Properties

Label 50.26.a.e.1.1
Level $50$
Weight $26$
Character 50.1
Self dual yes
Analytic conductor $197.998$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,26,Mod(1,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.1");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(197.998389976\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 148387471 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 5 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-12181.4\) of defining polynomial
Character \(\chi\) \(=\) 50.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4096.00 q^{2} -1.24712e6 q^{3} +1.67772e7 q^{4} -5.10821e9 q^{6} -3.92781e10 q^{7} +6.87195e10 q^{8} +7.08023e11 q^{9} -1.50696e13 q^{11} -2.09232e13 q^{12} +1.45379e14 q^{13} -1.60883e14 q^{14} +2.81475e14 q^{16} -1.30302e15 q^{17} +2.90006e15 q^{18} -9.75151e15 q^{19} +4.89845e16 q^{21} -6.17252e16 q^{22} -1.00704e17 q^{23} -8.57015e16 q^{24} +5.95471e17 q^{26} +1.73682e17 q^{27} -6.58976e17 q^{28} -1.41726e18 q^{29} -3.30375e18 q^{31} +1.15292e18 q^{32} +1.87937e19 q^{33} -5.33718e18 q^{34} +1.18786e19 q^{36} -6.55066e19 q^{37} -3.99422e19 q^{38} -1.81305e20 q^{39} -9.42027e19 q^{41} +2.00640e20 q^{42} -1.20866e20 q^{43} -2.52827e20 q^{44} -4.12482e20 q^{46} +8.86966e20 q^{47} -3.51033e20 q^{48} +2.01697e20 q^{49} +1.62503e21 q^{51} +2.43905e21 q^{52} +6.79454e21 q^{53} +7.11400e20 q^{54} -2.69917e21 q^{56} +1.21613e22 q^{57} -5.80511e21 q^{58} -1.11112e22 q^{59} -3.14899e22 q^{61} -1.35322e22 q^{62} -2.78098e22 q^{63} +4.72237e21 q^{64} +7.69788e22 q^{66} -4.52478e22 q^{67} -2.18611e22 q^{68} +1.25590e23 q^{69} -3.31126e22 q^{71} +4.86549e22 q^{72} -3.04253e23 q^{73} -2.68315e23 q^{74} -1.63603e23 q^{76} +5.91906e23 q^{77} -7.42625e23 q^{78} -1.45524e23 q^{79} -8.16501e23 q^{81} -3.85854e23 q^{82} -8.80567e23 q^{83} +8.21823e23 q^{84} -4.95068e23 q^{86} +1.76750e24 q^{87} -1.03558e24 q^{88} -1.79771e23 q^{89} -5.71019e24 q^{91} -1.68953e24 q^{92} +4.12018e24 q^{93} +3.63301e24 q^{94} -1.43783e24 q^{96} +7.02806e24 q^{97} +8.26151e23 q^{98} -1.06696e25 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8192 q^{2} - 545212 q^{3} + 33554432 q^{4} - 2233188352 q^{6} - 38567856964 q^{7} + 137438953472 q^{8} + 353410472386 q^{9} - 8379169876416 q^{11} - 9147139489792 q^{12} + 149443737196988 q^{13} - 157973942124544 q^{14}+ \cdots - 13\!\cdots\!88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4096.00 0.707107
\(3\) −1.24712e6 −1.35486 −0.677428 0.735589i \(-0.736905\pi\)
−0.677428 + 0.735589i \(0.736905\pi\)
\(4\) 1.67772e7 0.500000
\(5\) 0 0
\(6\) −5.10821e9 −0.958027
\(7\) −3.92781e10 −1.07257 −0.536284 0.844038i \(-0.680172\pi\)
−0.536284 + 0.844038i \(0.680172\pi\)
\(8\) 6.87195e10 0.353553
\(9\) 7.08023e11 0.835633
\(10\) 0 0
\(11\) −1.50696e13 −1.44775 −0.723876 0.689930i \(-0.757641\pi\)
−0.723876 + 0.689930i \(0.757641\pi\)
\(12\) −2.09232e13 −0.677428
\(13\) 1.45379e14 1.73065 0.865324 0.501213i \(-0.167113\pi\)
0.865324 + 0.501213i \(0.167113\pi\)
\(14\) −1.60883e14 −0.758419
\(15\) 0 0
\(16\) 2.81475e14 0.250000
\(17\) −1.30302e15 −0.542426 −0.271213 0.962519i \(-0.587425\pi\)
−0.271213 + 0.962519i \(0.587425\pi\)
\(18\) 2.90006e15 0.590882
\(19\) −9.75151e15 −1.01077 −0.505385 0.862894i \(-0.668649\pi\)
−0.505385 + 0.862894i \(0.668649\pi\)
\(20\) 0 0
\(21\) 4.89845e16 1.45317
\(22\) −6.17252e16 −1.02372
\(23\) −1.00704e17 −0.958180 −0.479090 0.877766i \(-0.659033\pi\)
−0.479090 + 0.877766i \(0.659033\pi\)
\(24\) −8.57015e16 −0.479014
\(25\) 0 0
\(26\) 5.95471e17 1.22375
\(27\) 1.73682e17 0.222693
\(28\) −6.58976e17 −0.536284
\(29\) −1.41726e18 −0.743834 −0.371917 0.928266i \(-0.621299\pi\)
−0.371917 + 0.928266i \(0.621299\pi\)
\(30\) 0 0
\(31\) −3.30375e18 −0.753332 −0.376666 0.926349i \(-0.622930\pi\)
−0.376666 + 0.926349i \(0.622930\pi\)
\(32\) 1.15292e18 0.176777
\(33\) 1.87937e19 1.96149
\(34\) −5.33718e18 −0.383553
\(35\) 0 0
\(36\) 1.18786e19 0.417817
\(37\) −6.55066e19 −1.63593 −0.817963 0.575271i \(-0.804897\pi\)
−0.817963 + 0.575271i \(0.804897\pi\)
\(38\) −3.99422e19 −0.714722
\(39\) −1.81305e20 −2.34478
\(40\) 0 0
\(41\) −9.42027e19 −0.652026 −0.326013 0.945365i \(-0.605705\pi\)
−0.326013 + 0.945365i \(0.605705\pi\)
\(42\) 2.00640e20 1.02755
\(43\) −1.20866e20 −0.461263 −0.230632 0.973041i \(-0.574079\pi\)
−0.230632 + 0.973041i \(0.574079\pi\)
\(44\) −2.52827e20 −0.723876
\(45\) 0 0
\(46\) −4.12482e20 −0.677535
\(47\) 8.86966e20 1.11348 0.556742 0.830686i \(-0.312051\pi\)
0.556742 + 0.830686i \(0.312051\pi\)
\(48\) −3.51033e20 −0.338714
\(49\) 2.01697e20 0.150400
\(50\) 0 0
