.429272
\(112\) 5.29110e16i 0.201926i
\(113\) − 4.37906e17i − 1.54958i −0.632217 0.774791i \(-0.717855\pi\)
0.632217 0.774791i \(-0.282145\pi\)
\(114\) 1.24037e17 0.407249
\(115\) 0 0
\(116\) 1.32865e17 0.376286
\(117\) − 2.70238e17i − 0.711487i
\(118\) − 3.32277e17i − 0.813772i
\(119\) 2.13902e17 0.487602
\(120\) 0 0
\(121\) 9.71086e17 1.92124
\(122\) 1.11613e17i 0.205900i
\(123\) − 2.25633e17i − 0.388338i
\(124\) 2.21278e17 0.355511
\(125\) 0 0
\(126\) −3.51604e17 −0.493065
\(127\) 4.26464e17i 0.559179i 0.960120 + 0.279590i \(0.0901984\pi\)
−0.960120 + 0.279590i \(0.909802\pi\)
\(128\) − 7.20576e16i − 0.0883883i
\(129\) −1.04783e17 −0.120303
\(130\) 0 0
\(131\) −1.99048e17 −0.200517 −0.100259 0.994961i \(-0.531967\pi\)
−0.100259 + 0.994961i \(0.531967\pi\)
\(132\) − 3.34579e17i − 0.315952i
\(133\) − 1.42069e18i − 1.25823i
\(134\) 6.42272e17 0.533738
\(135\) 0 0
\(136\) −2.91305e17 −0.213436
\(137\) − 2.15800e18i − 1.48569i −0.669465 0.742844i \(-0.733476\pi\)
0.669465 0.742844i \(-0.266524\pi\)
\(138\) 5.89309e17i 0.381391i
\(139\) 2.69991e18 1.64332 0.821662 0.569975i \(-0.193047\pi\)
0.821662 + 0.569975i \(0.193047\pi\)
\(140\) 0 0
\(141\) 6.59831e17 0.355689
\(142\) − 7.84905e17i − 0.398443i
\(143\) − 2.94537e18i − 1.40859i
\(144\) 4.78838e17 0.215828
\(145\) 0 0
\(146\) 1.16738e18 0.467966
\(147\) 3.39752e17i 0.128518i
\(148\) 1.62577e18i 0.580545i
\(149\) −1.38331e18 −0.466484 −0.233242 0.972419i \(-0.574934\pi\)
−0.233242 + 0.972419i \(0.574934\pi\)
\(150\) 0 0
\(151\) −3.60449e18 −1.08528 −0.542638 0.839967i \(-0.682574\pi\)
−0.542638 + 0.839967i \(0.682574\pi\)
\(152\) 1.93479e18i 0.550760i
\(153\) − 1.93578e18i − 0.521170i
\(154\) −3.83219e18 −0.976160
\(155\) 0 0
\(156\) −6.67415e17 −0.152348
\(157\) 6.76512e18i 1.46261i 0.682051 + 0.731305i \(0.261088\pi\)
−0.682051 + 0.731305i \(0.738912\pi\)
\(158\) − 3.59719e18i − 0.736849i
\(159\) 2.12952e18 0.413435
\(160\) 0 0
\(161\) 6.74980e18 1.17834
\(162\) 2.59840e18i 0.430357i
\(163\) 1.06804e19i 1.67877i 0.543536 + 0.839386i \(0.317085\pi\)
−0.543536 + 0.839386i \(0.682915\pi\)
\(164\) 3.51953e18 0.525185
\(165\) 0 0
\(166\) 6.46232e18 0.869900
\(167\) − 2.93736e18i − 0.375722i −0.982196 0.187861i \(-0.939845\pi\)
0.982196 0.187861i \(-0.0601554\pi\)
\(168\) 8.68367e17i 0.105578i
\(169\) 2.77502e18 0.320797
\(170\) 0 0
\(171\) −1.28571e19 −1.34485
\(172\) − 1.63445e18i − 0.162697i
\(173\) 3.04250e18i 0.288296i 0.989556 + 0.144148i \(0.0460442\pi\)
−0.989556 + 0.144148i \(0.953956\pi\)
\(174\) 2.18057e18 0.196744
\(175\) 0 0
\(176\) 5.21893e18 0.427291
\(177\) − 5.45328e18i − 0.425486i
\(178\) 1.71048e19i 1.27218i
\(179\) −1.82741e19 −1.29594 −0.647970 0.761666i \(-0.724382\pi\)
−0.647970 + 0.761666i \(0.724382\pi\)
\(180\) 0 0
\(181\) −1.73562e19 −1.11992 −0.559959 0.828520i \(-0.689183\pi\)
−0.559959 + 0.828520i \(0.689183\pi\)
\(182\) 7.64441e18i 0.470693i
\(183\) 1.83178e18i 0.107656i
\(184\) −9.19232e18 −0.515791
\(185\) 0 0
\(186\) 3.63158e18 0.185881
\(187\) − 2.10984e19i − 1.03180i
\(188\) 1.02924e19i 0.481031i
\(189\) −1.24546e19 −0.556423
\(190\) 0 0
\(191\) −1.78696e19 −0.730015 −0.365007 0.931005i \(-0.618934\pi\)
−0.365007 + 0.931005i \(0.618934\pi\)
\(192\) − 1.18260e18i − 0.0462144i
\(193\) − 9.94962e18i − 0.372023i −0.982548 0.186011i \(-0.940444\pi\)
0.982548 0.186011i \(-0.0595561\pi\)
\(194\) −1.59797e19 −0.571814
\(195\) 0 0
\(196\) −5.29961e18 −0.173807
\(197\) 5.27173e19i 1.65573i 0.560925 + 0.827866i \(0.310446\pi\)
−0.560925 + 0.827866i \(0.689554\pi\)
\(198\) 3.46809e19i 1.04336i
\(199\) −2.02822e18 −0.0584606 −0.0292303 0.999573i \(-0.509306\pi\)
−0.0292303 + 0.999573i \(0.509306\pi\)
\(200\) 0 0
\(201\) 1.05409e19 0.279068
\(202\) − 3.31360e19i − 0.841034i
\(203\) − 2.49757e19i − 0.607856i
\(204\) −4.78086e18 −0.111596
\(205\) 0 0
\(206\) −4.15133e18 −0.0891899
\(207\) − 6.10849e19i − 1.25946i
\(208\) − 1.04107e19i − 0.206034i
\(209\) −1.40131e20 −2.66251
\(210\) 0 0
\(211\) −2.55219e19 −0.447211 −0.223606 0.974680i \(-0.571783\pi\)
−0.223606 + 0.974680i \(0.571783\pi\)
\(212\) 3.32173e19i 0.559126i
\(213\) − 1.28817e19i − 0.208328i
\(214\) −1.93099e19 −0.300098
\(215\) 0 0
\(216\) 1.69615e19 0.243561
\(217\) − 4.15952e19i − 0.574296i
\(218\) 8.42622e19i 1.11880i
\(219\) 1.91589e19 0.244679
\(220\) 0 0
\(221\) −4.20869e19 −0.497522
\(222\) 2.66820e19i 0.303541i
