Properties

Label 50.24.b.b.49.1
Level $50$
Weight $24$
Character 50.49
Analytic conductor $167.602$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,24,Mod(49,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 24, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.49");
 
S:= CuspForms(chi, 24);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(167.602018673\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 58675x^{2} + 860659569 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(171.781i\) of defining polynomial
Character \(\chi\) \(=\) 50.49
Dual form 50.24.b.b.49.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2048.00i q^{2} -589887. i q^{3} -4.19430e6 q^{4} -1.20809e9 q^{6} -8.65943e9i q^{7} +8.58993e9i q^{8} -2.53823e11 q^{9} -3.41600e11 q^{11} +2.47417e12i q^{12} -9.37599e12i q^{13} -1.77345e13 q^{14} +1.75922e13 q^{16} +1.26651e14i q^{17} +5.19830e14i q^{18} -2.68434e14 q^{19} -5.10808e15 q^{21} +6.99597e14i q^{22} -4.00352e15i q^{23} +5.06709e15 q^{24} -1.92020e16 q^{26} +9.41933e16i q^{27} +3.63203e16i q^{28} -7.20419e16 q^{29} +8.44456e16 q^{31} -3.60288e16i q^{32} +2.01505e17i q^{33} +2.59382e17 q^{34} +1.06461e18 q^{36} -8.22837e17i q^{37} +5.49753e17i q^{38} -5.53078e18 q^{39} -1.49837e18 q^{41} +1.04614e19i q^{42} -4.28965e18i q^{43} +1.43277e18 q^{44} -8.19921e18 q^{46} -8.20255e18i q^{47} -1.03774e19i q^{48} -4.76169e19 q^{49} +7.47099e19 q^{51} +3.93258e19i q^{52} +1.87100e19i q^{53} +1.92908e20 q^{54} +7.43839e19 q^{56} +1.58346e20i q^{57} +1.47542e20i q^{58} +1.04739e20 q^{59} -1.53791e20 q^{61} -1.72945e20i q^{62} +2.19797e21i q^{63} -7.37870e19 q^{64} +4.12683e20 q^{66} +1.63830e21i q^{67} -5.31214e20i q^{68} -2.36163e21 q^{69} +2.80919e21 q^{71} -2.18033e21i q^{72} +1.84822e21i q^{73} -1.68517e21 q^{74} +1.12589e21 q^{76} +2.95806e21i q^{77} +1.13270e22i q^{78} +8.75087e21 q^{79} +3.16676e22 q^{81} +3.06866e21i q^{82} -6.73667e21i q^{83} +2.14249e22 q^{84} -8.78520e21 q^{86} +4.24965e22i q^{87} -2.93432e21i q^{88} -1.65512e22 q^{89} -8.11907e22 q^{91} +1.67920e22i q^{92} -4.98134e22i q^{93} -1.67988e22 q^{94} -2.12529e22 q^{96} -4.48228e22i q^{97} +9.75195e22i q^{98} +8.67060e22 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16777216 q^{4} - 2811838464 q^{6} - 338022453348 q^{9} + 1873114539648 q^{11} - 14457221562368 q^{14} + 70368744177664 q^{16} + 513828480996400 q^{19} - 92\!\cdots\!72 q^{21} + 11\!\cdots\!56 q^{24}+ \cdots + 39\!\cdots\!24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2048.00i − 0.707107i
\(3\) − 589887.i − 1.92254i −0.275616 0.961268i \(-0.588882\pi\)
0.275616 0.961268i \(-0.411118\pi\)
\(4\) −4.19430e6 −0.500000
\(5\) 0 0
\(6\) −1.20809e9 −1.35944
\(7\) − 8.65943e9i − 1.65524i −0.561287 0.827621i \(-0.689693\pi\)
0.561287 0.827621i \(-0.310307\pi\)
\(8\) 8.58993e9i 0.353553i
\(9\) −2.53823e11 −2.69614
\(10\) 0 0
\(11\) −3.41600e11 −0.360996 −0.180498 0.983575i \(-0.557771\pi\)
−0.180498 + 0.983575i \(0.557771\pi\)
\(12\) 2.47417e12i 0.961268i
\(13\) − 9.37599e12i − 1.45100i −0.688220 0.725502i \(-0.741608\pi\)
0.688220 0.725502i \(-0.258392\pi\)
\(14\) −1.77345e13 −1.17043
\(15\) 0 0
\(16\) 1.75922e13 0.250000
\(17\) 1.26651e14i 0.896286i 0.893962 + 0.448143i \(0.147915\pi\)
−0.893962 + 0.448143i \(0.852085\pi\)
\(18\) 5.19830e14i 1.90646i
\(19\) −2.68434e14 −0.528654 −0.264327 0.964433i \(-0.585150\pi\)
−0.264327 + 0.964433i \(0.585150\pi\)
\(20\) 0 0
\(21\) −5.10808e15 −3.18226
\(22\) 6.99597e14i 0.255262i
\(23\) − 4.00352e15i − 0.876137i −0.898942 0.438069i \(-0.855663\pi\)
0.898942 0.438069i \(-0.144337\pi\)
\(24\) 5.06709e15 0.679719
\(25\) 0 0
\(26\) −1.92020e16 −1.02602
\(27\) 9.41933e16i 3.26089i
\(28\) 3.63203e16i 0.827621i
\(29\) −7.20419e16 −1.09650 −0.548249 0.836315i \(-0.684705\pi\)
−0.548249 + 0.836315i \(0.684705\pi\)
\(30\) 0 0
\(31\) 8.44456e16 0.596922 0.298461 0.954422i \(-0.403527\pi\)
0.298461 + 0.954422i \(0.403527\pi\)
\(32\) − 3.60288e16i − 0.176777i
\(33\) 2.01505e17i 0.694027i
\(34\) 2.59382e17 0.633770
\(35\) 0 0
\(36\) 1.06461e18 1.34807
\(37\) − 8.22837e17i − 0.760316i −0.924922 0.380158i \(-0.875870\pi\)
0.924922 0.380158i \(-0.124130\pi\)
\(38\) 5.49753e17i 0.373815i
\(39\) −5.53078e18 −2.78961
\(40\) 0 0
\(41\) −1.49837e18 −0.425211 −0.212605 0.977138i \(-0.568195\pi\)
−0.212605 + 0.977138i \(0.568195\pi\)
\(42\) 1.04614e19i 2.25020i
\(43\) − 4.28965e18i − 0.703938i −0.936012 0.351969i \(-0.885512\pi\)
0.936012 0.351969i \(-0.114488\pi\)
\(44\) 1.43277e18 0.180498
\(45\) 0 0
\(46\) −8.19921e18 −0.619523
\(47\) − 8.20255e18i − 0.483976i −0.970279 0.241988i \(-0.922201\pi\)
0.970279 0.241988i \(-0.0777994\pi\)
\(48\) − 1.03774e19i − 0.480634i
\(49\) −4.76169e19 −1.73983
\(50\) 0 0
\(51\) 7.47099e19 1.72314
\(52\) 3.93258e19i 0.725502i
\(53\) 1.87100e19i 0.277269i 0.990344 + 0.138635i \(0.0442714\pi\)
−0.990344 + 0.138635i \(0.955729\pi\)
\(54\) 1.92908e20 2.30580
\(55\) 0 0
\(56\) 7.43839e19 0.585217
\(57\) 1.58346e20i 1.01636i
\(58\) 1.47542e20i 0.775341i
\(59\) 1.04739e20 0.452178 0.226089 0.974107i \(-0.427406\pi\)
0.226089 + 0.974107i \(0.427406\pi\)
\(60\) 0 0
\(61\) −1.53791e20 −0.452519 −0.226259 0.974067i \(-0.572650\pi\)
−0.226259 + 0.974067i \(0.572650\pi\)
\(62\) − 1.72945e20i − 0.422088i