\(51\) 1.62503e21 0.734909
\(52\) 2.43905e21 0.865324
\(53\) 6.79454e21 1.89982 0.949908 0.312530i \(-0.101176\pi\)
0.949908 + 0.312530i \(0.101176\pi\)
\(54\) 7.11400e20 0.157468
\(55\) 0 0
\(56\) −2.69917e21 −0.379210
\(57\) 1.21613e22 1.36945
\(58\) −5.80511e21 −0.525970
\(59\) −1.11112e22 −0.813039 −0.406520 0.913642i \(-0.633258\pi\)
−0.406520 + 0.913642i \(0.633258\pi\)
\(60\) 0 0
\(61\) −3.14899e22 −1.51897 −0.759483 0.650527i \(-0.774548\pi\)
−0.759483 + 0.650527i \(0.774548\pi\)
\(62\) −1.35322e22 −0.532686
\(63\) −2.78098e22 −0.896273
\(64\) 4.72237e21 0.125000
\(65\) 0 0
\(66\) 7.69788e22 1.38699
\(67\) −4.52478e22 −0.675558 −0.337779 0.941225i \(-0.609676\pi\)
−0.337779 + 0.941225i \(0.609676\pi\)
\(68\) −2.18611e22 −0.271213
\(69\) 1.25590e23 1.29819
\(70\) 0 0
\(71\) −3.31126e22 −0.239477 −0.119739 0.992805i \(-0.538206\pi\)
−0.119739 + 0.992805i \(0.538206\pi\)
\(72\) 4.86549e22 0.295441
\(73\) −3.04253e23 −1.55489 −0.777445 0.628952i \(-0.783484\pi\)
−0.777445 + 0.628952i \(0.783484\pi\)
\(74\) −2.68315e23 −1.15677
\(75\) 0 0
\(76\) −1.63603e23 −0.505385
\(77\) 5.91906e23 1.55281
\(78\) −7.42625e23 −1.65801
\(79\) −1.45524e23 −0.277075 −0.138537 0.990357i \(-0.544240\pi\)
−0.138537 + 0.990357i \(0.544240\pi\)
\(80\) 0 0
\(81\) −8.16501e23 −1.13735
\(82\) −3.85854e23 −0.461052
\(83\) −8.80567e23 −0.904245 −0.452122 0.891956i \(-0.649333\pi\)
−0.452122 + 0.891956i \(0.649333\pi\)
\(84\) 8.21823e23 0.726587
\(85\) 0 0
\(86\) −4.95068e23 −0.326162
\(87\) 1.76750e24 1.00779
\(88\) −1.03558e24 −0.511858
\(89\) −1.79771e23 −0.0771514 −0.0385757 0.999256i \(-0.512282\pi\)
−0.0385757 + 0.999256i \(0.512282\pi\)
\(90\) 0 0
\(91\) −5.71019e24 −1.85624
\(92\) −1.68953e24 −0.479090
\(93\) 4.12018e24 1.02066
\(94\) 3.63301e24 0.787352
\(95\) 0 0
\(96\) −1.43783e24 −0.239507
\(97\) 7.02806e24 1.02846 0.514232 0.857651i \(-0.328077\pi\)
0.514232 + 0.857651i \(0.328077\pi\)
\(98\) 8.26151e23 0.106349
\(99\) −1.06696e25 −1.20979
\(100\) 0 0
\(101\) −6.59850e24 −0.582677 −0.291339 0.956620i \(-0.594101\pi\)
−0.291339 + 0.956620i \(0.594101\pi\)
\(102\) 6.65611e24 0.519659
\(103\) −2.14556e25 −1.48278 −0.741389 0.671075i \(-0.765833\pi\)
−0.741389 + 0.671075i \(0.765833\pi\)
\(104\) 9.99035e24 0.611877
\(105\) 0 0
\(106\) 2.78304e25 1.34337
\(107\) −2.29745e24 −0.0986164 −0.0493082 0.998784i \(-0.515702\pi\)
−0.0493082 + 0.998784i \(0.515702\pi\)
\(108\) 2.91389e24 0.111347
\(109\) 2.46259e25 0.838611 0.419305 0.907845i \(-0.362274\pi\)
0.419305 + 0.907845i \(0.362274\pi\)
\(110\) 0 0
\(111\) 8.16947e25 2.21644
\(112\) −1.10558e25 −0.268142
\(113\) 4.71863e25 1.02408 0.512042 0.858960i \(-0.328889\pi\)
0.512042 + 0.858960i \(0.328889\pi\)
\(114\) 4.98128e25 0.968345
\(115\) 0 0
\(116\) −2.37777e25 −0.371917
\(117\) 1.02931e26 1.44619
\(118\) −4.55116e25 −0.574906
\(119\) 5.11802e25 0.581789
\(120\) 0 0
\(121\) 1.18747e26 1.09599
\(122\) −1.28982e26 −1.07407
\(123\) 1.17482e26 0.883401
\(124\) −5.54278e25 −0.376666
\(125\) 0 0
\(126\) −1.13909e26 −0.633761
\(127\) 1.28089e26 0.645605 0.322802 0.946466i \(-0.395375\pi\)
0.322802 + 0.946466i \(0.395375\pi\)
\(128\) 1.93428e25 0.0883883
\(129\) 1.50735e26 0.624945
\(130\) 0 0
\(131\) 1.65371e26 0.565675 0.282838 0.959168i \(-0.408724\pi\)
0.282838 + 0.959168i \(0.408724\pi\)
\(132\) 3.15305e26 0.980747
\(133\) 3.83020e26 1.08412
\(134\) −1.85335e26 −0.477692
\(135\) 0 0
\(136\) −8.95431e25 −0.191777
\(137\) 3.20644e26 0.626637 0.313319 0.949648i \(-0.398559\pi\)
0.313319 + 0.949648i \(0.398559\pi\)
\(138\) 5.14415e26 0.917962
\(139\) 5.33177e26 0.869333 0.434666 0.900592i \(-0.356866\pi\)
0.434666 + 0.900592i \(0.356866\pi\)
\(140\) 0 0
\(141\) −1.10615e27 −1.50861
\(142\) −1.35629e26 −0.169336
\(143\) −2.19080e27 −2.50555
\(144\) 1.99291e26 0.208908
\(145\) 0 0
\(146\) −1.24622e27 −1.09947
\(147\) −2.51541e26 −0.203771
\(148\) −1.09902e27 −0.817963
\(149\) 5.79851e26 0.396724 0.198362 0.980129i \(-0.436438\pi\)
0.198362 + 0.980129i \(0.436438\pi\)
\(150\) 0 0
\(151\) 2.88738e27 1.67222 0.836109 0.548564i \(-0.184825\pi\)
0.836109 + 0.548564i \(0.184825\pi\)
\(152\) −6.70119e26 −0.357361
\(153\) −9.22570e26 −0.453269
\(154\) 2.42445e27 1.09800
\(155\) 0 0
\(156\) −3.04179e27 −1.17239
\(157\) 4.99584e27 1.77772 0.888859 0.458181i \(-0.151499\pi\)
0.888859 + 0.458181i \(0.151499\pi\)
\(158\) −5.96067e26 −0.195921
\(159\) −8.47361e27 −2.57398
\(160\) 0 0
\(161\) 3.95544e27 1.02771
\(162\) −3.34439e27 −0.804228
\(163\) −9.78636e25 −0.0217909 −0.0108955 0.999941i \(-0.503468\pi\)
−0.0108955 + 0.999941i \(0.503468\pi\)
\(164\) −1.58046e27 −0.326013
\(165\) 0 0