\(223\) 3.50141e19i 0.383399i 0.981454 + 0.191700i \(0.0613999\pi\)
−0.981454 + 0.191700i \(0.938600\pi\)
\(224\) −1.35452e19 −0.142783
\(225\) 0 0
\(226\) 1.12104e20 1.09572
\(227\) − 1.19657e20i − 1.12647i −0.826298 0.563233i \(-0.809557\pi\)
0.826298 0.563233i \(-0.190443\pi\)
\(228\) 3.17535e19i 0.287968i
\(229\) 1.50518e20 1.31518 0.657591 0.753375i \(-0.271576\pi\)
0.657591 + 0.753375i \(0.271576\pi\)
\(230\) 0 0
\(231\) −6.28934e19 −0.510391
\(232\) 3.40135e19i 0.266075i
\(233\) − 1.80295e20i − 1.35975i −0.733328 0.679875i \(-0.762034\pi\)
0.733328 0.679875i \(-0.237966\pi\)
\(234\) 6.91810e19 0.503097
\(235\) 0 0
\(236\) 8.50628e19 0.575424
\(237\) − 5.90367e19i − 0.385266i
\(238\) 5.47588e19i 0.344786i
\(239\) 1.50864e20 0.916650 0.458325 0.888785i \(-0.348450\pi\)
0.458325 + 0.888785i \(0.348450\pi\)
\(240\) 0 0
\(241\) −1.11959e20 −0.633747 −0.316874 0.948468i \(-0.602633\pi\)
−0.316874 + 0.948468i \(0.602633\pi\)
\(242\) 2.48598e20i 1.35852i
\(243\) 1.73203e20i 0.913909i
\(244\) −2.85730e19 −0.145593
\(245\) 0 0
\(246\) 5.77621e19 0.274596
\(247\) 2.79532e20i 1.28383i
\(248\) 5.66471e19i 0.251384i
\(249\) 1.06059e20 0.454833
\(250\) 0 0
\(251\) 2.00695e20 0.804098 0.402049 0.915618i \(-0.368298\pi\)
0.402049 + 0.915618i \(0.368298\pi\)
\(252\) − 9.00107e19i − 0.348650i
\(253\) − 6.65774e20i − 2.49346i
\(254\) −1.09175e20 −0.395400
\(255\) 0 0
\(256\) 1.84467e19 0.0625000
\(257\) 1.70143e20i 0.557678i 0.960338 + 0.278839i \(0.0899496\pi\)
−0.960338 + 0.278839i \(0.910050\pi\)
\(258\) − 2.68243e19i − 0.0850671i
\(259\) 3.05609e20 0.937817
\(260\) 0 0
\(261\) −2.26027e20 −0.649704
\(262\) − 5.09563e19i − 0.141787i
\(263\) − 5.78686e20i − 1.55890i −0.626462 0.779452i \(-0.715498\pi\)
0.626462 0.779452i \(-0.284502\pi\)
\(264\) 8.56523e19 0.223412
\(265\) 0 0
\(266\) 3.63696e20 0.889703
\(267\) 2.80721e20i 0.665165i
\(268\) 1.64422e20i 0.377410i
\(269\) 5.13106e20 1.14107 0.570536 0.821273i \(-0.306736\pi\)
0.570536 + 0.821273i \(0.306736\pi\)
\(270\) 0 0
\(271\) −4.64533e20 −0.970013 −0.485006 0.874511i \(-0.661183\pi\)
−0.485006 + 0.874511i \(0.661183\pi\)
\(272\) − 7.45742e19i − 0.150922i
\(273\) 1.25459e20i 0.246104i
\(274\) 5.52449e20 1.05054
\(275\) 0 0
\(276\) −1.50863e20 −0.269684
\(277\) − 9.72733e20i − 1.68623i −0.537737 0.843113i \(-0.680721\pi\)
0.537737 0.843113i \(-0.319279\pi\)
\(278\) 6.91177e20i 1.16201i
\(279\) −3.76432e20 −0.613833
\(280\) 0 0
\(281\) 6.76588e20 1.03830 0.519148 0.854685i \(-0.326249\pi\)
0.519148 + 0.854685i \(0.326249\pi\)
\(282\) 1.68917e20i 0.251510i
\(283\) − 1.12202e21i − 1.62112i −0.585656 0.810560i \(-0.699163\pi\)
0.585656 0.810560i \(-0.300837\pi\)
\(284\) 2.00936e20 0.281742
\(285\) 0 0
\(286\) 7.54015e20 0.996021
\(287\) − 6.61593e20i − 0.848389i
\(288\) 1.22582e20i 0.152613i
\(289\) 5.25761e20 0.635561
\(290\) 0 0
\(291\) −2.62257e20 −0.298977
\(292\) 2.98850e20i 0.330902i
\(293\) 3.05309e20i 0.328371i 0.986429 + 0.164185i \(0.0524995\pi\)
−0.986429 + 0.164185i \(0.947500\pi\)
\(294\) −8.69764e19 −0.0908760
\(295\) 0 0
\(296\) −4.16198e20 −0.410507
\(297\) 1.22847e21i 1.17743i
\(298\) − 3.54128e20i − 0.329854i
\(299\) −1.32808e21 −1.20232
\(300\) 0 0
\(301\) −3.07239e20 −0.262822
\(302\) − 9.22750e20i − 0.767406i
\(303\) − 5.43823e20i − 0.439740i
\(304\) −4.95305e20 −0.389446
\(305\) 0 0
\(306\) 4.95561e20 0.368523
\(307\) − 3.66561e20i − 0.265137i −0.991174 0.132569i \(-0.957678\pi\)
0.991174 0.132569i \(-0.0423225\pi\)
\(308\) − 9.81041e20i − 0.690250i
\(309\) −6.81310e19 −0.0466335
\(310\) 0 0
\(311\) −3.12925e19 −0.0202758 −0.0101379 0.999949i \(-0.503227\pi\)
−0.0101379 + 0.999949i \(0.503227\pi\)
\(312\) − 1.70858e20i − 0.107726i
\(313\) 2.54969e21i 1.56444i 0.623000 + 0.782222i \(0.285914\pi\)
−0.623000 + 0.782222i \(0.714086\pi\)
\(314\) −1.73187e21 −1.03422
\(315\) 0 0
\(316\) 9.20882e20 0.521031
\(317\) − 1.42704e21i − 0.786018i −0.919535 0.393009i \(-0.871434\pi\)
0.919535 0.393009i \(-0.128566\pi\)
\(318\) 5.45158e20i 0.292343i
\(319\) −2.46350e21 −1.28627
\(320\) 0 0
\(321\) −3.16912e20 −0.156908
\(322\) 1.72795e21i 0.833213i
\(323\) 2.00236e21i 0.940416i
\(324\) −6.65191e20 −0.304308
\(325\) 0 0
\(326\) −2.73417e21 −1.18707
\(327\) 1.38290e21i 0.584972i
\(328\) 9.01001e20i 0.371362i
\(329\) 1.93473e21 0.777062
\(330\) 0 0
\(331\) −1.65282e20 −0.0630503 −0.0315251 0.999503i \(-0.510036\pi\)