\(63\) 2.19797e21i 4.46277i
\(64\) −7.37870e19 −0.125000
\(65\) 0 0
\(66\) 4.12683e20 0.490751
\(67\) 1.63830e21i 1.63883i 0.573200 + 0.819415i \(0.305702\pi\)
−0.573200 + 0.819415i \(0.694298\pi\)
\(68\) − 5.31214e20i − 0.448143i
\(69\) −2.36163e21 −1.68440
\(70\) 0 0
\(71\) 2.80919e21 1.44248 0.721241 0.692684i \(-0.243572\pi\)
0.721241 + 0.692684i \(0.243572\pi\)
\(72\) − 2.18033e21i − 0.953230i
\(73\) 1.84822e21i 0.689510i 0.938693 + 0.344755i \(0.112038\pi\)
−0.938693 + 0.344755i \(0.887962\pi\)
\(74\) −1.68517e21 −0.537625
\(75\) 0 0
\(76\) 1.12589e21 0.264327
\(77\) 2.95806e21i 0.597535i
\(78\) 1.13270e22i 1.97255i
\(79\) 8.75087e21 1.31625 0.658127 0.752907i \(-0.271349\pi\)
0.658127 + 0.752907i \(0.271349\pi\)
\(80\) 0 0
\(81\) 3.16676e22 3.57304
\(82\) 3.06866e21i 0.300669i
\(83\) − 6.73667e21i − 0.574179i −0.957904 0.287090i \(-0.907312\pi\)
0.957904 0.287090i \(-0.0926877\pi\)
\(84\) 2.14249e22 1.59113
\(85\) 0 0
\(86\) −8.78520e21 −0.497759
\(87\) 4.24965e22i 2.10806i
\(88\) − 2.93432e21i − 0.127631i
\(89\) −1.65512e22 −0.632185 −0.316092 0.948728i \(-0.602371\pi\)
−0.316092 + 0.948728i \(0.602371\pi\)
\(90\) 0 0
\(91\) −8.11907e22 −2.40176
\(92\) 1.67920e22i 0.438069i
\(93\) − 4.98134e22i − 1.14760i
\(94\) −1.67988e22 −0.342223
\(95\) 0 0
\(96\) −2.12529e22 −0.339859
\(97\) − 4.48228e22i − 0.636244i −0.948050 0.318122i \(-0.896948\pi\)
0.948050 0.318122i \(-0.103052\pi\)
\(98\) 9.75195e22i 1.23024i
\(99\) 8.67060e22 0.973295
\(100\) 0 0
\(101\) −1.48622e23 −1.32552 −0.662760 0.748832i \(-0.730615\pi\)
−0.662760 + 0.748832i \(0.730615\pi\)
\(102\) − 1.53006e23i − 1.21845i
\(103\) − 6.64435e22i − 0.472960i −0.971636 0.236480i \(-0.924006\pi\)
0.971636 0.236480i \(-0.0759937\pi\)
\(104\) 8.05392e22 0.513008
\(105\) 0 0
\(106\) 3.83181e22 0.196059
\(107\) 3.18955e22i 0.146493i 0.997314 + 0.0732463i \(0.0233359\pi\)
−0.997314 + 0.0732463i \(0.976664\pi\)
\(108\) − 3.95075e23i − 1.63045i
\(109\) −1.27271e22 −0.0472418 −0.0236209 0.999721i \(-0.507519\pi\)
−0.0236209 + 0.999721i \(0.507519\pi\)
\(110\) 0 0
\(111\) −4.85381e23 −1.46173
\(112\) − 1.52338e23i − 0.413811i
\(113\) − 1.29270e23i − 0.317027i −0.987357 0.158513i \(-0.949330\pi\)
0.987357 0.158513i \(-0.0506701\pi\)
\(114\) 3.24292e23 0.718672
\(115\) 0 0
\(116\) 3.02165e23 0.548249
\(117\) 2.37985e24i 3.91211i
\(118\) − 2.14505e23i − 0.319738i
\(119\) 1.09673e24 1.48357
\(120\) 0 0
\(121\) −7.78740e23 −0.869682
\(122\) 3.14963e23i 0.319979i
\(123\) 8.83868e23i 0.817482i
\(124\) −3.54191e23 −0.298461
\(125\) 0 0
\(126\) 4.50143e24 3.15566
\(127\) − 2.37120e24i − 1.51784i −0.651187 0.758918i \(-0.725729\pi\)
0.651187 0.758918i \(-0.274271\pi\)
\(128\) 1.51116e23i 0.0883883i
\(129\) −2.53041e24 −1.35335
\(130\) 0 0
\(131\) 2.08233e24 0.933103 0.466551 0.884494i \(-0.345496\pi\)
0.466551 + 0.884494i \(0.345496\pi\)
\(132\) − 8.45175e23i − 0.347013i
\(133\) 2.32449e24i 0.875051i
\(134\) 3.35525e24 1.15883
\(135\) 0 0
\(136\) −1.08793e24 −0.316885
\(137\) − 2.45853e24i − 0.658248i −0.944287 0.329124i \(-0.893247\pi\)
0.944287 0.329124i \(-0.106753\pi\)
\(138\) 4.83661e24i 1.19105i
\(139\) −2.83898e24 −0.643417 −0.321708 0.946839i \(-0.604257\pi\)
−0.321708 + 0.946839i \(0.604257\pi\)
\(140\) 0 0
\(141\) −4.83858e24 −0.930461
\(142\) − 5.75323e24i − 1.01999i
\(143\) 3.20284e24i 0.523806i
\(144\) −4.46531e24 −0.674036
\(145\) 0 0
\(146\) 3.78515e24 0.487557
\(147\) 2.80886e25i 3.34488i
\(148\) 3.45123e24i 0.380158i
\(149\) 1.04342e25 1.06370 0.531849 0.846839i \(-0.321497\pi\)
0.531849 + 0.846839i \(0.321497\pi\)
\(150\) 0 0
\(151\) −3.94859e24 −0.345308 −0.172654 0.984982i \(-0.555234\pi\)
−0.172654 + 0.984982i \(0.555234\pi\)
\(152\) − 2.30583e24i − 0.186907i
\(153\) − 3.21470e25i − 2.41652i
\(154\) 6.05811e24 0.422521
\(155\) 0 0
\(156\) 2.31978e25 1.39480
\(157\) − 1.85824e25i − 1.03814i −0.854732 0.519070i \(-0.826278\pi\)
0.854732 0.519070i \(-0.173722\pi\)
\(158\) − 1.79218e25i − 0.930732i
\(159\) 1.10368e25 0.533060
\(160\) 0 0
\(161\) −3.46682e25 −1.45022
\(162\) − 6.48553e25i − 2.52652i
\(163\) − 4.00527e25i − 1.45370i −0.686798 0.726849i \(-0.740984\pi\)
0.686798 0.726849i \(-0.259016\pi\)
\(164\) 6.28461e24 0.212605
\(165\) 0 0
\(166\) −1.37967e25 −0.406006
\(167\) 7.99548e24i 0.219586i 0.993954 + 0.109793i \(0.0350188\pi\)
−0.993954 + 0.109793i \(0.964981\pi\)
\(168\) − 4.38781e25i − 1.12510i
\(169\) −4.61554e25 −1.10541
\(170\) 0 0
\(171\) 6.81349e25 1.42533
\(172\) 1.79921e25i 0.351969i
\(173\) − 8.98445e25i − 1.64423i −0.569325 0.822113i \(-0.692795\pi\)
0.569325 0.822113i \(-0.307205\pi\)
\(174\) 8.70329e25 1.49062
\(175\) 0 0
\(176\) −6.00949e24 −0.0902489
\(177\) − 6.17841e25i − 0.869329i
\(178\) 3.38968e25i 0.447022i
\(179\) −1.18230e26 −1.46190 −0.730949 0.682433i \(-0.760922\pi\)
−0.730949 + 0.682433i \(0.760922\pi\)
\(180\) 0 0
\(181\) −1.17668e26 −1.28043 −0.640213 0.768198i \(-0.721154\pi\)
−0.640213 + 0.768198i \(0.721154\pi\)
\(182\) 1.66279e26i 1.69830i
\(183\) 9.07191e25i 0.869983i
\(184\) 3.43900e25 0.309761
\(185\) 0 0
\(186\) −1.02018e26 −0.811478
\(187\) − 4.32640e25i − 0.323555i
\(188\) 3.44040e25i 0.241988i
\(189\) 8.15660e26 5.39757
\(190\) 0 0
\(191\) 2.94896e26 1.72896 0.864480 0.502668i \(-0.167648\pi\)