\(166\) −3.60680e27 −0.639398
\(167\) −8.79974e27 −1.44715 −0.723576 0.690245i \(-0.757503\pi\)
−0.723576 + 0.690245i \(0.757503\pi\)
\(168\) 3.36619e27 0.513774
\(169\) 1.40786e28 1.99514
\(170\) 0 0
\(171\) −6.90429e27 −0.844632
\(172\) −2.02780e27 −0.230632
\(173\) 1.48916e28 1.57530 0.787651 0.616122i \(-0.211297\pi\)
0.787651 + 0.616122i \(0.211297\pi\)
\(174\) 7.23968e27 0.712613
\(175\) 0 0
\(176\) −4.24173e27 −0.361938
\(177\) 1.38570e28 1.10155
\(178\) −7.36341e26 −0.0545543
\(179\) −1.83964e28 −1.27078 −0.635390 0.772191i \(-0.719161\pi\)
−0.635390 + 0.772191i \(0.719161\pi\)
\(180\) 0 0
\(181\) 1.98192e28 1.19153 0.595764 0.803160i \(-0.296849\pi\)
0.595764 + 0.803160i \(0.296849\pi\)
\(182\) −2.33889e28 −1.31256
\(183\) 3.92717e28 2.05798
\(184\) −6.92030e27 −0.338768
\(185\) 0 0
\(186\) 1.68763e28 0.721713
\(187\) 1.96361e28 0.785299
\(188\) 1.48808e28 0.556742
\(189\) −6.82188e27 −0.238853
\(190\) 0 0
\(191\) −3.54565e28 −1.08837 −0.544187 0.838964i \(-0.683162\pi\)
−0.544187 + 0.838964i \(0.683162\pi\)
\(192\) −5.88936e27 −0.169357
\(193\) 1.29750e28 0.349657 0.174829 0.984599i \(-0.444063\pi\)
0.174829 + 0.984599i \(0.444063\pi\)
\(194\) 2.87869e28 0.727234
\(195\) 0 0
\(196\) 3.38392e27 0.0752001
\(197\) −6.04380e28 −1.26032 −0.630162 0.776463i \(-0.717012\pi\)
−0.630162 + 0.776463i \(0.717012\pi\)
\(198\) −4.37029e28 −0.855451
\(199\) 5.51931e28 1.01443 0.507215 0.861820i \(-0.330675\pi\)
0.507215 + 0.861820i \(0.330675\pi\)
\(200\) 0 0
\(201\) 5.64295e28 0.915283
\(202\) −2.70275e28 −0.412015
\(203\) 5.56674e28 0.797812
\(204\) 2.72634e28 0.367455
\(205\) 0 0
\(206\) −8.78823e28 −1.04848
\(207\) −7.13004e28 −0.800687
\(208\) 4.09205e28 0.432662
\(209\) 1.46952e29 1.46334
\(210\) 0 0
\(211\) −7.38048e28 −0.652460 −0.326230 0.945290i \(-0.605778\pi\)
−0.326230 + 0.945290i \(0.605778\pi\)
\(212\) 1.13993e29 0.949908
\(213\) 4.12955e28 0.324457
\(214\) −9.41036e27 −0.0697323
\(215\) 0 0
\(216\) 1.19353e28 0.0787339
\(217\) 1.29765e29 0.807999
\(218\) 1.00868e29 0.592987
\(219\) 3.79441e29 2.10665
\(220\) 0 0
\(221\) −1.89432e29 −0.938749
\(222\) 3.34621e29 1.56726
\(223\) −3.22437e29 −1.42769 −0.713846 0.700303i \(-0.753048\pi\)
−0.713846 + 0.700303i \(0.753048\pi\)
\(224\) −4.52845e28 −0.189605
\(225\) 0 0
\(226\) 1.93275e29 0.724137
\(227\) 4.50494e29 1.59722 0.798611 0.601847i \(-0.205568\pi\)
0.798611 + 0.601847i \(0.205568\pi\)
\(228\) 2.04033e29 0.684723
\(229\) −3.03906e28 −0.0965596 −0.0482798 0.998834i \(-0.515374\pi\)
−0.0482798 + 0.998834i \(0.515374\pi\)
\(230\) 0 0
\(231\) −7.38178e29 −2.10383
\(232\) −9.73937e28 −0.262985
\(233\) 1.03711e29 0.265386 0.132693 0.991157i \(-0.457638\pi\)
0.132693 + 0.991157i \(0.457638\pi\)
\(234\) 4.21607e29 1.02261
\(235\) 0 0
\(236\) −1.86415e29 −0.406520
\(237\) 1.81486e29 0.375396
\(238\) 2.09634e29 0.411387
\(239\) 8.96475e29 1.66942 0.834708 0.550693i \(-0.185636\pi\)
0.834708 + 0.550693i \(0.185636\pi\)
\(240\) 0 0
\(241\) 1.66839e29 0.279952 0.139976 0.990155i \(-0.455297\pi\)
0.139976 + 0.990155i \(0.455297\pi\)
\(242\) 4.86387e29 0.774979
\(243\) 8.71118e29 1.31825
\(244\) −5.28312e29 −0.759483
\(245\) 0 0
\(246\) 4.81207e29 0.624659
\(247\) −1.41766e30 −1.74929
\(248\) −2.27032e29 −0.266343
\(249\) 1.09817e30 1.22512
\(250\) 0 0
\(251\) −1.77969e28 −0.0179648 −0.00898241 0.999960i \(-0.502859\pi\)
−0.00898241 + 0.999960i \(0.502859\pi\)
\(252\) −4.66570e29 −0.448136
\(253\) 1.51757e30 1.38721
\(254\) 5.24654e29 0.456512
\(255\) 0 0
\(256\) 7.92282e28 0.0625000
\(257\) −1.02153e30 −0.767515 −0.383758 0.923434i \(-0.625370\pi\)
−0.383758 + 0.923434i \(0.625370\pi\)
\(258\) 6.17409e29 0.441903
\(259\) 2.57297e30 1.75464
\(260\) 0 0
\(261\) −1.00346e30 −0.621572
\(262\) 6.77358e29 0.399993
\(263\) 2.39313e30 1.34747 0.673735 0.738973i \(-0.264689\pi\)
0.673735 + 0.738973i \(0.264689\pi\)
\(264\) 1.29149e30 0.693493
\(265\) 0 0
\(266\) 1.56885e30 0.766587
\(267\) 2.24196e29 0.104529
\(268\) −7.59132e29 −0.337779
\(269\) 7.43966e29 0.315973 0.157986 0.987441i \(-0.449500\pi\)
0.157986 + 0.987441i \(0.449500\pi\)
\(270\) 0 0
\(271\) −2.89456e30 −1.12064 −0.560319 0.828277i \(-0.689322\pi\)
−0.560319 + 0.828277i \(0.689322\pi\)
\(272\) −3.66768e29 −0.135607
\(273\) 7.12130e30 2.51493
\(274\) 1.31336e30 0.443099
\(275\) 0 0
\(276\) 2.10704e30 0.649097
\(277\) 2.46028e30 0.724415 0.362208 0.932097i \(-0.382023\pi\)
0.362208 + 0.932097i \(0.382023\pi\)
\(278\) 2.18389e30 0.614711
\(279\) −2.33913e30 −0.629509
\(280\) 0 0
\(281\) 5.42013e30 1.33408 0.667038 0.745024i \(-0.267562\pi\)
0.667038 + 0.745024i \(0.267562\pi\)