−0.0315251 + 0.999503i \(0.510036\pi\)
\(332\) 1.65435e21i 0.615113i
\(333\) − 2.76572e21i − 1.00238i
\(334\) 7.51963e20 0.265676
\(335\) 0 0
\(336\) −2.22302e20 −0.0746551
\(337\) − 1.56766e21i − 0.513332i −0.966500 0.256666i \(-0.917376\pi\)
0.966500 0.256666i \(-0.0826240\pi\)
\(338\) 7.10406e20i 0.226837i
\(339\) 1.83984e21 0.572904
\(340\) 0 0
\(341\) −4.10279e21 −1.21525
\(342\) − 3.29141e21i − 0.950954i
\(343\) 3.86205e21i 1.08847i
\(344\) 4.18419e20 0.115044
\(345\) 0 0
\(346\) −7.78881e20 −0.203856
\(347\) 1.62532e21i 0.415086i 0.978226 + 0.207543i \(0.0665467\pi\)
−0.978226 + 0.207543i \(0.933453\pi\)
\(348\) 5.58225e20i 0.139119i
\(349\) −3.60380e21 −0.876486 −0.438243 0.898857i \(-0.644399\pi\)
−0.438243 + 0.898857i \(0.644399\pi\)
\(350\) 0 0
\(351\) 2.45055e21 0.567744
\(352\) 1.33605e21i 0.302140i
\(353\) 7.99561e21i 1.76509i 0.470230 + 0.882544i \(0.344171\pi\)
−0.470230 + 0.882544i \(0.655829\pi\)
\(354\) 1.39604e21 0.300864
\(355\) 0 0
\(356\) −4.37882e21 −0.899564
\(357\) 8.98694e20i 0.180274i
\(358\) − 4.67817e21i − 0.916368i
\(359\) −7.69221e21 −1.47146 −0.735730 0.677275i \(-0.763161\pi\)
−0.735730 + 0.677275i \(0.763161\pi\)
\(360\) 0 0
\(361\) 7.81884e21 1.42669
\(362\) − 4.44318e21i − 0.791902i
\(363\) 4.07995e21i 0.710312i
\(364\) −1.95697e21 −0.332830
\(365\) 0 0
\(366\) −4.68936e20 −0.0761244
\(367\) 4.40761e21i 0.699104i 0.936917 + 0.349552i \(0.113666\pi\)
−0.936917 + 0.349552i \(0.886334\pi\)
\(368\) − 2.35323e21i − 0.364719i
\(369\) −5.98734e21 −0.906796
\(370\) 0 0
\(371\) 6.24411e21 0.903217
\(372\) 9.29684e20i 0.131438i
\(373\) − 7.73260e21i − 1.06856i −0.845306 0.534282i \(-0.820582\pi\)
0.845306 0.534282i \(-0.179418\pi\)
\(374\) 5.40120e21 0.729594
\(375\) 0 0
\(376\) −2.63484e21 −0.340140
\(377\) 4.91417e21i 0.620224i
\(378\) − 3.18838e21i − 0.393450i
\(379\) 6.86035e21 0.827776 0.413888 0.910328i \(-0.364171\pi\)
0.413888 + 0.910328i \(0.364171\pi\)
\(380\) 0 0
\(381\) −1.79176e21 −0.206737
\(382\) − 4.57462e21i − 0.516198i
\(383\) 4.86654e21i 0.537070i 0.963270 + 0.268535i \(0.0865395\pi\)
−0.963270 + 0.268535i \(0.913461\pi\)
\(384\) 3.02745e20 0.0326785
\(385\) 0 0
\(386\) 2.54710e21 0.263060
\(387\) 2.78048e21i 0.280916i
\(388\) − 4.09081e21i − 0.404334i
\(389\) 9.98351e21 0.965410 0.482705 0.875783i \(-0.339654\pi\)
0.482705 + 0.875783i \(0.339654\pi\)
\(390\) 0 0
\(391\) −9.51336e21 −0.880707
\(392\) − 1.35670e21i − 0.122900i
\(393\) − 8.36288e20i − 0.0741343i
\(394\) −1.34956e22 −1.17078
\(395\) 0 0
\(396\) −8.87830e21 −0.737770
\(397\) − 5.08435e21i − 0.413539i −0.978390 0.206769i \(-0.933705\pi\)
0.978390 0.206769i \(-0.0662949\pi\)
\(398\) − 5.19224e20i − 0.0413379i
\(399\) 5.96893e21 0.465187
\(400\) 0 0
\(401\) 1.05661e22 0.789198 0.394599 0.918853i \(-0.370883\pi\)
0.394599 + 0.918853i \(0.370883\pi\)
\(402\) 2.69847e21i 0.197331i
\(403\) 8.18420e21i 0.585980i
\(404\) 8.48281e21 0.594701
\(405\) 0 0
\(406\) 6.39377e21 0.429819
\(407\) − 3.01441e22i − 1.98449i
\(408\) − 1.22390e21i − 0.0789105i
\(409\) −1.73559e21 −0.109597 −0.0547985 0.998497i \(-0.517452\pi\)
−0.0547985 + 0.998497i \(0.517452\pi\)
\(410\) 0 0
\(411\) 9.06672e21 0.549281
\(412\) − 1.06274e21i − 0.0630668i
\(413\) − 1.59899e22i − 0.929544i
\(414\) 1.56377e22 0.890576
\(415\) 0 0
\(416\) 2.66513e21 0.145688
\(417\) 1.13435e22i 0.607562i
\(418\) − 3.58736e22i − 1.88268i
\(419\) 1.13030e22 0.581264 0.290632 0.956835i \(-0.406134\pi\)
0.290632 + 0.956835i \(0.406134\pi\)
\(420\) 0 0
\(421\) −1.06234e21 −0.0524643 −0.0262321 0.999656i \(-0.508351\pi\)
−0.0262321 + 0.999656i \(0.508351\pi\)
\(422\) − 6.53361e21i − 0.316226i
\(423\) − 1.75091e22i − 0.830559i
\(424\) −8.50363e21 −0.395362
\(425\) 0 0
\(426\) 3.29773e21 0.147310
\(427\) 5.37108e21i 0.235193i
\(428\) − 4.94334e21i − 0.212201i
\(429\) 1.23748e22 0.520776
\(430\) 0 0
\(431\) 3.61567e22 1.46262 0.731310 0.682045i \(-0.238909\pi\)
0.731310 + 0.682045i \(0.238909\pi\)
\(432\) 4.34215e21i 0.172224i
\(433\) 2.15292e22i 0.837298i 0.908148 + 0.418649i \(0.137496\pi\)
−0.908148 + 0.418649i \(0.862504\pi\)
\(434\) 1.06484e22 0.406088
\(435\) 0 0
\(436\) −2.15711e22 −0.791112
\(437\) 6.31857e22i 2.27262i
\(438\) 4.90469e21i 0.173014i
\(439\) 2.88882e22 0.999476 0.499738 0.866177i \(-0.333430\pi\)
0.499738 + 0.866177i \(0.333430\pi\)
\(440\) 0 0