0.864480 + 0.502668i \(0.167648\pi\)
\(192\) 4.35260e25i 0.240317i
\(193\) − 1.41854e26i − 0.737789i −0.929471 0.368894i \(-0.879736\pi\)
0.929471 0.368894i \(-0.120264\pi\)
\(194\) −9.17970e25 −0.449892
\(195\) 0 0
\(196\) 1.99720e26 0.869915
\(197\) − 1.89037e25i − 0.0776580i −0.999246 0.0388290i \(-0.987637\pi\)
0.999246 0.0388290i \(-0.0123628\pi\)
\(198\) − 1.77574e26i − 0.688224i
\(199\) 4.29000e26 1.56909 0.784543 0.620074i \(-0.212898\pi\)
0.784543 + 0.620074i \(0.212898\pi\)
\(200\) 0 0
\(201\) 9.66414e26 3.15071
\(202\) 3.04377e26i 0.937284i
\(203\) 6.23841e26i 1.81497i
\(204\) −3.13356e26 −0.861571
\(205\) 0 0
\(206\) −1.36076e26 −0.334433
\(207\) 1.01619e27i 2.36219i
\(208\) − 1.64944e26i − 0.362751i
\(209\) 9.16971e25 0.190842
\(210\) 0 0
\(211\) −5.54819e26 −1.03491 −0.517456 0.855710i \(-0.673121\pi\)
−0.517456 + 0.855710i \(0.673121\pi\)
\(212\) − 7.84756e25i − 0.138635i
\(213\) − 1.65711e27i − 2.77322i
\(214\) 6.53220e25 0.103586
\(215\) 0 0
\(216\) −8.09114e26 −1.15290
\(217\) − 7.31251e26i − 0.988051i
\(218\) 2.60652e25i 0.0334050i
\(219\) 1.09024e27 1.32561
\(220\) 0 0
\(221\) 1.18748e27 1.30052
\(222\) 9.94060e26i 1.03360i
\(223\) 1.18597e26i 0.117103i 0.998284 + 0.0585517i \(0.0186483\pi\)
−0.998284 + 0.0585517i \(0.981352\pi\)
\(224\) −3.11989e26 −0.292608
\(225\) 0 0
\(226\) −2.64745e26 −0.224172
\(227\) − 4.65610e26i − 0.374736i −0.982290 0.187368i \(-0.940004\pi\)
0.982290 0.187368i \(-0.0599956\pi\)
\(228\) − 6.64151e26i − 0.508178i
\(229\) 9.14229e26 0.665192 0.332596 0.943069i \(-0.392075\pi\)
0.332596 + 0.943069i \(0.392075\pi\)
\(230\) 0 0
\(231\) 1.74492e27 1.14878
\(232\) − 6.18835e26i − 0.387671i
\(233\) − 1.71939e25i − 0.0102514i −0.999987 0.00512569i \(-0.998368\pi\)
0.999987 0.00512569i \(-0.00163156\pi\)
\(234\) 4.87393e27 2.76628
\(235\) 0 0
\(236\) −4.39307e26 −0.226089
\(237\) − 5.16203e27i − 2.53055i
\(238\) − 2.24610e27i − 1.04904i
\(239\) 1.37899e27 0.613741 0.306870 0.951751i \(-0.400718\pi\)
0.306870 + 0.951751i \(0.400718\pi\)
\(240\) 0 0
\(241\) −4.72718e27 −1.91164 −0.955821 0.293950i \(-0.905030\pi\)
−0.955821 + 0.293950i \(0.905030\pi\)
\(242\) 1.59486e27i 0.614958i
\(243\) − 9.81267e27i − 3.60840i
\(244\) 6.45044e26 0.226259
\(245\) 0 0
\(246\) 1.81016e27 0.578047
\(247\) 2.51684e27i 0.767079i
\(248\) 7.25382e26i 0.211044i
\(249\) −3.97388e27 −1.10388
\(250\) 0 0
\(251\) −4.79993e27 −1.21615 −0.608075 0.793879i \(-0.708058\pi\)
−0.608075 + 0.793879i \(0.708058\pi\)
\(252\) − 9.21894e27i − 2.23139i
\(253\) 1.36760e27i 0.316282i
\(254\) −4.85621e27 −1.07327
\(255\) 0 0
\(256\) 3.09485e26 0.0625000
\(257\) 9.07525e27i 1.75238i 0.481968 + 0.876189i \(0.339922\pi\)
−0.481968 + 0.876189i \(0.660078\pi\)
\(258\) 5.18228e27i 0.956960i
\(259\) −7.12530e27 −1.25851
\(260\) 0 0
\(261\) 1.82859e28 2.95632
\(262\) − 4.26461e27i − 0.659803i
\(263\) 8.09758e25i 0.0119912i 0.999982 + 0.00599562i \(0.00190848\pi\)
−0.999982 + 0.00599562i \(0.998092\pi\)
\(264\) −1.73092e27 −0.245375
\(265\) 0 0
\(266\) 4.76055e27 0.618754
\(267\) 9.76333e27i 1.21540i
\(268\) − 6.87154e27i − 0.819415i
\(269\) 1.72812e28 1.97435 0.987173 0.159656i \(-0.0510384\pi\)
0.987173 + 0.159656i \(0.0510384\pi\)
\(270\) 0 0
\(271\) −1.25531e28 −1.31706 −0.658528 0.752557i \(-0.728820\pi\)
−0.658528 + 0.752557i \(0.728820\pi\)
\(272\) 2.22807e27i 0.224072i
\(273\) 4.78934e28i 4.61748i
\(274\) −5.03507e27 −0.465451
\(275\) 0 0
\(276\) 9.90538e27 0.842202
\(277\) − 5.00554e27i − 0.408257i −0.978944 0.204129i \(-0.934564\pi\)
0.978944 0.204129i \(-0.0654361\pi\)
\(278\) 5.81423e27i 0.454964i
\(279\) −2.14343e28 −1.60939
\(280\) 0 0
\(281\) −2.40666e27 −0.166453 −0.0832265 0.996531i \(-0.526522\pi\)
−0.0832265 + 0.996531i \(0.526522\pi\)
\(282\) 9.90941e27i 0.657935i
\(283\) − 2.62143e28i − 1.67107i −0.549438 0.835535i \(-0.685158\pi\)
0.549438 0.835535i \(-0.314842\pi\)
\(284\) −1.17826e28 −0.721241
\(285\) 0 0
\(286\) 6.55941e27 0.370387
\(287\) 1.29750e28i 0.703827i
\(288\) 9.14495e27i 0.476615i
\(289\) 3.92704e27 0.196671
\(290\) 0 0
\(291\) −2.64404e28 −1.22320
\(292\) − 7.75199e27i − 0.344755i
\(293\) 3.01791e27i 0.129041i 0.997916 + 0.0645206i \(0.0205518\pi\)
−0.997916 + 0.0645206i \(0.979448\pi\)
\(294\) 5.75255e28 2.36519
\(295\) 0 0
\(296\) 7.06812e27 0.268812
\(297\) − 3.21764e28i − 1.17717i
\(298\) − 2.13693e28i − 0.752149i
\(299\) −3.75370e28 −1.27128
\(300\) 0 0
\(301\) −3.71459e28 −1.16519
\(302\) 8.08671e27i 0.244170i
\(303\) 8.76699e28i 2.54836i
\(304\) −4.72235e27 −0.132164
\(305\) 0 0
\(306\) −6.58371e28 −1.70873
\(307\) − 2.03128e28i − 0.507784i −0.967233 0.253892i \(-0.918289\pi\)
0.967233 0.253892i \(-0.0817107\pi\)
\(308\) − 1.24070e28i − 0.298768i
\(309\) −3.91941e28 −0.909282
\(310\) 0 0
\(311\) 6.48885e28 1.39773 0.698865 0.715254i \(-0.253689\pi\)
0.698865 + 0.715254i \(0.253689\pi\)
\(312\) − 4.75090e28i − 0.986275i
\(313\) − 4.80190e28i − 0.960845i −0.877037 0.480423i \(-0.840483\pi\)
0.877037 0.480423i \(-0.159517\pi\)
\(314\) −3.80568e28 −0.734076
\(315\) 0 0
\(316\) −3.67038e28 −0.658127
\(317\) 5.25019e28i 0.907807i 0.891051 + 0.453903i \(0.149969\pi\)
−0.891051 + 0.453903i \(0.850031\pi\)
\(318\) − 2.26034e28i − 0.376931i
\(319\) 2.46095e28 0.395831