\(282\) −4.53081e30 −1.06675
\(283\) −6.30761e30 −1.42080 −0.710402 0.703796i \(-0.751487\pi\)
−0.710402 + 0.703796i \(0.751487\pi\)
\(284\) −5.55538e29 −0.119739
\(285\) 0 0
\(286\) −8.97353e30 −1.77169
\(287\) 3.70010e30 0.699342
\(288\) 8.16294e29 0.147720
\(289\) −4.07276e30 −0.705774
\(290\) 0 0
\(291\) −8.76484e30 −1.39342
\(292\) −5.10452e30 −0.777445
\(293\) −9.79285e30 −1.42910 −0.714552 0.699582i \(-0.753369\pi\)
−0.714552 + 0.699582i \(0.753369\pi\)
\(294\) −1.03031e30 −0.144088
\(295\) 0 0
\(296\) −4.50158e30 −0.578387
\(297\) −2.61732e30 −0.322404
\(298\) 2.37507e30 0.280526
\(299\) −1.46402e31 −1.65827
\(300\) 0 0
\(301\) 4.74739e30 0.494736
\(302\) 1.18267e31 1.18244
\(303\) 8.22913e30 0.789444
\(304\) −2.74481e30 −0.252692
\(305\) 0 0
\(306\) −3.77885e30 −0.320510
\(307\) 5.75594e30 0.468691 0.234345 0.972153i \(-0.424705\pi\)
0.234345 + 0.972153i \(0.424705\pi\)
\(308\) 9.93053e30 0.776406
\(309\) 2.67578e31 2.00895
\(310\) 0 0
\(311\) 1.84953e31 1.28102 0.640510 0.767950i \(-0.278723\pi\)
0.640510 + 0.767950i \(0.278723\pi\)
\(312\) −1.24592e31 −0.829004
\(313\) −2.39300e31 −1.52982 −0.764908 0.644140i \(-0.777216\pi\)
−0.764908 + 0.644140i \(0.777216\pi\)
\(314\) 2.04630e31 1.25704
\(315\) 0 0
\(316\) −2.44149e30 −0.138537
\(317\) 2.04161e30 0.111360 0.0556802 0.998449i \(-0.482267\pi\)
0.0556802 + 0.998449i \(0.482267\pi\)
\(318\) −3.47079e31 −1.82008
\(319\) 2.13577e31 1.07689
\(320\) 0 0
\(321\) 2.86520e30 0.133611
\(322\) 1.62015e31 0.726702
\(323\) 1.27064e31 0.548268
\(324\) −1.36986e31 −0.568675
\(325\) 0 0
\(326\) −4.00849e29 −0.0154085
\(327\) −3.07114e31 −1.13620
\(328\) −6.47356e30 −0.230526
\(329\) −3.48383e31 −1.19429
\(330\) 0 0
\(331\) −1.75414e31 −0.557459 −0.278730 0.960370i \(-0.589913\pi\)
−0.278730 + 0.960370i \(0.589913\pi\)
\(332\) −1.47735e31 −0.452122
\(333\) −4.63802e31 −1.36703
\(334\) −3.60437e31 −1.02329
\(335\) 0 0
\(336\) 1.37879e31 0.363293
\(337\) 7.33154e31 1.86132 0.930661 0.365882i \(-0.119232\pi\)
0.930661 + 0.365882i \(0.119232\pi\)
\(338\) 5.76658e31 1.41078
\(339\) −5.88471e31 −1.38749
\(340\) 0 0
\(341\) 4.97863e31 1.09064
\(342\) −2.82800e31 −0.597245
\(343\) 4.47523e31 0.911253
\(344\) −8.30586e30 −0.163081
\(345\) 0 0
\(346\) 6.09958e31 1.11391
\(347\) 1.54701e31 0.272505 0.136253 0.990674i \(-0.456494\pi\)
0.136253 + 0.990674i \(0.456494\pi\)
\(348\) 2.96537e31 0.503894
\(349\) −1.14544e31 −0.187782 −0.0938910 0.995582i \(-0.529931\pi\)
−0.0938910 + 0.995582i \(0.529931\pi\)
\(350\) 0 0
\(351\) 2.52496e31 0.385403
\(352\) −1.73741e31 −0.255929
\(353\) −3.77306e31 −0.536427 −0.268213 0.963360i \(-0.586433\pi\)
−0.268213 + 0.963360i \(0.586433\pi\)
\(354\) 5.67584e31 0.778914
\(355\) 0 0
\(356\) −3.01605e30 −0.0385757
\(357\) −6.38279e31 −0.788239
\(358\) −7.53518e31 −0.898578
\(359\) −1.13693e32 −1.30934 −0.654671 0.755914i \(-0.727193\pi\)
−0.654671 + 0.755914i \(0.727193\pi\)
\(360\) 0 0
\(361\) 2.01551e30 0.0216544
\(362\) 8.11795e31 0.842537
\(363\) −1.48092e32 −1.48490
\(364\) −9.58011e31 −0.928118
\(365\) 0 0
\(366\) 1.60857e32 1.45521
\(367\) 7.28071e31 0.636572 0.318286 0.947995i \(-0.396893\pi\)
0.318286 + 0.947995i \(0.396893\pi\)
\(368\) −2.83455e31 −0.239545
\(369\) −6.66976e31 −0.544855
\(370\) 0 0
\(371\) −2.66876e32 −2.03768
\(372\) 6.91251e31 0.510328
\(373\) −1.71061e32 −1.22121 −0.610604 0.791936i \(-0.709073\pi\)
−0.610604 + 0.791936i \(0.709073\pi\)
\(374\) 8.04294e31 0.555290
\(375\) 0 0
\(376\) 6.09518e31 0.393676
\(377\) −2.06040e32 −1.28731
\(378\) −2.79424e31 −0.168895
\(379\) 2.81613e31 0.164688 0.0823441 0.996604i \(-0.473759\pi\)
0.0823441 + 0.996604i \(0.473759\pi\)
\(380\) 0 0
\(381\) −1.59743e32 −0.874701
\(382\) −1.45230e32 −0.769597
\(383\) −9.78501e31 −0.501853 −0.250926 0.968006i \(-0.580735\pi\)
−0.250926 + 0.968006i \(0.580735\pi\)
\(384\) −2.41228e31 −0.119753
\(385\) 0 0
\(386\) 5.31458e31 0.247245
\(387\) −8.55760e31 −0.385447
\(388\) 1.17911e32 0.514232
\(389\) −1.33194e32 −0.562489 −0.281244 0.959636i \(-0.590747\pi\)
−0.281244 + 0.959636i \(0.590747\pi\)
\(390\) 0 0
\(391\) 1.31219e32 0.519742
\(392\) 1.38605e31 0.0531745
\(393\) −2.06237e32 −0.766408
\(394\) −2.47554e32 −0.891184
\(395\) 0 0
\(396\) −1.79007e32 −0.604895
\(397\) −5.53789e32 −1.81327 −0.906637 0.421912i \(-0.861359\pi\)
−0.906637 + 0.421912i \(0.861359\pi\)
\(398\) 2.26071e32 0.717310
\(399\) −4.77673e32 −1.46882
\(400\) 0 0
\(401\) −1.52543e32 −0.440643 −0.220321 0.975427i \(-0.570711\pi\)
−0.220321 + 0.975427i \(0.570711\pi\)
\(402\) 2.31135e32 0.647203
\(403\) −4.80295e32 −1.30375
\(404\) −1.10704e32 −0.291339
\(405\) 0 0