\(441\) 9.01555e21 0.300099
\(442\) − 1.07742e22i − 0.351801i
\(443\) − 3.43476e21i − 0.110018i −0.998486 0.0550091i \(-0.982481\pi\)
0.998486 0.0550091i \(-0.0175188\pi\)
\(444\) −6.83059e21 −0.214636
\(445\) 0 0
\(446\) −8.96360e21 −0.271104
\(447\) − 5.81190e21i − 0.172466i
\(448\) − 3.46757e21i − 0.100963i
\(449\) −3.08875e22 −0.882447 −0.441223 0.897397i \(-0.645455\pi\)
−0.441223 + 0.897397i \(0.645455\pi\)
\(450\) 0 0
\(451\) −6.52570e22 −1.79526
\(452\) 2.86986e22i 0.774791i
\(453\) − 1.51440e22i − 0.401243i
\(454\) 3.06322e22 0.796532
\(455\) 0 0
\(456\) −8.12888e21 −0.203624
\(457\) − 3.83285e22i − 0.942398i −0.882027 0.471199i \(-0.843821\pi\)
0.882027 0.471199i \(-0.156179\pi\)
\(458\) 3.85325e22i 0.929974i
\(459\) 1.75539e22 0.415877
\(460\) 0 0
\(461\) 6.80144e22 1.55290 0.776449 0.630180i \(-0.217019\pi\)
0.776449 + 0.630180i \(0.217019\pi\)
\(462\) − 1.61007e22i − 0.360901i
\(463\) − 4.57341e21i − 0.100647i −0.998733 0.0503236i \(-0.983975\pi\)
0.998733 0.0503236i \(-0.0160253\pi\)
\(464\) −8.70746e21 −0.188143
\(465\) 0 0
\(466\) 4.61556e22 0.961489
\(467\) 4.97766e22i 1.01820i 0.860708 + 0.509099i \(0.170021\pi\)
−0.860708 + 0.509099i \(0.829979\pi\)
\(468\) 1.77103e22i 0.355744i
\(469\) 3.09076e22 0.609671
\(470\) 0 0
\(471\) −2.84232e22 −0.540749
\(472\) 2.17761e22i 0.406886i
\(473\) 3.03049e22i 0.556151i
\(474\) 1.51134e22 0.272424
\(475\) 0 0
\(476\) −1.40183e22 −0.243801
\(477\) − 5.65084e22i − 0.965399i
\(478\) 3.86212e22i 0.648169i
\(479\) −9.35494e22 −1.54237 −0.771186 0.636610i \(-0.780336\pi\)
−0.771186 + 0.636610i \(0.780336\pi\)
\(480\) 0 0
\(481\) −6.01310e22 −0.956898
\(482\) − 2.86616e22i − 0.448127i
\(483\) 2.83589e22i 0.435651i
\(484\) −6.36411e22 −0.960621
\(485\) 0 0
\(486\) −4.43400e22 −0.646231
\(487\) − 1.63934e22i − 0.234786i −0.993086 0.117393i \(-0.962546\pi\)
0.993086 0.117393i \(-0.0374537\pi\)
\(488\) − 7.31468e21i − 0.102950i
\(489\) −4.48729e22 −0.620667
\(490\) 0 0
\(491\) −2.62500e22 −0.350700 −0.175350 0.984506i \(-0.556106\pi\)
−0.175350 + 0.984506i \(0.556106\pi\)
\(492\) 1.47871e22i 0.194169i
\(493\) 3.52014e22i 0.454319i
\(494\) −7.15602e22 −0.907805
\(495\) 0 0
\(496\) −1.45017e22 −0.177756
\(497\) − 3.77714e22i − 0.455128i
\(498\) 2.71510e22i 0.321615i
\(499\) −1.91458e22 −0.222956 −0.111478 0.993767i \(-0.535558\pi\)
−0.111478 + 0.993767i \(0.535558\pi\)
\(500\) 0 0
\(501\) 1.23411e22 0.138910
\(502\) 5.13778e22i 0.568583i
\(503\) − 3.67210e22i − 0.399564i −0.979840 0.199782i \(-0.935977\pi\)
0.979840 0.199782i \(-0.0640234\pi\)
\(504\) 2.30427e22 0.246533
\(505\) 0 0
\(506\) 1.70438e23 1.76314
\(507\) 1.16591e22i 0.118603i
\(508\) − 2.79488e22i − 0.279590i
\(509\) −6.75737e22 −0.664778 −0.332389 0.943142i \(-0.607855\pi\)
−0.332389 + 0.943142i \(0.607855\pi\)
\(510\) 0 0
\(511\) 5.61771e22 0.534542
\(512\) 4.72237e21i 0.0441942i
\(513\) − 1.16589e23i − 1.07315i
\(514\) −4.35567e22 −0.394338
\(515\) 0 0
\(516\) 6.86703e21 0.0601515
\(517\) − 1.90834e23i − 1.64432i
\(518\) 7.82359e22i 0.663137i
\(519\) −1.27829e22 −0.106588
\(520\) 0 0
\(521\) −2.39219e23 −1.93052 −0.965262 0.261284i \(-0.915854\pi\)
−0.965262 + 0.261284i \(0.915854\pi\)
\(522\) − 5.78629e22i − 0.459410i
\(523\) 1.23467e22i 0.0964465i 0.998837 + 0.0482233i \(0.0153559\pi\)
−0.998837 + 0.0482233i \(0.984644\pi\)
\(524\) 1.30448e22 0.100259
\(525\) 0 0
\(526\) 1.48144e23 1.10231
\(527\) 5.86254e22i 0.429236i
\(528\) 2.19270e22i 0.157976i
\(529\) −1.59150e23 −1.12832
\(530\) 0 0
\(531\) −1.44707e23 −0.993539
\(532\) 9.31063e22i 0.629115i
\(533\) 1.30174e23i 0.865650i
\(534\) −7.18646e22 −0.470342
\(535\) 0 0
\(536\) −4.20919e22 −0.266869
\(537\) − 7.67774e22i − 0.479128i
\(538\) 1.31355e23i 0.806859i
\(539\) 9.82619e22 0.594129
\(540\) 0 0
\(541\) −2.47773e23 −1.45170 −0.725851 0.687851i \(-0.758554\pi\)
−0.725851 + 0.687851i \(0.758554\pi\)
\(542\) − 1.18920e23i − 0.685903i
\(543\) − 7.29209e22i − 0.414051i
\(544\) 1.90910e22 0.106718
\(545\) 0 0
\(546\) −3.21175e22 −0.174022
\(547\) 5.48101e22i 0.292394i 0.989256 + 0.146197i \(0.0467033\pi\)
−0.989256 + 0.146197i \(0.953297\pi\)
\(548\) 1.41427e23i 0.742844i
\(549\) 4.86076e22 0.251385
\(550\) 0 0
\(551\) 2.33800e23 1.17235
\(552\) − 3.86210e22i − 0.190696i
\(553\) − 1.73105e23i − 0.841678i
\(554\) 2.49020e23 1.19234
\(555\) 0 0
\(556\) −1.76941e23 −0.821662