\(320\) 0 0
\(321\) 1.88147e28 0.281637
\(322\) 7.10005e28i 1.02546i
\(323\) − 3.39975e28i − 0.473825i
\(324\) −1.32824e29 −1.78652
\(325\) 0 0
\(326\) −8.20279e28 −1.02792
\(327\) 7.50758e27i 0.0908240i
\(328\) − 1.28709e28i − 0.150335i
\(329\) −7.10294e28 −0.801097
\(330\) 0 0
\(331\) −1.29656e28 −0.136386 −0.0681930 0.997672i \(-0.521723\pi\)
−0.0681930 + 0.997672i \(0.521723\pi\)
\(332\) 2.82557e28i 0.287090i
\(333\) 2.08855e29i 2.04992i
\(334\) 1.63747e28 0.155271
\(335\) 0 0
\(336\) −8.98624e28 −0.795566
\(337\) 9.04429e28i 0.773803i 0.922121 + 0.386902i \(0.126455\pi\)
−0.922121 + 0.386902i \(0.873545\pi\)
\(338\) 9.45262e28i 0.781646i
\(339\) −7.62548e28 −0.609495
\(340\) 0 0
\(341\) −2.88466e28 −0.215486
\(342\) − 1.39540e29i − 1.00786i
\(343\) 1.75338e29i 1.22460i
\(344\) 3.68478e28 0.248880
\(345\) 0 0
\(346\) −1.84002e29 −1.16264
\(347\) − 1.49288e29i − 0.912504i −0.889851 0.456252i \(-0.849192\pi\)
0.889851 0.456252i \(-0.150808\pi\)
\(348\) − 1.78243e29i − 1.05403i
\(349\) 1.52139e29 0.870459 0.435230 0.900319i \(-0.356667\pi\)
0.435230 + 0.900319i \(0.356667\pi\)
\(350\) 0 0
\(351\) 8.83156e29 4.73157
\(352\) 1.23074e28i 0.0638156i
\(353\) − 2.49410e29i − 1.25171i −0.779938 0.625857i \(-0.784750\pi\)
0.779938 0.625857i \(-0.215250\pi\)
\(354\) −1.26534e29 −0.614708
\(355\) 0 0
\(356\) 6.94207e28 0.316092
\(357\) − 6.46945e29i − 2.85222i
\(358\) 2.42134e29i 1.03372i
\(359\) −3.91702e29 −1.61946 −0.809728 0.586805i \(-0.800386\pi\)
−0.809728 + 0.586805i \(0.800386\pi\)
\(360\) 0 0
\(361\) −1.85773e29 −0.720525
\(362\) 2.40984e29i 0.905398i
\(363\) 4.59368e29i 1.67199i
\(364\) 3.40539e29 1.20088
\(365\) 0 0
\(366\) 1.85793e29 0.615171
\(367\) 1.79517e29i 0.576032i 0.957626 + 0.288016i \(0.0929956\pi\)
−0.957626 + 0.288016i \(0.907004\pi\)
\(368\) − 7.04307e28i − 0.219034i
\(369\) 3.80321e29 1.14643
\(370\) 0 0
\(371\) 1.62018e29 0.458948
\(372\) 2.08932e29i 0.573802i
\(373\) 7.00737e29i 1.86597i 0.359920 + 0.932983i \(0.382804\pi\)
−0.359920 + 0.932983i \(0.617196\pi\)
\(374\) −8.86048e28 −0.228788
\(375\) 0 0
\(376\) 7.04594e28 0.171111
\(377\) 6.75464e29i 1.59102i
\(378\) − 1.67047e30i − 3.81666i
\(379\) −7.85722e28 −0.174148 −0.0870739 0.996202i \(-0.527752\pi\)
−0.0870739 + 0.996202i \(0.527752\pi\)
\(380\) 0 0
\(381\) −1.39874e30 −2.91809
\(382\) − 6.03947e29i − 1.22256i
\(383\) − 4.36132e29i − 0.856707i −0.903611 0.428353i \(-0.859094\pi\)
0.903611 0.428353i \(-0.140906\pi\)
\(384\) 8.91412e28 0.169930
\(385\) 0 0
\(386\) −2.90517e29 −0.521696
\(387\) 1.08881e30i 1.89792i
\(388\) 1.88000e29i 0.318122i
\(389\) 8.02563e28 0.131844 0.0659218 0.997825i \(-0.479001\pi\)
0.0659218 + 0.997825i \(0.479001\pi\)
\(390\) 0 0
\(391\) 5.07051e29 0.785270
\(392\) − 4.09026e29i − 0.615122i
\(393\) − 1.22834e30i − 1.79392i
\(394\) −3.87148e28 −0.0549125
\(395\) 0 0
\(396\) −3.63672e29 −0.486648
\(397\) − 1.82014e29i − 0.236600i −0.992978 0.118300i \(-0.962256\pi\)
0.992978 0.118300i \(-0.0377444\pi\)
\(398\) − 8.78592e29i − 1.10951i
\(399\) 1.37118e30 1.68232
\(400\) 0 0
\(401\) 1.22321e30 1.41691 0.708454 0.705757i \(-0.249393\pi\)
0.708454 + 0.705757i \(0.249393\pi\)
\(402\) − 1.97922e30i − 2.22789i
\(403\) − 7.91762e29i − 0.866137i
\(404\) 6.23364e29 0.662760
\(405\) 0 0
\(406\) 1.27763e30 1.28338
\(407\) 2.81081e29i 0.274471i
\(408\) 6.41753e29i 0.609223i
\(409\) 1.28273e30 1.18391 0.591954 0.805972i \(-0.298357\pi\)
0.591954 + 0.805972i \(0.298357\pi\)
\(410\) 0 0
\(411\) −1.45026e30 −1.26550
\(412\) 2.78684e29i 0.236480i
\(413\) − 9.06979e29i − 0.748465i
\(414\) 2.08115e30 1.67032
\(415\) 0 0
\(416\) −3.37806e29 −0.256504
\(417\) 1.67468e30i 1.23699i
\(418\) − 1.87796e29i − 0.134946i
\(419\) −3.03804e29 −0.212389 −0.106194 0.994345i \(-0.533867\pi\)
−0.106194 + 0.994345i \(0.533867\pi\)
\(420\) 0 0
\(421\) 1.27738e30 0.845427 0.422714 0.906263i \(-0.361078\pi\)
0.422714 + 0.906263i \(0.361078\pi\)
\(422\) 1.13627e30i 0.731793i
\(423\) 2.08200e30i 1.30487i
\(424\) −1.60718e29 −0.0980296
\(425\) 0 0
\(426\) −3.39375e30 −1.96097
\(427\) 1.33174e30i 0.749029i
\(428\) − 1.33779e29i − 0.0732463i
\(429\) 1.88931e30 1.00704
\(430\) 0 0
\(431\) −1.22639e30 −0.619642 −0.309821 0.950795i \(-0.600269\pi\)
−0.309821 + 0.950795i \(0.600269\pi\)
\(432\) 1.65707e30i 0.815223i
\(433\) 2.34066e30i 1.12132i 0.828047 + 0.560658i \(0.189452\pi\)
−0.828047 + 0.560658i \(0.810548\pi\)
\(434\) −1.49760e30 −0.698658
\(435\) 0 0
\(436\) 5.33815e28 0.0236209
\(437\) 1.07468e30i 0.463174i
\(438\) − 2.23281e30i − 0.937346i
\(439\) −2.33966e30 −0.956779 −0.478389 0.878148i \(-0.658779\pi\)
−0.478389 + 0.878148i \(0.658779\pi\)
\(440\) 0 0
\(441\) 1.20863e31 4.69083
\(442\) − 2.43196e30i − 0.919603i
\(443\) 5.19485e30i 1.91395i 0.290175 + 0.956974i \(0.406286\pi\)
−0.290175 + 0.956974i \(0.593714\pi\)
\(444\) 2.03584e30 0.730867
\(445\) 0 0
\(446\) 2.42888e29 0.0828046
\(447\) − 6.15502e30i − 2.04500i
\(448\) 6.38953e29i 0.206905i
\(449\) −8.46675e29 −0.267229 −0.133615 0.991033i \(-0.542658\pi\)
−0.133615 + 0.991033i \(0.542658\pi\)
\(450\) 0 0
\(451\) 5.11842e29 0.153499
\(452\) 5.42198e29i 0.158513i
\(453\) 2.32922e30i 0.663868i
\(454\) −9.53569e29 −0.264978
\(455\) 0 0
\(456\) −1.36018e30 −0.359336