\(406\) 2.28014e32 0.564138
\(407\) 9.87161e32 2.36841
\(408\) 1.11671e32 0.259830
\(409\) 6.35123e32 1.43323 0.716616 0.697468i \(-0.245690\pi\)
0.716616 + 0.697468i \(0.245690\pi\)
\(410\) 0 0
\(411\) −3.99882e32 −0.849003
\(412\) −3.59966e32 −0.741389
\(413\) 4.36427e32 0.872039
\(414\) −2.92046e32 −0.566171
\(415\) 0 0
\(416\) 1.67610e32 0.305938
\(417\) −6.64936e32 −1.17782
\(418\) 6.01914e32 1.03474
\(419\) −7.80832e32 −1.30281 −0.651406 0.758729i \(-0.725821\pi\)
−0.651406 + 0.758729i \(0.725821\pi\)
\(420\) 0 0
\(421\) 3.57315e32 0.561726 0.280863 0.959748i \(-0.409379\pi\)
0.280863 + 0.959748i \(0.409379\pi\)
\(422\) −3.02305e32 −0.461359
\(423\) 6.27992e32 0.930464
\(424\) 4.66917e32 0.671686
\(425\) 0 0
\(426\) 1.69146e32 0.229426
\(427\) 1.23686e33 1.62919
\(428\) −3.85448e31 −0.0493082
\(429\) 2.73220e33 3.39466
\(430\) 0 0
\(431\) 9.85346e31 0.115511 0.0577554 0.998331i \(-0.481606\pi\)
0.0577554 + 0.998331i \(0.481606\pi\)
\(432\) 4.88870e31 0.0556733
\(433\) 5.52126e32 0.610857 0.305429 0.952215i \(-0.401200\pi\)
0.305429 + 0.952215i \(0.401200\pi\)
\(434\) 5.31517e32 0.571342
\(435\) 0 0
\(436\) 4.13153e32 0.419305
\(437\) 9.82012e32 0.968498
\(438\) 1.55419e33 1.48963
\(439\) 1.02785e33 0.957470 0.478735 0.877959i \(-0.341095\pi\)
0.478735 + 0.877959i \(0.341095\pi\)
\(440\) 0 0
\(441\) 1.42806e32 0.125679
\(442\) −7.75913e32 −0.663796
\(443\) 8.34580e32 0.694099 0.347050 0.937847i \(-0.387184\pi\)
0.347050 + 0.937847i \(0.387184\pi\)
\(444\) 1.37061e33 1.10822
\(445\) 0 0
\(446\) −1.32070e33 −1.00953
\(447\) −7.23145e32 −0.537503
\(448\) −1.85485e32 −0.134071
\(449\) −2.21599e33 −1.55772 −0.778859 0.627199i \(-0.784201\pi\)
−0.778859 + 0.627199i \(0.784201\pi\)
\(450\) 0 0
\(451\) 1.41960e33 0.943972
\(452\) 7.91655e32 0.512042
\(453\) −3.60092e33 −2.26561
\(454\) 1.84522e33 1.12941
\(455\) 0 0
\(456\) 8.35719e32 0.484172
\(457\) 1.41006e33 0.794847 0.397424 0.917635i \(-0.369904\pi\)
0.397424 + 0.917635i \(0.369904\pi\)
\(458\) −1.24480e32 −0.0682780
\(459\) −2.26311e32 −0.120795
\(460\) 0 0
\(461\) −1.02806e33 −0.519704 −0.259852 0.965648i \(-0.583674\pi\)
−0.259852 + 0.965648i \(0.583674\pi\)
\(462\) −3.02358e33 −1.48764
\(463\) 5.11786e31 0.0245090 0.0122545 0.999925i \(-0.496099\pi\)
0.0122545 + 0.999925i \(0.496099\pi\)
\(464\) −3.98924e32 −0.185958
\(465\) 0 0
\(466\) 4.24802e32 0.187656
\(467\) 1.60375e33 0.689723 0.344861 0.938654i \(-0.387926\pi\)
0.344861 + 0.938654i \(0.387926\pi\)
\(468\) 1.72690e33 0.723094
\(469\) 1.77725e33 0.724581
\(470\) 0 0
\(471\) −6.23042e33 −2.40855
\(472\) −7.63557e32 −0.287453
\(473\) 1.82141e33 0.667795
\(474\) 7.43368e32 0.265445
\(475\) 0 0
\(476\) 8.58662e32 0.290894
\(477\) 4.81069e33 1.58755
\(478\) 3.67196e33 1.18046
\(479\) 2.94257e33 0.921580 0.460790 0.887509i \(-0.347566\pi\)
0.460790 + 0.887509i \(0.347566\pi\)
\(480\) 0 0
\(481\) −9.52326e33 −2.83121
\(482\) 6.83371e32 0.197956
\(483\) −4.93291e33 −1.39240
\(484\) 1.99224e33 0.547993
\(485\) 0 0
\(486\) 3.56810e33 0.932145
\(487\) 7.02175e32 0.178786 0.0893929 0.995996i \(-0.471507\pi\)
0.0893929 + 0.995996i \(0.471507\pi\)
\(488\) −2.16397e33 −0.537035
\(489\) 1.22048e32 0.0295236
\(490\) 0 0
\(491\) −5.67432e33 −1.30435 −0.652176 0.758067i \(-0.726144\pi\)
−0.652176 + 0.758067i \(0.726144\pi\)
\(492\) 1.97102e33 0.441701
\(493\) 1.84673e33 0.403475
\(494\) −5.80674e33 −1.23693
\(495\) 0 0
\(496\) −9.29924e32 −0.188333
\(497\) 1.30060e33 0.256856
\(498\) 4.49812e33 0.866291
\(499\) 2.29378e33 0.430818 0.215409 0.976524i \(-0.430891\pi\)
0.215409 + 0.976524i \(0.430891\pi\)
\(500\) 0 0
\(501\) 1.09743e34 1.96068
\(502\) −7.28961e31 −0.0127031
\(503\) −5.06724e32 −0.0861334 −0.0430667 0.999072i \(-0.513713\pi\)
−0.0430667 + 0.999072i \(0.513713\pi\)
\(504\) −1.91107e33 −0.316880
\(505\) 0 0
\(506\) 6.21595e33 0.980903
\(507\) −1.75577e34 −2.70313
\(508\) 2.14898e33 0.322802
\(509\) 5.67895e33 0.832330 0.416165 0.909289i \(-0.363374\pi\)
0.416165 + 0.909289i \(0.363374\pi\)
\(510\) 0 0
\(511\) 1.19505e34 1.66772
\(512\) 3.24519e32 0.0441942
\(513\) −1.69366e33 −0.225091
\(514\) −4.18419e33 −0.542715
\(515\) 0 0
\(516\) 2.52891e33 0.312473
\(517\) −1.33663e34 −1.61205
\(518\) 1.05389e34 1.24072
\(519\) −1.85716e34 −2.13431
\(520\) 0 0
\(521\) −9.13970e33 −1.00106 −0.500530 0.865719i \(-0.666862\pi\)
−0.500530 + 0.865719i \(0.666862\pi\)
\(522\) −4.11015e33 −0.439518
\(523\) −3.76955e33 −0.393566 −0.196783 0.980447i \(-0.563050\pi\)
−0.196783 + 0.980447i \(0.563050\pi\)
\(524\) 2.77446e33 0.282838
\(525\) 0 0
\(526\) 9.80226e33 0.952806
\(527\) 4.30487e33 0.408627
\(528\) 5.28995e33 0.490374