\(557\) 2.57560e23i 1.17790i 0.808168 + 0.588952i \(0.200459\pi\)
−0.808168 + 0.588952i \(0.799541\pi\)
\(558\) − 9.63665e22i − 0.434046i
\(559\) 6.04519e22 0.268169
\(560\) 0 0
\(561\) 8.86437e22 0.381473
\(562\) 1.73207e23i 0.734186i
\(563\) − 6.37462e22i − 0.266154i −0.991106 0.133077i \(-0.957514\pi\)
0.991106 0.133077i \(-0.0424858\pi\)
\(564\) −4.32427e22 −0.177844
\(565\) 0 0
\(566\) 2.87237e23 1.14630
\(567\) 1.25041e23i 0.491582i
\(568\) 5.14395e22i 0.199221i
\(569\) 2.97128e23 1.13368 0.566839 0.823829i \(-0.308166\pi\)
0.566839 + 0.823829i \(0.308166\pi\)
\(570\) 0 0
\(571\) 3.65472e23 1.35347 0.676733 0.736228i \(-0.263395\pi\)
0.676733 + 0.736228i \(0.263395\pi\)
\(572\) 1.93028e23i 0.704293i
\(573\) − 7.50781e22i − 0.269898i
\(574\) 1.69368e23 0.599901
\(575\) 0 0
\(576\) −3.13811e22 −0.107914
\(577\) 1.73713e23i 0.588623i 0.955710 + 0.294312i \(0.0950904\pi\)
−0.955710 + 0.294312i \(0.904910\pi\)
\(578\) 1.34595e23i 0.449409i
\(579\) 4.18027e22 0.137542
\(580\) 0 0
\(581\) 3.10981e23 0.993658
\(582\) − 6.71379e22i − 0.211408i
\(583\) − 6.15894e23i − 1.91128i
\(584\) −7.65056e22 −0.233983
\(585\) 0 0
\(586\) −7.81590e22 −0.232193
\(587\) − 4.20741e23i − 1.23194i −0.787768 0.615972i \(-0.788763\pi\)
0.787768 0.615972i \(-0.211237\pi\)
\(588\) − 2.22660e22i − 0.0642590i
\(589\) 3.89377e23 1.10762
\(590\) 0 0
\(591\) −2.21488e23 −0.612149
\(592\) − 1.06547e23i − 0.290272i
\(593\) 4.26727e23i 1.14600i 0.819555 + 0.573000i \(0.194221\pi\)
−0.819555 + 0.573000i \(0.805779\pi\)
\(594\) −3.14489e23 −0.832571
\(595\) 0 0
\(596\) 9.06568e22 0.233242
\(597\) − 8.52143e21i − 0.0216138i
\(598\) − 3.39988e23i − 0.850166i
\(599\) 1.66085e23 0.409451 0.204726 0.978819i \(-0.434370\pi\)
0.204726 + 0.978819i \(0.434370\pi\)
\(600\) 0 0
\(601\) −3.30613e23 −0.792294 −0.396147 0.918187i \(-0.629653\pi\)
−0.396147 + 0.918187i \(0.629653\pi\)
\(602\) − 7.86533e22i − 0.185843i
\(603\) − 2.79710e23i − 0.651644i
\(604\) 2.36224e23 0.542638
\(605\) 0 0
\(606\) 1.39219e23 0.310943
\(607\) 3.28253e23i 0.722944i 0.932383 + 0.361472i \(0.117726\pi\)
−0.932383 + 0.361472i \(0.882274\pi\)
\(608\) − 1.26798e23i − 0.275380i
\(609\) 1.04934e23 0.224734
\(610\) 0 0
\(611\) −3.80674e23 −0.792872
\(612\) 1.26864e23i 0.260585i
\(613\) − 4.83476e23i − 0.979401i −0.871891 0.489701i \(-0.837106\pi\)
0.871891 0.489701i \(-0.162894\pi\)
\(614\) 9.38397e22 0.187480
\(615\) 0 0
\(616\) 2.51147e23 0.488080
\(617\) − 4.09399e23i − 0.784736i −0.919808 0.392368i \(-0.871656\pi\)
0.919808 0.392368i \(-0.128344\pi\)
\(618\) − 1.74415e22i − 0.0329748i
\(619\) 5.33004e23 0.993940 0.496970 0.867768i \(-0.334446\pi\)
0.496970 + 0.867768i \(0.334446\pi\)
\(620\) 0 0
\(621\) 5.53924e23 1.00501
\(622\) − 8.01089e21i − 0.0143371i
\(623\) 8.23119e23i 1.45316i
\(624\) 4.37397e22 0.0761741
\(625\) 0 0
\(626\) −6.52720e23 −1.10623
\(627\) − 5.88752e23i − 0.984370i
\(628\) − 4.43359e23i − 0.731305i
\(629\) −4.30734e23 −0.700936
\(630\) 0 0
\(631\) −2.81823e22 −0.0446402 −0.0223201 0.999751i \(-0.507105\pi\)
−0.0223201 + 0.999751i \(0.507105\pi\)
\(632\) 2.35746e23i 0.368425i
\(633\) − 1.07229e23i − 0.165341i
\(634\) 3.65322e23 0.555799
\(635\) 0 0
\(636\) −1.39560e23 −0.206717
\(637\) − 1.96012e23i − 0.286482i
\(638\) − 6.30657e23i − 0.909530i
\(639\) −3.41826e23 −0.486461
\(640\) 0 0
\(641\) 5.47552e23 0.758809 0.379404 0.925231i \(-0.376129\pi\)
0.379404 + 0.925231i \(0.376129\pi\)
\(642\) − 8.11294e22i − 0.110951i
\(643\) 1.13082e24i 1.52616i 0.646305 + 0.763079i \(0.276313\pi\)
−0.646305 + 0.763079i \(0.723687\pi\)
\(644\) −4.42355e23 −0.589171
\(645\) 0 0
\(646\) −5.12604e23 −0.664975
\(647\) 9.71467e23i 1.24377i 0.783107 + 0.621887i \(0.213634\pi\)
−0.783107 + 0.621887i \(0.786366\pi\)
\(648\) − 1.70289e23i − 0.215178i
\(649\) −1.57718e24 −1.96699
\(650\) 0 0
\(651\) 1.74760e23 0.212326
\(652\) − 6.99949e23i − 0.839386i
\(653\) − 8.71125e22i − 0.103114i −0.998670 0.0515571i \(-0.983582\pi\)
0.998670 0.0515571i \(-0.0164184\pi\)
\(654\) −3.54023e23 −0.413638
\(655\) 0 0
\(656\) −2.30656e23 −0.262593
\(657\) − 5.08396e23i − 0.571342i
\(658\) 4.95291e23i 0.549466i
\(659\) 5.51481e23 0.603955 0.301978 0.953315i \(-0.402353\pi\)
0.301978 + 0.953315i \(0.402353\pi\)
\(660\) 0 0
\(661\) 1.72983e23 0.184626 0.0923128 0.995730i \(-0.470574\pi\)
0.0923128 + 0.995730i \(0.470574\pi\)
\(662\) − 4.23121e22i − 0.0445833i