\(457\) 4.30243e30i 1.10835i 0.832399 + 0.554176i \(0.186967\pi\)
−0.832399 + 0.554176i \(0.813033\pi\)
\(458\) − 1.87234e30i − 0.470362i
\(459\) −1.19297e31 −2.92269
\(460\) 0 0
\(461\) 5.59904e30 1.30483 0.652413 0.757863i \(-0.273757\pi\)
0.652413 + 0.757863i \(0.273757\pi\)
\(462\) − 3.57360e30i − 0.812312i
\(463\) − 6.54677e30i − 1.45160i −0.687908 0.725798i \(-0.741471\pi\)
0.687908 0.725798i \(-0.258529\pi\)
\(464\) −1.26737e30 −0.274125
\(465\) 0 0
\(466\) −3.52132e28 −0.00724882
\(467\) − 2.46045e30i − 0.494163i −0.968995 0.247082i \(-0.920528\pi\)
0.968995 0.247082i \(-0.0794716\pi\)
\(468\) − 9.98180e30i − 1.95606i
\(469\) 1.41868e31 2.71266
\(470\) 0 0
\(471\) −1.09615e31 −1.99586
\(472\) 8.99700e29i 0.159869i
\(473\) 1.46534e30i 0.254119i
\(474\) −1.05718e31 −1.78937
\(475\) 0 0
\(476\) −4.60001e30 −0.741786
\(477\) − 4.74904e30i − 0.747558i
\(478\) − 2.82417e30i − 0.433980i
\(479\) 6.11043e30 0.916671 0.458336 0.888779i \(-0.348446\pi\)
0.458336 + 0.888779i \(0.348446\pi\)
\(480\) 0 0
\(481\) −7.71492e30 −1.10322
\(482\) 9.68127e30i 1.35173i
\(483\) 2.04503e31i 2.78810i
\(484\) 3.26627e30 0.434841
\(485\) 0 0
\(486\) −2.00964e31 −2.55153
\(487\) − 5.95367e30i − 0.738247i −0.929380 0.369124i \(-0.879658\pi\)
0.929380 0.369124i \(-0.120342\pi\)
\(488\) − 1.32105e30i − 0.159990i
\(489\) −2.36265e31 −2.79478
\(490\) 0 0
\(491\) −4.90871e30 −0.554026 −0.277013 0.960866i \(-0.589345\pi\)
−0.277013 + 0.960866i \(0.589345\pi\)
\(492\) − 3.70721e30i − 0.408741i
\(493\) − 9.12419e30i − 0.982776i
\(494\) 5.15448e30 0.542407
\(495\) 0 0
\(496\) 1.48558e30 0.149231
\(497\) − 2.43260e31i − 2.38766i
\(498\) 8.13850e30i 0.780561i
\(499\) −1.58005e29 −0.0148087 −0.00740433 0.999973i \(-0.502357\pi\)
−0.00740433 + 0.999973i \(0.502357\pi\)
\(500\) 0 0
\(501\) 4.71643e30 0.422162
\(502\) 9.83026e30i 0.859948i
\(503\) 7.88073e30i 0.673805i 0.941539 + 0.336903i \(0.109379\pi\)
−0.941539 + 0.336903i \(0.890621\pi\)
\(504\) −1.88804e31 −1.57783
\(505\) 0 0
\(506\) 2.80085e30 0.223645
\(507\) 2.72264e31i 2.12520i
\(508\) 9.94552e30i 0.758918i
\(509\) 1.29230e31 0.964070 0.482035 0.876152i \(-0.339898\pi\)
0.482035 + 0.876152i \(0.339898\pi\)
\(510\) 0 0
\(511\) 1.60045e31 1.14131
\(512\) − 6.33825e29i − 0.0441942i
\(513\) − 2.52847e31i − 1.72388i
\(514\) 1.85861e31 1.23912
\(515\) 0 0
\(516\) 1.06133e31 0.676673
\(517\) 2.80199e30i 0.174713i
\(518\) 1.45926e31i 0.889899i
\(519\) −5.29981e31 −3.16108
\(520\) 0 0
\(521\) 2.00059e31 1.14163 0.570814 0.821079i \(-0.306628\pi\)
0.570814 + 0.821079i \(0.306628\pi\)
\(522\) − 3.74495e31i − 2.09043i
\(523\) 3.24415e31i 1.77146i 0.464199 + 0.885731i \(0.346342\pi\)
−0.464199 + 0.885731i \(0.653658\pi\)
\(524\) −8.73392e30 −0.466551
\(525\) 0 0
\(526\) 1.65838e29 0.00847908
\(527\) 1.06951e31i 0.535013i
\(528\) 3.54492e30i 0.173507i
\(529\) 4.85228e30 0.232383
\(530\) 0 0
\(531\) −2.65852e31 −1.21914
\(532\) − 9.74961e30i − 0.437525i
\(533\) 1.40487e31i 0.616982i
\(534\) 1.99953e31 0.859416
\(535\) 0 0
\(536\) −1.40729e31 −0.579414
\(537\) 6.97422e31i 2.81055i
\(538\) − 3.53919e31i − 1.39607i
\(539\) 1.62659e31 0.628071
\(540\) 0 0
\(541\) −3.62031e31 −1.33961 −0.669804 0.742538i \(-0.733622\pi\)
−0.669804 + 0.742538i \(0.733622\pi\)
\(542\) 2.57087e31i 0.931299i
\(543\) 6.94108e31i 2.46166i
\(544\) 4.56309e30 0.158443
\(545\) 0 0
\(546\) 9.80856e31 3.26505
\(547\) 3.22624e31i 1.05158i 0.850614 + 0.525791i \(0.176231\pi\)
−0.850614 + 0.525791i \(0.823769\pi\)
\(548\) 1.03118e31i 0.329124i
\(549\) 3.90357e31 1.22006
\(550\) 0 0
\(551\) 1.93385e31 0.579668
\(552\) − 2.02862e31i − 0.595527i
\(553\) − 7.57776e31i − 2.17872i
\(554\) −1.02514e31 −0.288681
\(555\) 0 0
\(556\) 1.19076e31 0.321708
\(557\) 4.85642e31i 1.28523i 0.766189 + 0.642616i \(0.222151\pi\)
−0.766189 + 0.642616i \(0.777849\pi\)
\(558\) 4.38974e31i 1.13801i
\(559\) −4.02197e31 −1.02142
\(560\) 0 0
\(561\) −2.55209e31 −0.622047
\(562\) 4.92884e30i 0.117700i
\(563\) 5.02515e31i 1.17572i 0.808964 + 0.587858i \(0.200028\pi\)
−0.808964 + 0.587858i \(0.799972\pi\)
\(564\) 2.02945e31 0.465230
\(565\) 0 0
\(566\) −5.36869e31 −1.18162
\(567\) − 2.74224e32i − 5.91425i
\(568\) 2.41308e31i 0.509995i
\(569\) 7.80283e31 1.61607 0.808037 0.589132i \(-0.200530\pi\)
0.808037 + 0.589132i \(0.200530\pi\)
\(570\) 0 0
\(571\) −4.11699e31 −0.818963 −0.409481 0.912319i \(-0.634290\pi\)
−0.409481 + 0.912319i \(0.634290\pi\)
\(572\) − 1.34337e31i − 0.261903i
\(573\) − 1.73955e32i − 3.32399i
\(574\) 2.65728e31 0.497681
\(575\) 0 0
\(576\) 1.87289e31 0.337018
\(577\) 7.34525e31i 1.29564i 0.761793 + 0.647820i \(0.224319\pi\)
−0.761793 + 0.647820i \(0.775681\pi\)
\(578\) − 8.04257e30i − 0.139067i
\(579\) −8.36777e31 −1.41843
\(580\) 0 0
\(581\) −5.83357e31 −0.950406
\(582\) 5.41499e31i 0.864934i
\(583\) − 6.39134e30i − 0.100093i
\(584\) −1.58761e31 −0.243779
\(585\) 0 0
\(586\) 6.18068e30 0.0912460
\(587\) 5.81709e31i 0.842107i 0.907036 + 0.421054i \(0.138340\pi\)
−0.907036 + 0.421054i \(0.861660\pi\)
\(588\) − 1.17812e32i − 1.67244i
\(589\) −2.26681e31 −0.315565
\(590\) 0 0
\(591\) −1.11511e31 −0.149300
\(592\) − 1.44755e31i − 0.190079i
\(593\) − 7.52337e31i − 0.968909i −0.874816 0.484455i \(-0.839018\pi\)
0.874816 0.484455i \(-0.160982\pi\)