\(529\) −9.04558e32 −0.0818918
\(530\) 0 0
\(531\) −7.86699e33 −0.679403
\(532\) 6.42602e33 0.542059
\(533\) −1.36951e34 −1.12843
\(534\) 9.18306e32 0.0739132
\(535\) 0 0
\(536\) −3.10941e33 −0.238846
\(537\) 2.29426e34 1.72172
\(538\) 3.04729e33 0.223427
\(539\) −3.03950e33 −0.217742
\(540\) 0 0
\(541\) −1.11229e34 −0.760770 −0.380385 0.924828i \(-0.624209\pi\)
−0.380385 + 0.924828i \(0.624209\pi\)
\(542\) −1.18561e34 −0.792411
\(543\) −2.47170e34 −1.61435
\(544\) −1.50228e33 −0.0958883
\(545\) 0 0
\(546\) 2.91689e34 1.77833
\(547\) −1.75655e34 −1.04669 −0.523346 0.852120i \(-0.675317\pi\)
−0.523346 + 0.852120i \(0.675317\pi\)
\(548\) 5.37952e33 0.313319
\(549\) −2.22955e34 −1.26930
\(550\) 0 0
\(551\) 1.38205e34 0.751844
\(552\) 8.63045e33 0.458981
\(553\) 5.71591e33 0.297181
\(554\) 1.00773e34 0.512239
\(555\) 0 0
\(556\) 8.94522e33 0.434666
\(557\) −3.64954e33 −0.173400 −0.0866999 0.996234i \(-0.527632\pi\)
−0.0866999 + 0.996234i \(0.527632\pi\)
\(558\) −9.58108e33 −0.445130
\(559\) −1.75714e34 −0.798285
\(560\) 0 0
\(561\) −2.44886e34 −1.06397
\(562\) 2.22008e34 0.943334
\(563\) −4.06393e34 −1.68885 −0.844426 0.535672i \(-0.820058\pi\)
−0.844426 + 0.535672i \(0.820058\pi\)
\(564\) −1.85582e34 −0.754305
\(565\) 0 0
\(566\) −2.58360e34 −1.00466
\(567\) 3.20706e34 1.21988
\(568\) −2.27548e33 −0.0846680
\(569\) 1.05009e34 0.382228 0.191114 0.981568i \(-0.438790\pi\)
0.191114 + 0.981568i \(0.438790\pi\)
\(570\) 0 0
\(571\) −3.85212e34 −1.34199 −0.670994 0.741463i \(-0.734132\pi\)
−0.670994 + 0.741463i \(0.734132\pi\)
\(572\) −3.67556e34 −1.25277
\(573\) 4.42185e34 1.47459
\(574\) 1.51556e34 0.494509
\(575\) 0 0
\(576\) 3.34354e33 0.104454
\(577\) 5.52922e34 1.69031 0.845154 0.534522i \(-0.179508\pi\)
0.845154 + 0.534522i \(0.179508\pi\)
\(578\) −1.66820e34 −0.499057
\(579\) −1.61814e34 −0.473735
\(580\) 0 0
\(581\) 3.45869e34 0.969863
\(582\) −3.59008e34 −0.985296
\(583\) −1.02391e35 −2.75046
\(584\) −2.09081e34 −0.549736
\(585\) 0 0
\(586\) −4.01115e34 −1.01053
\(587\) 3.59799e34 0.887326 0.443663 0.896194i \(-0.353679\pi\)
0.443663 + 0.896194i \(0.353679\pi\)
\(588\) −4.22015e33 −0.101885
\(589\) 3.22166e34 0.761445
\(590\) 0 0
\(591\) 7.53735e34 1.70756
\(592\) −1.84385e34 −0.408981
\(593\) −6.31486e33 −0.137145 −0.0685725 0.997646i \(-0.521844\pi\)
−0.0685725 + 0.997646i \(0.521844\pi\)
\(594\) −1.07205e34 −0.227974
\(595\) 0 0
\(596\) 9.72829e33 0.198362
\(597\) −6.88325e34 −1.37440
\(598\) −5.99661e34 −1.17258
\(599\) −5.02848e34 −0.962945 −0.481472 0.876461i \(-0.659898\pi\)
−0.481472 + 0.876461i \(0.659898\pi\)
\(600\) 0 0
\(601\) −4.57441e34 −0.840241 −0.420120 0.907468i \(-0.638012\pi\)
−0.420120 + 0.907468i \(0.638012\pi\)
\(602\) 1.94453e34 0.349831
\(603\) −3.20365e34 −0.564519
\(604\) 4.84423e34 0.836109
\(605\) 0 0
\(606\) 3.37065e34 0.558221
\(607\) 2.94626e34 0.477983 0.238991 0.971022i \(-0.423183\pi\)
0.238991 + 0.971022i \(0.423183\pi\)
\(608\) −1.12427e34 −0.178680
\(609\) −6.94240e34 −1.08092
\(610\) 0 0
\(611\) 1.28946e35 1.92705
\(612\) −1.54782e34 −0.226635
\(613\) 1.15985e35 1.66398 0.831989 0.554792i \(-0.187202\pi\)
0.831989 + 0.554792i \(0.187202\pi\)
\(614\) 2.35763e34 0.331414
\(615\) 0 0
\(616\) 4.06755e34 0.549002
\(617\) 5.88912e34 0.778907 0.389454 0.921046i \(-0.372664\pi\)
0.389454 + 0.921046i \(0.372664\pi\)
\(618\) 1.09600e35 1.42054
\(619\) 6.29583e34 0.799687 0.399844 0.916583i \(-0.369064\pi\)
0.399844 + 0.916583i \(0.369064\pi\)
\(620\) 0 0
\(621\) −1.74904e34 −0.213380
\(622\) 7.57566e34 0.905817
\(623\) 7.06104e33 0.0827501
\(624\) −5.10328e34 −0.586195
\(625\) 0 0
\(626\) −9.80174e34 −1.08174
\(627\) −1.83267e35 −1.98262
\(628\) 8.38163e34 0.888859
\(629\) 8.53566e34 0.887369
\(630\) 0 0
\(631\) −5.00486e33 −0.0500063 −0.0250032 0.999687i \(-0.507960\pi\)
−0.0250032 + 0.999687i \(0.507960\pi\)
\(632\) −1.00003e34 −0.0979607
\(633\) 9.20436e34 0.883989
\(634\) 8.36242e33 0.0787438
\(635\) 0 0
\(636\) −1.42164e35 −1.28699
\(637\) 2.93225e34 0.260290
\(638\) 8.74810e34 0.761474
\(639\) −2.34445e34 −0.200115
\(640\) 0 0
\(641\) 2.47946e34 0.203532 0.101766 0.994808i \(-0.467551\pi\)
0.101766 + 0.994808i \(0.467551\pi\)
\(642\) 1.17359e34 0.0944772
\(643\) 1.87298e35 1.47875 0.739376 0.673293i \(-0.235121\pi\)
0.739376 + 0.673293i \(0.235121\pi\)
\(644\) 6.63613e34 0.513856
\(645\) 0 0
\(646\) 5.20456e34 0.387684
\(647\) −1.37605e35 −1.00538 −0.502692 0.864465i \(-0.667657\pi\)
−0.502692 + 0.864465i \(0.667657\pi\)
\(648\) −5.61096e34 −0.402114
\(649\) 1.67442e35 1.17708
\(650\) 0 0
\(651\) −1.61833e35 −1.09472
\(652\) −1.64188e33 −0.0108955