\(663\) − 1.76825e23i − 0.183942i
\(664\) −4.23514e23 −0.434950
\(665\) 0 0
\(666\) 7.08025e23 0.708790
\(667\) 1.11080e24i 1.09791i
\(668\) 1.92503e23i 0.187861i
\(669\) −1.47109e23 −0.141748
\(670\) 0 0
\(671\) 5.29782e23 0.497686
\(672\) − 5.69093e22i − 0.0527891i
\(673\) − 9.31240e23i − 0.852970i −0.904495 0.426485i \(-0.859752\pi\)
0.904495 0.426485i \(-0.140248\pi\)
\(674\) 4.01321e23 0.362981
\(675\) 0 0
\(676\) −1.81864e23 −0.160398
\(677\) − 8.38487e21i − 0.00730286i −0.999993 0.00365143i \(-0.998838\pi\)
0.999993 0.00365143i \(-0.00116229\pi\)
\(678\) 4.70998e23i 0.405104i
\(679\) −7.68981e23 −0.653164
\(680\) 0 0
\(681\) 5.02732e23 0.416472
\(682\) − 1.05031e24i − 0.859314i
\(683\) 2.03510e24i 1.64440i 0.569195 + 0.822202i \(0.307255\pi\)
−0.569195 + 0.822202i \(0.692745\pi\)
\(684\) 8.42600e23 0.672426
\(685\) 0 0
\(686\) −9.88685e23 −0.769667
\(687\) 6.32390e23i 0.486243i
\(688\) 1.07115e23i 0.0813485i
\(689\) −1.22858e24 −0.921594
\(690\) 0 0
\(691\) −1.51213e24 −1.10669 −0.553343 0.832953i \(-0.686648\pi\)
−0.553343 + 0.832953i \(0.686648\pi\)
\(692\) − 1.99393e23i − 0.144148i
\(693\) 1.66892e24i 1.19180i
\(694\) −4.16082e23 −0.293510
\(695\) 0 0
\(696\) −1.42906e23 −0.0983718
\(697\) 9.32468e23i 0.634096i
\(698\) − 9.22574e23i − 0.619769i
\(699\) 7.57500e23 0.502720
\(700\) 0 0
\(701\) 8.28511e23 0.536655 0.268328 0.963328i \(-0.413529\pi\)
0.268328 + 0.963328i \(0.413529\pi\)
\(702\) 6.27340e23i 0.401456i
\(703\) 2.86084e24i 1.80873i
\(704\) −3.42028e23 −0.213645
\(705\) 0 0
\(706\) −2.04688e24 −1.24811
\(707\) − 1.59458e24i − 0.960684i
\(708\) 3.57386e23i 0.212743i
\(709\) 3.32788e22 0.0195738 0.00978689 0.999952i \(-0.496885\pi\)
0.00978689 + 0.999952i \(0.496885\pi\)
\(710\) 0 0
\(711\) −1.56658e24 −0.899623
\(712\) − 1.12098e24i − 0.636088i
\(713\) 1.84996e24i 1.03729i
\(714\) −2.30066e23 −0.127473
\(715\) 0 0
\(716\) 1.19761e24 0.647970
\(717\) 6.33846e23i 0.338899i
\(718\) − 1.96921e24i − 1.04048i
\(719\) −2.74357e23 −0.143258 −0.0716292 0.997431i \(-0.522820\pi\)
−0.0716292 + 0.997431i \(0.522820\pi\)
\(720\) 0 0
\(721\) −1.99771e23 −0.101879
\(722\) 2.00162e24i 1.00883i
\(723\) − 4.70391e23i − 0.234306i
\(724\) 1.13745e24 0.559959
\(725\) 0 0
\(726\) −1.04447e24 −0.502266
\(727\) 3.38639e24i 1.60951i 0.593606 + 0.804756i \(0.297704\pi\)
−0.593606 + 0.804756i \(0.702296\pi\)
\(728\) − 5.00984e23i − 0.235346i
\(729\) 5.83070e23 0.270730
\(730\) 0 0
\(731\) 4.33032e23 0.196436
\(732\) − 1.20048e23i − 0.0538281i
\(733\) − 2.34817e24i − 1.04075i −0.853938 0.520375i \(-0.825792\pi\)
0.853938 0.520375i \(-0.174208\pi\)
\(734\) −1.12835e24 −0.494341
\(735\) 0 0
\(736\) 6.02428e23 0.257896
\(737\) − 3.04860e24i − 1.29011i
\(738\) − 1.53276e24i − 0.641202i
\(739\) −2.65236e24 −1.09687 −0.548434 0.836194i \(-0.684776\pi\)
−0.548434 + 0.836194i \(0.684776\pi\)
\(740\) 0 0
\(741\) −1.17444e24 −0.474651
\(742\) 1.59849e24i 0.638671i
\(743\) − 4.48213e24i − 1.77043i −0.465178 0.885217i \(-0.654010\pi\)
0.465178 0.885217i \(-0.345990\pi\)
\(744\) −2.37999e23 −0.0929406
\(745\) 0 0
\(746\) 1.97955e24 0.755589
\(747\) − 2.81434e24i − 1.06207i
\(748\) 1.38271e24i 0.515901i
\(749\) −9.29236e23 −0.342792
\(750\) 0 0
\(751\) 3.89653e24 1.40520 0.702600 0.711585i \(-0.252022\pi\)
0.702600 + 0.711585i \(0.252022\pi\)
\(752\) − 6.74520e23i − 0.240516i
\(753\) 8.43206e23i 0.297287i
\(754\) −1.25803e24 −0.438564
\(755\) 0 0
\(756\) 8.16225e23 0.278211
\(757\) − 2.72183e24i − 0.917373i −0.888598 0.458687i \(-0.848320\pi\)
0.888598 0.458687i \(-0.151680\pi\)
\(758\) 1.75625e24i 0.585326i
\(759\) 2.79721e24 0.921870
\(760\) 0 0
\(761\) 3.88834e23 0.125312 0.0626562 0.998035i \(-0.480043\pi\)
0.0626562 + 0.998035i \(0.480043\pi\)
\(762\) − 4.58691e23i − 0.146185i
\(763\) 4.05489e24i 1.27797i
\(764\) 1.17110e24 0.365007
\(765\) 0 0
\(766\) −1.24583e24 −0.379766
\(767\) 3.14614e24i 0.948457i
\(768\) 7.75028e22i 0.0231072i
\(769\) 2.20996e24 0.651645 0.325823 0.945431i \(-0.394359\pi\)
0.325823 + 0.945431i \(0.394359\pi\)
\(770\) 0 0
\(771\) −7.14847e23 −0.206182
\(772\) 6.52058e23i 0.186011i
\(773\) − 5.39261e24i − 1.52151i −0.649042 0.760753i \(-0.724830\pi\)
0.649042 0.760753i \(-0.275170\pi\)
\(774\) −7.11803e23 −0.198638
\(775\) 0 0
\(776\) 1.04725e24 0.285907
\(777\) 1.28400e24i 0.346725i
\(778\) 2.55578e24i 0.682648i
\(779\) 6.19325e24 1.63625