\(594\) −6.58973e31 −0.832384
\(595\) 0 0
\(596\) −4.37644e31 −0.531849
\(597\) − 2.53061e32i − 3.01662i
\(598\) 7.68758e31i 0.898930i
\(599\) 5.59333e31 0.641597 0.320798 0.947147i \(-0.396049\pi\)
0.320798 + 0.947147i \(0.396049\pi\)
\(600\) 0 0
\(601\) 5.72895e31 0.632439 0.316220 0.948686i \(-0.397586\pi\)
0.316220 + 0.948686i \(0.397586\pi\)
\(602\) 7.60748e31i 0.823913i
\(603\) − 4.15840e32i − 4.41852i
\(604\) 1.65616e31 0.172654
\(605\) 0 0
\(606\) 1.79548e32 1.80196
\(607\) 1.73060e32i 1.70423i 0.523356 + 0.852114i \(0.324680\pi\)
−0.523356 + 0.852114i \(0.675320\pi\)
\(608\) 9.67136e30i 0.0934537i
\(609\) 3.67996e32 3.48935
\(610\) 0 0
\(611\) −7.69071e31 −0.702251
\(612\) 1.34834e32i 1.20826i
\(613\) 4.07291e29i 0.00358186i 0.999998 + 0.00179093i \(0.000570071\pi\)
−0.999998 + 0.00179093i \(0.999430\pi\)
\(614\) −4.16006e31 −0.359057
\(615\) 0 0
\(616\) −2.54095e31 −0.211261
\(617\) − 1.95659e32i − 1.59669i −0.602199 0.798346i \(-0.705708\pi\)
0.602199 0.798346i \(-0.294292\pi\)
\(618\) 8.02696e31i 0.642959i
\(619\) 2.00768e32 1.57853 0.789264 0.614054i \(-0.210462\pi\)
0.789264 + 0.614054i \(0.210462\pi\)
\(620\) 0 0
\(621\) 3.77105e32 2.85699
\(622\) − 1.32892e32i − 0.988344i
\(623\) 1.43324e32i 1.04642i
\(624\) −9.72984e31 −0.697402
\(625\) 0 0
\(626\) −9.83430e31 −0.679420
\(627\) − 5.40909e31i − 0.366900i
\(628\) 7.79402e31i 0.519070i
\(629\) 1.04213e32 0.681461
\(630\) 0 0
\(631\) 2.41339e32 1.52156 0.760782 0.649007i \(-0.224816\pi\)
0.760782 + 0.649007i \(0.224816\pi\)
\(632\) 7.51694e31i 0.465366i
\(633\) 3.27281e32i 1.98965i
\(634\) 1.07524e32 0.641916
\(635\) 0 0
\(636\) −4.62917e31 −0.266530
\(637\) 4.46456e32i 2.52450i
\(638\) − 5.04002e31i − 0.279895i
\(639\) −7.13039e32 −3.88914
\(640\) 0 0
\(641\) −1.22253e32 −0.643268 −0.321634 0.946864i \(-0.604232\pi\)
−0.321634 + 0.946864i \(0.604232\pi\)
\(642\) − 3.85326e31i − 0.199148i
\(643\) 2.71424e32i 1.37792i 0.724801 + 0.688958i \(0.241932\pi\)
−0.724801 + 0.688958i \(0.758068\pi\)
\(644\) 1.45409e32 0.725110
\(645\) 0 0
\(646\) −6.96269e31 −0.335045
\(647\) − 2.71917e31i − 0.128540i −0.997933 0.0642699i \(-0.979528\pi\)
0.997933 0.0642699i \(-0.0204719\pi\)
\(648\) 2.72023e32i 1.26326i
\(649\) −3.57788e31 −0.163234
\(650\) 0 0
\(651\) −4.31355e32 −1.89956
\(652\) 1.67993e32i 0.726849i
\(653\) − 1.78163e32i − 0.757384i −0.925523 0.378692i \(-0.876374\pi\)
0.925523 0.378692i \(-0.123626\pi\)
\(654\) 1.53755e31 0.0642223
\(655\) 0 0
\(656\) −2.63596e31 −0.106303
\(657\) − 4.69121e32i − 1.85902i
\(658\) 1.45468e32i 0.566461i
\(659\) 2.28601e32 0.874774 0.437387 0.899273i \(-0.355904\pi\)
0.437387 + 0.899273i \(0.355904\pi\)
\(660\) 0 0
\(661\) −1.82780e32 −0.675478 −0.337739 0.941240i \(-0.609662\pi\)
−0.337739 + 0.941240i \(0.609662\pi\)
\(662\) 2.65535e31i 0.0964394i
\(663\) − 7.00480e32i − 2.50029i
\(664\) 5.78676e31 0.203003
\(665\) 0 0
\(666\) 4.27736e32 1.44951
\(667\) 2.88421e32i 0.960683i
\(668\) − 3.35355e31i − 0.109793i
\(669\) 6.99591e31 0.225135
\(670\) 0 0
\(671\) 5.25348e31 0.163357
\(672\) 1.84038e32i 0.562550i
\(673\) 4.40091e32i 1.32242i 0.750201 + 0.661210i \(0.229957\pi\)
−0.750201 + 0.661210i \(0.770043\pi\)
\(674\) 1.85227e32 0.547162
\(675\) 0 0
\(676\) 1.93590e32 0.552707
\(677\) 3.63271e32i 1.01967i 0.860271 + 0.509837i \(0.170294\pi\)
−0.860271 + 0.509837i \(0.829706\pi\)
\(678\) 1.56170e32i 0.430978i
\(679\) −3.88139e32 −1.05314
\(680\) 0 0
\(681\) −2.74657e32 −0.720443
\(682\) 5.90779e31i 0.152372i
\(683\) − 4.83335e31i − 0.122577i −0.998120 0.0612887i \(-0.980479\pi\)
0.998120 0.0612887i \(-0.0195210\pi\)
\(684\) −2.85779e32 −0.712663
\(685\) 0 0
\(686\) 3.59092e32 0.865921
\(687\) − 5.39292e32i − 1.27885i
\(688\) − 7.54643e31i − 0.175985i
\(689\) 1.75425e32 0.402319
\(690\) 0 0
\(691\) 1.13967e32 0.252802 0.126401 0.991979i \(-0.459657\pi\)
0.126401 + 0.991979i \(0.459657\pi\)
\(692\) 3.76835e32i 0.822113i
\(693\) − 7.50825e32i − 1.61104i
\(694\) −3.05741e32 −0.645238
\(695\) 0 0
\(696\) −3.65043e32 −0.745311
\(697\) − 1.89770e32i − 0.381110i
\(698\) − 3.11581e32i − 0.615508i
\(699\) −1.01425e31 −0.0197086
\(700\) 0 0
\(701\) −2.14787e32 −0.403879 −0.201939 0.979398i \(-0.564724\pi\)
−0.201939 + 0.979398i \(0.564724\pi\)
\(702\) − 1.80870e33i − 3.34573i
\(703\) 2.20878e32i 0.401944i
\(704\) 2.52056e31 0.0451244
\(705\) 0 0
\(706\) −5.10792e32 −0.885095
\(707\) 1.28698e33i 2.19406i
\(708\) 2.59141e32i 0.434664i
\(709\) 2.27478e32 0.375412 0.187706 0.982225i \(-0.439895\pi\)
0.187706 + 0.982225i \(0.439895\pi\)
\(710\) 0 0
\(711\) −2.22118e33 −3.54881
\(712\) − 1.42174e32i − 0.223511i
\(713\) − 3.38080e32i − 0.522986i
\(714\) −1.32494e33 −2.01682
\(715\) 0 0
\(716\) 4.95891e32 0.730949
\(717\) − 8.13448e32i − 1.17994i
\(718\) 8.02205e32i 1.14513i
\(719\) −8.12373e32 −1.14123 −0.570615 0.821217i \(-0.693295\pi\)
−0.570615 + 0.821217i \(0.693295\pi\)
\(720\) 0 0
\(721\) −5.75362e32 −0.782863
\(722\) 3.80462e32i 0.509488i
\(723\) 2.78850e33i 3.67520i
\(724\) 4.93535e32 0.640213
\(725\) 0 0
\(726\) 9.40786e32 1.18228
\(727\) − 8.49369e32i − 1.05063i −0.850907 0.525316i \(-0.823947\pi\)
0.850907 0.525316i \(-0.176053\pi\)
\(728\) − 6.97423e32i − 0.849152i
\(729\) −2.80708e33 −3.36424
\(730\) 0 0