\(653\) 1.43663e35 0.935256 0.467628 0.883925i \(-0.345109\pi\)
0.467628 + 0.883925i \(0.345109\pi\)
\(654\) −1.25794e35 −0.803412
\(655\) 0 0
\(656\) −2.65157e34 −0.163007
\(657\) −2.15418e35 −1.29932
\(658\) −1.42698e35 −0.844488
\(659\) −1.67433e35 −0.972238 −0.486119 0.873893i \(-0.661588\pi\)
−0.486119 + 0.873893i \(0.661588\pi\)
\(660\) 0 0
\(661\) −8.14435e34 −0.455342 −0.227671 0.973738i \(-0.573111\pi\)
−0.227671 + 0.973738i \(0.573111\pi\)
\(662\) −7.18494e34 −0.394183
\(663\) 2.36244e35 1.27187
\(664\) −6.05121e34 −0.319699
\(665\) 0 0
\(666\) −1.89973e35 −0.966639
\(667\) 1.42724e35 0.712726
\(668\) −1.47635e35 −0.723576
\(669\) 4.02118e35 1.93432
\(670\) 0 0
\(671\) 4.74541e35 2.19909
\(672\) 5.64753e34 0.256887
\(673\) −2.14831e35 −0.959198 −0.479599 0.877488i \(-0.659218\pi\)
−0.479599 + 0.877488i \(0.659218\pi\)
\(674\) 3.00300e35 1.31615
\(675\) 0 0
\(676\) 2.36199e35 0.997572
\(677\) 1.65762e35 0.687268 0.343634 0.939104i \(-0.388342\pi\)
0.343634 + 0.939104i \(0.388342\pi\)
\(678\) −2.41038e35 −0.981100
\(679\) −2.76049e35 −1.10310
\(680\) 0 0
\(681\) −5.61820e35 −2.16401
\(682\) 2.03925e35 0.771197
\(683\) −4.25978e35 −1.58172 −0.790858 0.612000i \(-0.790365\pi\)
−0.790858 + 0.612000i \(0.790365\pi\)
\(684\) −1.15835e35 −0.422316
\(685\) 0 0
\(686\) 1.83305e35 0.644353
\(687\) 3.79007e34 0.130824
\(688\) −3.40208e34 −0.115316
\(689\) 9.87781e35 3.28791
\(690\) 0 0
\(691\) −3.56127e35 −1.14322 −0.571609 0.820526i \(-0.693681\pi\)
−0.571609 + 0.820526i \(0.693681\pi\)
\(692\) 2.49839e35 0.787651
\(693\) 4.19083e35 1.29758
\(694\) 6.33656e34 0.192690
\(695\) 0 0
\(696\) 1.21462e35 0.356307
\(697\) 1.22748e35 0.353676
\(698\) −4.69172e34 −0.132782
\(699\) −1.29341e35 −0.359559
\(700\) 0 0
\(701\) −6.93164e34 −0.185935 −0.0929674 0.995669i \(-0.529635\pi\)
−0.0929674 + 0.995669i \(0.529635\pi\)
\(702\) 1.03422e35 0.272521
\(703\) 6.38788e35 1.65354
\(704\) −7.11643e34 −0.180969
\(705\) 0 0
\(706\) −1.54545e35 −0.379311
\(707\) 2.59176e35 0.624961
\(708\) 2.32482e35 0.550775
\(709\) −1.75968e34 −0.0409596 −0.0204798 0.999790i \(-0.506519\pi\)
−0.0204798 + 0.999790i \(0.506519\pi\)
\(710\) 0 0
\(711\) −1.03034e35 −0.231533
\(712\) −1.23538e34 −0.0272771
\(713\) 3.32700e35 0.721827
\(714\) −2.61439e35 −0.557369
\(715\) 0 0
\(716\) −3.08641e35 −0.635390
\(717\) −1.11801e36 −2.26182
\(718\) −4.65687e35 −0.925845
\(719\) −3.47246e35 −0.678462 −0.339231 0.940703i \(-0.610167\pi\)
−0.339231 + 0.940703i \(0.610167\pi\)
\(720\) 0 0
\(721\) 8.42736e35 1.59038
\(722\) 8.25554e33 0.0153120
\(723\) −2.08068e35 −0.379294
\(724\) 3.32511e35 0.595764
\(725\) 0 0
\(726\) −6.06584e35 −1.04998
\(727\) 4.86443e35 0.827660 0.413830 0.910354i \(-0.364191\pi\)
0.413830 + 0.910354i \(0.364191\pi\)
\(728\) −3.92401e35 −0.656279
\(729\) −3.94577e35 −0.648691
\(730\) 0 0
\(731\) 1.57491e35 0.250201
\(732\) 6.58869e35 1.02899
\(733\) 1.02677e36 1.57643 0.788216 0.615398i \(-0.211005\pi\)
0.788216 + 0.615398i \(0.211005\pi\)
\(734\) 2.98218e35 0.450125
\(735\) 0 0
\(736\) −1.16103e35 −0.169384
\(737\) 6.81868e35 0.978040
\(738\) −2.73194e35 −0.385271
\(739\) 5.26186e35 0.729599 0.364799 0.931086i \(-0.381138\pi\)
0.364799 + 0.931086i \(0.381138\pi\)
\(740\) 0 0
\(741\) 1.76800e36 2.37003
\(742\) −1.09313e36 −1.44086
\(743\) −6.09530e35 −0.790014 −0.395007 0.918678i \(-0.629258\pi\)
−0.395007 + 0.918678i \(0.629258\pi\)
\(744\) 2.83137e35 0.360856
\(745\) 0 0
\(746\) −7.00664e35 −0.863525
\(747\) −6.23461e35 −0.755617
\(748\) 3.29439e35 0.392649
\(749\) 9.02394e34 0.105773
\(750\) 0 0
\(751\) 1.00495e36 1.13932 0.569660 0.821881i \(-0.307075\pi\)
0.569660 + 0.821881i \(0.307075\pi\)
\(752\) 2.49659e35 0.278371
\(753\) 2.21949e34 0.0243397
\(754\) −8.43940e35 −0.910269
\(755\) 0 0
\(756\) −1.14452e35 −0.119427
\(757\) 8.28193e35 0.850028 0.425014 0.905187i \(-0.360269\pi\)
0.425014 + 0.905187i \(0.360269\pi\)
\(758\) 1.15349e35 0.116452
\(759\) −1.89259e36 −1.87946
\(760\) 0 0
\(761\) −1.30553e35 −0.125452 −0.0627261 0.998031i \(-0.519979\pi\)
−0.0627261 + 0.998031i \(0.519979\pi\)
\(762\) −6.54308e35 −0.618507
\(763\) −9.67256e35 −0.899466
\(764\) −5.94861e35 −0.544187
\(765\) 0 0
\(766\) −4.00794e35 −0.354864
\(767\) −1.61533e36 −1.40709
\(768\) −9.88071e34 −0.0846785
\(769\) −7.86348e34 −0.0663033 −0.0331517 0.999450i \(-0.510554\pi\)
−0.0331517 + 0.999450i \(0.510554\pi\)
\(770\) 0 0
\(771\) 1.27397e36 1.03987
\(772\) 2.17685e35 0.174829
\(773\) −3.60085e35 −0.284552 −0.142276 0.989827i \(-0.545442\pi\)
−0.142276 + 0.989827i \(0.545442\pi\)
\(774\) −3.50519e35 −0.272552
\(775\) 0 0
\(776\) 4.82965e35 0.363617