\(780\) 0 0
\(781\) −3.72562e24 −0.963085
\(782\) − 2.43542e24i − 0.622754i
\(783\) − 2.04963e24i − 0.518443i
\(784\) 3.47315e23 0.0869034
\(785\) 0 0
\(786\) 2.14090e23 0.0524209
\(787\) − 1.11664e24i − 0.270475i −0.990813 0.135238i \(-0.956820\pi\)
0.990813 0.135238i \(-0.0431798\pi\)
\(788\) − 3.45488e24i − 0.827866i
\(789\) 2.43131e24 0.576350
\(790\) 0 0
\(791\) 5.39470e24 1.25160
\(792\) − 2.27285e24i − 0.521682i
\(793\) − 1.05680e24i − 0.239978i
\(794\) 1.30159e24 0.292416
\(795\) 0 0
\(796\) 1.32921e23 0.0292303
\(797\) − 4.11242e24i − 0.894751i −0.894346 0.447375i \(-0.852359\pi\)
0.894346 0.447375i \(-0.147641\pi\)
\(798\) 1.52805e24i 0.328937i
\(799\) −2.72686e24 −0.580786
\(800\) 0 0
\(801\) 7.44913e24 1.55321
\(802\) 2.70491e24i 0.558047i
\(803\) − 5.54109e24i − 1.13113i
\(804\) −6.90807e23 −0.139534
\(805\) 0 0
\(806\) −2.09515e24 −0.414351
\(807\) 2.15578e24i 0.421871i
\(808\) 2.17160e24i 0.420517i
\(809\) −1.99425e24 −0.382135 −0.191068 0.981577i \(-0.561195\pi\)
−0.191068 + 0.981577i \(0.561195\pi\)
\(810\) 0 0
\(811\) −6.54121e24 −1.22739 −0.613693 0.789545i \(-0.710317\pi\)
−0.613693 + 0.789545i \(0.710317\pi\)
\(812\) 1.63681e24i 0.303928i
\(813\) − 1.95171e24i − 0.358628i
\(814\) 7.71688e24 1.40325
\(815\) 0 0
\(816\) 3.13319e23 0.0557982
\(817\) − 2.87610e24i − 0.506894i
\(818\) − 4.44311e23i − 0.0774968i
\(819\) 3.32914e24 0.574671
\(820\) 0 0
\(821\) −8.88770e24 −1.50270 −0.751351 0.659903i \(-0.770597\pi\)
−0.751351 + 0.659903i \(0.770597\pi\)
\(822\) 2.32108e24i 0.388400i
\(823\) − 6.84928e24i − 1.13435i −0.823598 0.567174i \(-0.808037\pi\)
0.823598 0.567174i \(-0.191963\pi\)
\(824\) 2.72061e23 0.0445949
\(825\) 0 0
\(826\) 4.09341e24 0.657287
\(827\) 9.77573e24i 1.55365i 0.629718 + 0.776824i \(0.283170\pi\)
−0.629718 + 0.776824i \(0.716830\pi\)
\(828\) 4.00326e24i 0.629732i
\(829\) −7.90775e24 −1.23123 −0.615615 0.788047i \(-0.711092\pi\)
−0.615615 + 0.788047i \(0.711092\pi\)
\(830\) 0 0
\(831\) 4.08688e24 0.623423
\(832\) 6.82273e23i 0.103017i
\(833\) − 1.40408e24i − 0.209850i
\(834\) −2.90394e24 −0.429611
\(835\) 0 0
\(836\) 9.18364e24 1.33126
\(837\) − 3.41352e24i − 0.489819i
\(838\) 2.89356e24i 0.411016i
\(839\) 7.46885e24 1.05021 0.525106 0.851037i \(-0.324026\pi\)
0.525106 + 0.851037i \(0.324026\pi\)
\(840\) 0 0
\(841\) −3.14695e24 −0.433634
\(842\) − 2.71958e23i − 0.0370978i
\(843\) 2.84264e24i 0.383873i
\(844\) 1.67260e24 0.223606
\(845\) 0 0
\(846\) 4.48233e24 0.587294
\(847\) 1.19631e25i 1.55179i
\(848\) − 2.17693e24i − 0.279563i
\(849\) 4.71409e24 0.599352
\(850\) 0 0
\(851\) −1.35921e25 −1.69389
\(852\) 8.44218e23i 0.104164i
\(853\) − 4.59203e24i − 0.560967i −0.959859 0.280484i \(-0.909505\pi\)
0.959859 0.280484i \(-0.0904949\pi\)
\(854\) −1.37500e24 −0.166307
\(855\) 0 0
\(856\) 1.26549e24 0.150049
\(857\) − 8.74464e24i − 1.02661i −0.858207 0.513304i \(-0.828421\pi\)
0.858207 0.513304i \(-0.171579\pi\)
\(858\) 3.16795e24i 0.368244i
\(859\) 1.25157e25 1.44050 0.720251 0.693714i \(-0.244027\pi\)
0.720251 + 0.693714i \(0.244027\pi\)
\(860\) 0 0
\(861\) 2.77964e24 0.313662
\(862\) 9.25611e24i 1.03423i
\(863\) − 4.23769e22i − 0.00468854i −0.999997 0.00234427i \(-0.999254\pi\)
0.999997 0.00234427i \(-0.000746205\pi\)
\(864\) −1.11159e24 −0.121780
\(865\) 0 0
\(866\) −5.51147e24 −0.592059
\(867\) 2.20895e24i 0.234976i
\(868\) 2.72598e24i 0.287148i
\(869\) −1.70744e25 −1.78105
\(870\) 0 0
\(871\) −6.08132e24 −0.622076
\(872\) − 5.52221e24i − 0.559401i
\(873\) 6.95918e24i 0.698131i
\(874\) −1.61755e25 −1.60698
\(875\) 0 0
\(876\) −1.25560e24 −0.122339
\(877\) − 1.33197e25i − 1.28528i −0.766170 0.642638i \(-0.777840\pi\)
0.766170 0.642638i \(-0.222160\pi\)
\(878\) 7.39538e24i 0.706736i
\(879\) −1.28274e24 −0.121404
\(880\) 0 0
\(881\) 3.37699e23 0.0313498 0.0156749 0.999877i \(-0.495010\pi\)
0.0156749 + 0.999877i \(0.495010\pi\)
\(882\) 2.30798e24i 0.212202i
\(883\) 1.43309e25i 1.30499i 0.757793 + 0.652495i \(0.226278\pi\)
−0.757793 + 0.652495i \(0.773722\pi\)
\(884\) 2.75821e24 0.248761
\(885\) 0 0
\(886\) 8.79298e23 0.0777946
\(887\) − 1.41818e25i − 1.24274i −0.783518 0.621369i \(-0.786577\pi\)
0.783518 0.621369i \(-0.213423\pi\)
\(888\) − 1.74863e24i − 0.151771i
\(889\) −5.25374e24 −0.451652
\(890\) 0 0
\(891\) 1.23335e25 1.04022
\(892\) − 2.29468e24i − 0.191700i
\(893\) 1.81112e25i 1.49869i