\(731\) 5.43289e32 0.630930
\(732\) − 3.80503e32i − 0.434992i
\(733\) − 1.06482e33i − 1.19834i −0.800621 0.599171i \(-0.795497\pi\)
0.800621 0.599171i \(-0.204503\pi\)
\(734\) 3.67651e32 0.407316
\(735\) 0 0
\(736\) −1.44242e32 −0.154881
\(737\) − 5.59644e32i − 0.591611i
\(738\) − 7.78897e32i − 0.810647i
\(739\) 4.97066e32 0.509334 0.254667 0.967029i \(-0.418034\pi\)
0.254667 + 0.967029i \(0.418034\pi\)
\(740\) 0 0
\(741\) 1.48465e33 1.47474
\(742\) − 3.31813e32i − 0.324525i
\(743\) 6.27596e32i 0.604379i 0.953248 + 0.302189i \(0.0977175\pi\)
−0.953248 + 0.302189i \(0.902283\pi\)
\(744\) 4.27894e32 0.405739
\(745\) 0 0
\(746\) 1.43511e33 1.31944
\(747\) 1.70993e33i 1.54807i
\(748\) 1.81463e32i 0.161778i
\(749\) 2.76197e32 0.242481
\(750\) 0 0
\(751\) 2.25567e33 1.92051 0.960254 0.279128i \(-0.0900455\pi\)
0.960254 + 0.279128i \(0.0900455\pi\)
\(752\) − 1.44301e32i − 0.120994i
\(753\) 2.83142e33i 2.33809i
\(754\) 1.38335e33 1.12502
\(755\) 0 0
\(756\) −3.42113e33 −2.69879
\(757\) − 5.24347e32i − 0.407396i −0.979034 0.203698i \(-0.934704\pi\)
0.979034 0.203698i \(-0.0652960\pi\)
\(758\) 1.60916e32i 0.123141i
\(759\) 8.06731e32 0.608063
\(760\) 0 0
\(761\) −1.07047e33 −0.782799 −0.391400 0.920221i \(-0.628009\pi\)
−0.391400 + 0.920221i \(0.628009\pi\)
\(762\) 2.86461e33i 2.06340i
\(763\) 1.10210e32i 0.0781966i
\(764\) −1.23688e33 −0.864480
\(765\) 0 0
\(766\) −8.93199e32 −0.605783
\(767\) − 9.82031e32i − 0.656113i
\(768\) − 1.82561e32i − 0.120158i
\(769\) −1.76963e32 −0.114744 −0.0573719 0.998353i \(-0.518272\pi\)
−0.0573719 + 0.998353i \(0.518272\pi\)
\(770\) 0 0
\(771\) 5.35337e33 3.36901
\(772\) 5.94978e32i 0.368894i
\(773\) 1.34952e32i 0.0824354i 0.999150 + 0.0412177i \(0.0131237\pi\)
−0.999150 + 0.0412177i \(0.986876\pi\)
\(774\) 2.22989e33 1.34203
\(775\) 0 0
\(776\) 3.85025e32 0.224946
\(777\) 4.20312e33i 2.41953i
\(778\) − 1.64365e32i − 0.0932275i
\(779\) 4.02213e32 0.224789
\(780\) 0 0
\(781\) −9.59620e32 −0.520730
\(782\) − 1.03844e33i − 0.555270i
\(783\) − 6.78586e33i − 3.57556i
\(784\) −8.37686e32 −0.434957
\(785\) 0 0
\(786\) −2.51564e33 −1.26849
\(787\) 2.58175e32i 0.128293i 0.997940 + 0.0641467i \(0.0204326\pi\)
−0.997940 + 0.0641467i \(0.979567\pi\)
\(788\) 7.92880e31i 0.0388290i
\(789\) 4.77665e31 0.0230536
\(790\) 0 0
\(791\) −1.11941e33 −0.524756
\(792\) 7.44799e32i 0.344112i
\(793\) 1.44194e33i 0.656607i
\(794\) −3.72765e32 −0.167301
\(795\) 0 0
\(796\) −1.79936e33 −0.784543
\(797\) 4.68701e32i 0.201430i 0.994915 + 0.100715i \(0.0321131\pi\)
−0.994915 + 0.100715i \(0.967887\pi\)
\(798\) − 2.80819e33i − 1.18958i
\(799\) 1.03886e33 0.433781
\(800\) 0 0
\(801\) 4.20108e33 1.70446
\(802\) − 2.50514e33i − 1.00190i
\(803\) − 6.31352e32i − 0.248910i
\(804\) −4.05343e33 −1.57536
\(805\) 0 0
\(806\) −1.62153e33 −0.612451
\(807\) − 1.01940e34i − 3.79575i
\(808\) − 1.27665e33i − 0.468642i
\(809\) 1.32810e33 0.480643 0.240321 0.970693i \(-0.422747\pi\)
0.240321 + 0.970693i \(0.422747\pi\)
\(810\) 0 0
\(811\) 5.54203e32 0.194952 0.0974762 0.995238i \(-0.468923\pi\)
0.0974762 + 0.995238i \(0.468923\pi\)
\(812\) − 2.61658e33i − 0.907485i
\(813\) 7.40491e33i 2.53209i
\(814\) 5.75654e32 0.194080
\(815\) 0 0
\(816\) 1.31431e33 0.430786
\(817\) 1.15149e33i 0.372140i
\(818\) − 2.62704e33i − 0.837150i
\(819\) 2.06081e34 6.47550
\(820\) 0 0
\(821\) −2.33985e33 −0.714895 −0.357448 0.933933i \(-0.616353\pi\)
−0.357448 + 0.933933i \(0.616353\pi\)
\(822\) 2.97012e33i 0.894847i
\(823\) − 3.81112e33i − 1.13228i −0.824308 0.566141i \(-0.808436\pi\)
0.824308 0.566141i \(-0.191564\pi\)
\(824\) 5.70745e32 0.167217
\(825\) 0 0
\(826\) −1.85749e33 −0.529245
\(827\) 3.90417e33i 1.09702i 0.836143 + 0.548511i \(0.184805\pi\)
−0.836143 + 0.548511i \(0.815195\pi\)
\(828\) − 4.26220e33i − 1.18110i
\(829\) −2.55686e33 −0.698763 −0.349382 0.936981i \(-0.613608\pi\)
−0.349382 + 0.936981i \(0.613608\pi\)
\(830\) 0 0
\(831\) −2.95270e33 −0.784889
\(832\) 6.91826e32i 0.181376i
\(833\) − 6.03074e33i − 1.55939i
\(834\) 3.42974e33 0.874685
\(835\) 0 0
\(836\) −3.84606e32 −0.0954209
\(837\) 7.95421e33i 1.94650i
\(838\) 6.22190e32i 0.150182i
\(839\) −5.90891e32 −0.140684 −0.0703420 0.997523i \(-0.522409\pi\)
−0.0703420 + 0.997523i \(0.522409\pi\)
\(840\) 0 0
\(841\) 8.73308e32 0.202308
\(842\) − 2.61608e33i − 0.597808i
\(843\) 1.41966e33i 0.320012i
\(844\) 2.32708e33 0.517456
\(845\) 0 0
\(846\) 4.26394e33 0.922681
\(847\) 6.74344e33i 1.43954i
\(848\) 3.29150e32i 0.0693174i
\(849\) −1.54635e34 −3.21269
\(850\) 0 0
\(851\) −3.29425e33 −0.666141
\(852\) 6.95041e33i 1.38661i
\(853\) 3.51995e33i 0.692823i 0.938083 + 0.346412i \(0.112600\pi\)
−0.938083 + 0.346412i \(0.887400\pi\)
\(854\) 2.72740e33 0.529643
\(855\) 0 0
\(856\) −2.73980e32 −0.0517930
\(857\) − 8.93522e33i − 1.66658i −0.552837 0.833289i \(-0.686455\pi\)
0.552837 0.833289i \(-0.313545\pi\)
\(858\) − 3.86931e33i − 0.712082i
\(859\) −4.26448e33 −0.774363 −0.387181 0.922004i \(-0.626551\pi\)
−0.387181 + 0.922004i \(0.626551\pi\)
\(860\) 0 0
\(861\) 7.65379e33 1.35313
\(862\) 2.51165e33i 0.438153i
\(863\) 7.90521e31i 0.0136078i 0.999977 + 0.00680392i \(0.00216577\pi\)
−0.999977 + 0.00680392i \(0.997834\pi\)
\(864\) 3.39367e33 0.576450
\(865\) 0 0
\(866\) 4.79368e33 0.792891