\(894\) 1.48785e24 0.121952
\(895\) 0 0
\(896\) 8.87699e23 0.0713917
\(897\) − 5.57984e24i − 0.444514i
\(898\) − 7.90719e24i − 0.623984i
\(899\) 6.84525e24 0.535096
\(900\) 0 0
\(901\) −8.80062e24 −0.675076
\(902\) − 1.67058e25i − 1.26944i
\(903\) − 1.29085e24i − 0.0971693i
\(904\) −7.34685e24 −0.547860
\(905\) 0 0
\(906\) 3.87688e24 0.283721
\(907\) 2.50957e25i 1.81944i 0.415222 + 0.909720i \(0.363704\pi\)
−0.415222 + 0.909720i \(0.636296\pi\)
\(908\) 7.84184e24i 0.563233i
\(909\) −1.44307e25 −1.02682
\(910\) 0 0
\(911\) −2.35966e24 −0.164794 −0.0823972 0.996600i \(-0.526258\pi\)
−0.0823972 + 0.996600i \(0.526258\pi\)
\(912\) − 2.08099e24i − 0.143984i
\(913\) − 3.06740e25i − 2.10266i
\(914\) 9.81210e24 0.666376
\(915\) 0 0
\(916\) −9.86433e24 −0.657591
\(917\) − 2.45213e24i − 0.161959i
\(918\) 4.49379e24i 0.294070i
\(919\) −2.94936e25 −1.91226 −0.956129 0.292946i \(-0.905364\pi\)
−0.956129 + 0.292946i \(0.905364\pi\)
\(920\) 0 0
\(921\) 1.54008e24 0.0980252
\(922\) 1.74117e25i 1.09807i
\(923\) 7.43182e24i 0.464388i
\(924\) 4.12178e24 0.255196
\(925\) 0 0
\(926\) 1.17079e24 0.0711684
\(927\) 1.80790e24i 0.108892i
\(928\) − 2.22911e24i − 0.133037i
\(929\) −1.27862e25 −0.756150 −0.378075 0.925775i \(-0.623414\pi\)
−0.378075 + 0.925775i \(0.623414\pi\)
\(930\) 0 0
\(931\) −9.32560e24 −0.541508
\(932\) 1.18158e25i 0.679875i
\(933\) − 1.31474e23i − 0.00749626i
\(934\) −1.27428e25 −0.719975
\(935\) 0 0
\(936\) −4.53385e24 −0.251549
\(937\) 5.20286e24i 0.286059i 0.989718 + 0.143029i \(0.0456844\pi\)
−0.989718 + 0.143029i \(0.954316\pi\)
\(938\) 7.91234e24i 0.431103i
\(939\) −1.07123e25 −0.578398
\(940\) 0 0
\(941\) 2.51815e25 1.33527 0.667635 0.744488i \(-0.267306\pi\)
0.667635 + 0.744488i \(0.267306\pi\)
\(942\) − 7.27635e24i − 0.382367i
\(943\) 2.94246e25i 1.53236i
\(944\) −5.57467e24 −0.287712
\(945\) 0 0
\(946\) −7.75805e24 −0.393258
\(947\) − 2.26103e25i − 1.13588i −0.823071 0.567939i \(-0.807741\pi\)
0.823071 0.567939i \(-0.192259\pi\)
\(948\) 3.86903e24i 0.192633i
\(949\) −1.10533e25 −0.545417
\(950\) 0 0
\(951\) 5.99562e24 0.290603
\(952\) − 3.58867e24i − 0.172393i
\(953\) − 2.71240e25i − 1.29141i −0.763586 0.645706i \(-0.776563\pi\)
0.763586 0.645706i \(-0.223437\pi\)
\(954\) 1.44662e25 0.682640
\(955\) 0 0
\(956\) −9.88702e24 −0.458325
\(957\) − 1.03502e25i − 0.475553i
\(958\) − 2.39486e25i − 1.09062i
\(959\) 2.65851e25 1.20000
\(960\) 0 0
\(961\) −1.11498e25 −0.494447
\(962\) − 1.53935e25i − 0.676629i
\(963\) 8.40947e24i 0.366392i
\(964\) 7.33738e24 0.316874
\(965\) 0 0
\(966\) −7.25987e24 −0.308052
\(967\) 2.72568e25i 1.14644i 0.819403 + 0.573218i \(0.194305\pi\)
−0.819403 + 0.573218i \(0.805695\pi\)
\(968\) − 1.62921e25i − 0.679261i
\(969\) −8.41278e24 −0.347686
\(970\) 0 0
\(971\) −5.68052e24 −0.230688 −0.115344 0.993326i \(-0.536797\pi\)
−0.115344 + 0.993326i \(0.536797\pi\)
\(972\) − 1.13511e25i − 0.456954i
\(973\) 3.32610e25i 1.32732i
\(974\) 4.19670e24 0.166019
\(975\) 0 0
\(976\) 1.87256e24 0.0727967
\(977\) − 2.19879e25i − 0.847383i −0.905807 0.423691i \(-0.860734\pi\)
0.905807 0.423691i \(-0.139266\pi\)
\(978\) − 1.14875e25i − 0.438878i
\(979\) 8.11892e25 3.07500
\(980\) 0 0
\(981\) 3.66962e25 1.36595
\(982\) − 6.71999e24i − 0.247983i
\(983\) − 1.62023e25i − 0.592748i −0.955072 0.296374i \(-0.904222\pi\)
0.955072 0.296374i \(-0.0957776\pi\)
\(984\) −3.78550e24 −0.137298
\(985\) 0 0
\(986\) −9.01156e24 −0.321252
\(987\) 8.12865e24i 0.287291i
\(988\) − 1.83194e25i − 0.641915i
\(989\) 1.36646e25 0.474710
\(990\) 0 0
\(991\) −1.63414e25 −0.558036 −0.279018 0.960286i \(-0.590009\pi\)
−0.279018 + 0.960286i \(0.590009\pi\)
\(992\) − 3.71242e24i − 0.125692i
\(993\) − 6.94421e23i − 0.0233106i
\(994\) 9.66947e24 0.321824
\(995\) 0 0
\(996\) −6.95066e24 −0.227416
\(997\) 3.96008e25i 1.28468i 0.766420 + 0.642340i \(0.222036\pi\)
−0.766420 + 0.642340i \(0.777964\pi\)
\(998\) − 4.90132e24i − 0.157653i
\(999\) 2.50798e25 0.799868
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.18.b.f.49.4 4
5.2 odd 4 50.18.a.c.1.2 2
5.3 odd 4 10.18.a.d.1.1 2
5.4 even 2 inner 50.18.b.f.49.1 4
15.8 even 4 90.18.a.j.1.1 2
20.3 even 4 80.18.a.b.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.18.a.d.1.1 2 5.3 odd 4
50.18.a.c.1.2 2 5.2 odd 4
50.18.b.f.49.1 4 5.4 even 2 inner
50.18.b.f.49.4 4 1.1 even 1 trivial
80.18.a.b.1.2 2 20.3 even 4
90.18.a.j.1.1 2 15.8 even 4