\(867\) − 2.31651e33i − 0.378107i
\(868\) 3.06709e33i 0.494025i
\(869\) −2.98930e33 −0.475162
\(870\) 0 0
\(871\) 1.53607e34 2.37795
\(872\) − 1.09325e32i − 0.0167025i
\(873\) 1.13771e34i 1.71540i
\(874\) 2.20095e33 0.327513
\(875\) 0 0
\(876\) −4.57280e33 −0.662804
\(877\) − 5.32153e33i − 0.761275i −0.924724 0.380638i \(-0.875705\pi\)
0.924724 0.380638i \(-0.124295\pi\)
\(878\) 4.79163e33i 0.676545i
\(879\) 1.78023e33 0.248086
\(880\) 0 0
\(881\) −6.10795e33 −0.829225 −0.414613 0.909998i \(-0.636083\pi\)
−0.414613 + 0.909998i \(0.636083\pi\)
\(882\) − 2.47527e34i − 3.31692i
\(883\) − 5.57230e33i − 0.737032i −0.929621 0.368516i \(-0.879866\pi\)
0.929621 0.368516i \(-0.120134\pi\)
\(884\) −4.98066e33 −0.650258
\(885\) 0 0
\(886\) 1.06390e34 1.35336
\(887\) − 3.09075e33i − 0.388099i −0.980992 0.194050i \(-0.937838\pi\)
0.980992 0.194050i \(-0.0621623\pi\)
\(888\) − 4.16939e33i − 0.516801i
\(889\) −2.05332e34 −2.51239
\(890\) 0 0
\(891\) −1.08177e34 −1.28985
\(892\) − 4.97434e32i − 0.0585517i
\(893\) 2.20185e33i 0.255856i
\(894\) −1.26055e34 −1.44603
\(895\) 0 0
\(896\) 1.30858e33 0.146304
\(897\) 2.21426e34i 2.44408i
\(898\) 1.73399e33i 0.188960i
\(899\) −6.08362e33 −0.654524
\(900\) 0 0
\(901\) −2.36965e33 −0.248513
\(902\) − 1.04825e33i − 0.108540i
\(903\) 2.19119e34i 2.24012i
\(904\) 1.11042e33 0.112086
\(905\) 0 0
\(906\) 4.77025e33 0.469425
\(907\) 1.19132e34i 1.15756i 0.815483 + 0.578781i \(0.196471\pi\)
−0.815483 + 0.578781i \(0.803529\pi\)
\(908\) 1.95291e33i 0.187368i
\(909\) 3.77236e34 3.57379
\(910\) 0 0
\(911\) −1.48259e34 −1.36949 −0.684747 0.728781i \(-0.740087\pi\)
−0.684747 + 0.728781i \(0.740087\pi\)
\(912\) 2.78565e33i 0.254089i
\(913\) 2.30125e33i 0.207276i
\(914\) 8.81138e33 0.783723
\(915\) 0 0
\(916\) −3.83455e33 −0.332596
\(917\) − 1.80318e34i − 1.54451i
\(918\) 2.44320e34i 2.06666i
\(919\) −1.05759e34 −0.883461 −0.441731 0.897148i \(-0.645635\pi\)
−0.441731 + 0.897148i \(0.645635\pi\)
\(920\) 0 0
\(921\) −1.19823e34 −0.976232
\(922\) − 1.14668e34i − 0.922652i
\(923\) − 2.63390e34i − 2.09305i
\(924\) −7.31873e33 −0.574391
\(925\) 0 0
\(926\) −1.34078e34 −1.02643
\(927\) 1.68649e34i 1.27517i
\(928\) 2.59558e33i 0.193835i
\(929\) 4.72412e33 0.348450 0.174225 0.984706i \(-0.444258\pi\)
0.174225 + 0.984706i \(0.444258\pi\)
\(930\) 0 0
\(931\) 1.27820e34 0.919768
\(932\) 7.21166e31i 0.00512569i
\(933\) − 3.82769e34i − 2.68718i
\(934\) −5.03900e33 −0.349426
\(935\) 0 0
\(936\) −2.04427e34 −1.38314
\(937\) − 2.82822e34i − 1.89020i −0.326779 0.945101i \(-0.605963\pi\)
0.326779 0.945101i \(-0.394037\pi\)
\(938\) − 2.90545e34i − 1.91814i
\(939\) −2.83258e34 −1.84726
\(940\) 0 0
\(941\) −1.69342e34 −1.07767 −0.538833 0.842412i \(-0.681135\pi\)
−0.538833 + 0.842412i \(0.681135\pi\)
\(942\) 2.24492e34i 1.41129i
\(943\) 5.99875e33i 0.372543i
\(944\) 1.84259e33 0.113045
\(945\) 0 0
\(946\) 3.00102e33 0.179689
\(947\) − 8.74272e33i − 0.517156i −0.965990 0.258578i \(-0.916746\pi\)
0.965990 0.258578i \(-0.0832540\pi\)
\(948\) 2.16511e34i 1.26527i
\(949\) 1.73289e34 1.00048
\(950\) 0 0
\(951\) 3.09702e34 1.74529
\(952\) 9.42081e33i 0.524522i
\(953\) 2.80700e34i 1.54410i 0.635564 + 0.772048i \(0.280768\pi\)
−0.635564 + 0.772048i \(0.719232\pi\)
\(954\) −9.72604e33 −0.528603
\(955\) 0 0
\(956\) −5.78390e33 −0.306870
\(957\) − 1.45168e34i − 0.760999i
\(958\) − 1.25142e34i − 0.648185i
\(959\) −2.12895e34 −1.08956
\(960\) 0 0
\(961\) −1.28823e34 −0.643684
\(962\) 1.58002e34i 0.780096i
\(963\) − 8.09582e33i − 0.394965i
\(964\) 1.98272e34 0.955821
\(965\) 0 0
\(966\) 4.18823e34 1.97148
\(967\) − 1.63293e34i − 0.759562i −0.925076 0.379781i \(-0.875999\pi\)
0.925076 0.379781i \(-0.124001\pi\)
\(968\) − 6.68932e33i − 0.307479i
\(969\) −2.00547e34 −0.910946
\(970\) 0 0
\(971\) −2.94646e34 −1.30701 −0.653505 0.756922i \(-0.726702\pi\)
−0.653505 + 0.756922i \(0.726702\pi\)
\(972\) 4.11573e34i 1.80420i
\(973\) 2.45840e34i 1.06501i
\(974\) −1.21931e34 −0.522020
\(975\) 0 0
\(976\) −2.70551e33 −0.113130
\(977\) − 3.20852e34i − 1.32592i −0.748655 0.662960i \(-0.769300\pi\)
0.748655 0.662960i \(-0.230700\pi\)
\(978\) 4.83872e34i 1.97621i
\(979\) 5.65388e33 0.228216
\(980\) 0 0
\(981\) 3.23045e33 0.127371
\(982\) 1.00530e34i 0.391756i
\(983\) 1.27173e34i 0.489813i 0.969547 + 0.244906i \(0.0787572\pi\)
−0.969547 + 0.244906i \(0.921243\pi\)
\(984\) −7.59236e33 −0.289024
\(985\) 0 0
\(986\) −1.86863e34 −0.694928
\(987\) 4.18993e34i 1.54014i
\(988\) − 1.05564e34i − 0.383540i
\(989\) −1.71737e34 −0.616746
\(990\) 0 0
\(991\) −3.20701e34 −1.12526 −0.562631 0.826708i \(-0.690211\pi\)
−0.562631 + 0.826708i \(0.690211\pi\)
\(992\) − 3.04247e33i − 0.105522i
\(993\) 7.64822e33i 0.262207i
\(994\) −4.98197e34 −1.68833
\(995\) 0 0
\(996\) 1.66676e34 0.551940
\(997\) 4.63954e34i 1.51873i 0.650665 + 0.759365i \(0.274490\pi\)
−0.650665 + 0.759365i \(0.725510\pi\)
\(998\) 3.23595e32i 0.0104713i
\(999\) 7.75057e34 2.47931
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.24.b.b.49.1 4
5.2 odd 4 50.24.a.c.1.1 2
5.3 odd 4 10.24.a.b.1.2 2
5.4 even 2 inner 50.24.b.b.49.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.24.a.b.1.2 2 5.3 odd 4
50.24.a.c.1.1 2 5.2 odd 4
50.24.b.b.49.1 4 1.1 even 1 trivial
50.24.b.b.49.4 4 5.4 even 2 inner