\(777\) −3.20881e36 −2.37728
\(778\) −5.45562e35 −0.397740
\(779\) 9.18619e35 0.659048
\(780\) 0 0
\(781\) 4.98996e35 0.346704
\(782\) 5.37473e35 0.367513
\(783\) −2.46153e35 −0.165647
\(784\) 5.67727e34 0.0376001
\(785\) 0 0
\(786\) −8.44747e35 −0.541932
\(787\) 1.70122e36 1.07418 0.537089 0.843526i \(-0.319524\pi\)
0.537089 + 0.843526i \(0.319524\pi\)
\(788\) −1.01398e36 −0.630162
\(789\) −2.98452e36 −1.82563
\(790\) 0 0
\(791\) −1.85339e36 −1.09840
\(792\) −7.33212e35 −0.427725
\(793\) −4.57796e36 −2.62880
\(794\) −2.26832e36 −1.28218
\(795\) 0 0
\(796\) 9.25987e35 0.507215
\(797\) 3.28276e36 1.77015 0.885075 0.465449i \(-0.154107\pi\)
0.885075 + 0.465449i \(0.154107\pi\)
\(798\) −1.95655e36 −1.03861
\(799\) −1.15574e36 −0.603983
\(800\) 0 0
\(801\) −1.27282e35 −0.0644703
\(802\) −6.24815e35 −0.311581
\(803\) 4.58498e36 2.25109
\(804\) 9.46730e35 0.457642
\(805\) 0 0
\(806\) −1.96729e36 −0.921892
\(807\) −9.27816e35 −0.428098
\(808\) −4.53446e35 −0.206008
\(809\) −1.22121e36 −0.546303 −0.273152 0.961971i \(-0.588066\pi\)
−0.273152 + 0.961971i \(0.588066\pi\)
\(810\) 0 0
\(811\) −2.29432e36 −0.995160 −0.497580 0.867418i \(-0.665778\pi\)
−0.497580 + 0.867418i \(0.665778\pi\)
\(812\) 9.33944e35 0.398906
\(813\) 3.60986e36 1.51830
\(814\) 4.04341e36 1.67472
\(815\) 0 0
\(816\) 4.57405e35 0.183727
\(817\) 1.17863e36 0.466231
\(818\) 2.60147e36 1.01345
\(819\) −4.04295e36 −1.55113
\(820\) 0 0
\(821\) 1.68233e36 0.626067 0.313033 0.949742i \(-0.398655\pi\)
0.313033 + 0.949742i \(0.398655\pi\)
\(822\) −1.63792e36 −0.600336
\(823\) −3.28620e36 −1.18630 −0.593152 0.805091i \(-0.702117\pi\)
−0.593152 + 0.805091i \(0.702117\pi\)
\(824\) −1.47442e36 −0.524241
\(825\) 0 0
\(826\) 1.78761e36 0.616625
\(827\) 1.84899e36 0.628225 0.314112 0.949386i \(-0.398293\pi\)
0.314112 + 0.949386i \(0.398293\pi\)
\(828\) −1.19622e36 −0.400343
\(829\) 6.47231e35 0.213367 0.106684 0.994293i \(-0.465977\pi\)
0.106684 + 0.994293i \(0.465977\pi\)
\(830\) 0 0
\(831\) −3.06827e36 −0.981478
\(832\) 6.86531e35 0.216331
\(833\) −2.62816e35 −0.0815811
\(834\) −2.72358e36 −0.832845
\(835\) 0 0
\(836\) 2.46544e36 0.731672
\(837\) −5.73801e35 −0.167762
\(838\) −3.19829e36 −0.921228
\(839\) 3.82378e36 1.08510 0.542549 0.840024i \(-0.317459\pi\)
0.542549 + 0.840024i \(0.317459\pi\)
\(840\) 0 0
\(841\) −1.62172e36 −0.446711
\(842\) 1.46356e36 0.397200
\(843\) −6.75956e36 −1.80748
\(844\) −1.23824e36 −0.326230
\(845\) 0 0
\(846\) 2.57226e36 0.657937
\(847\) −4.66415e36 −1.17552
\(848\) 1.91249e36 0.474954
\(849\) 7.86635e36 1.92499
\(850\) 0 0
\(851\) 6.59675e36 1.56751
\(852\) 6.92823e35 0.162229
\(853\) −2.67006e36 −0.616110 −0.308055 0.951369i \(-0.599678\pi\)
−0.308055 + 0.951369i \(0.599678\pi\)
\(854\) 5.06618e36 1.15201
\(855\) 0 0
\(856\) −1.57880e35 −0.0348661
\(857\) −5.29681e36 −1.15280 −0.576400 0.817167i \(-0.695543\pi\)
−0.576400 + 0.817167i \(0.695543\pi\)
\(858\) 1.11911e37 2.40039
\(859\) 9.48590e35 0.200523 0.100261 0.994961i \(-0.468032\pi\)
0.100261 + 0.994961i \(0.468032\pi\)
\(860\) 0 0
\(861\) −4.61447e36 −0.947507
\(862\) 4.03598e35 0.0816785
\(863\) 6.15179e36 1.22706 0.613532 0.789670i \(-0.289748\pi\)
0.613532 + 0.789670i \(0.289748\pi\)
\(864\) 2.00241e35 0.0393669
\(865\) 0 0
\(866\) 2.26151e36 0.431941
\(867\) 5.07922e36 0.956221
\(868\) 2.17709e36 0.403999
\(869\) 2.19300e36 0.401135
\(870\) 0 0
\(871\) −6.57807e36 −1.16915
\(872\) 1.69228e36 0.296494
\(873\) 4.97603e36 0.859418
\(874\) 4.02232e36 0.684832
\(875\) 0 0
\(876\) 6.36596e36 1.05332
\(877\) −7.20268e35 −0.117490 −0.0587448 0.998273i \(-0.518710\pi\)
−0.0587448 + 0.998273i \(0.518710\pi\)
\(878\) 4.21009e36 0.677034
\(879\) 1.22129e37 1.93623
\(880\) 0 0
\(881\) −6.22632e36 −0.959472 −0.479736 0.877413i \(-0.659268\pi\)
−0.479736 + 0.877413i \(0.659268\pi\)
\(882\) 5.84934e35 0.0888688
\(883\) 7.42861e36 1.11275 0.556376 0.830930i \(-0.312191\pi\)
0.556376 + 0.830930i \(0.312191\pi\)
\(884\) −3.17814e36 −0.469375
\(885\) 0 0
\(886\) 3.41844e36 0.490802
\(887\) −2.96498e36 −0.419736 −0.209868 0.977730i \(-0.567303\pi\)
−0.209868 + 0.977730i \(0.567303\pi\)
\(888\) 5.61401e36 0.783631
\(889\) −5.03110e36 −0.692455
\(890\) 0 0
\(891\) 1.23044e37 1.64660
\(892\) −5.40960e36 −0.713846
\(893\) −8.64926e36 −1.12547
\(894\) −2.96200e36 −0.380072
\(895\) 0 0
\(896\) −7.59748e35 −0.0948024
\(897\) 1.82580e37 2.24672
\(898\) −9.07670e36 −1.10147
\(899\) 4.68229e36 0.560354
\(900\) 0 0
\(901\) −8.85344e36 −1.03051
\(902\) 5.81468e36 0.667489
\(903\) −5.92057e36 −0.670296
\(904\) 3.24262e36 0.362068
\(905\) 0 0
\(906\) −1.47494e37 −1.60203
\(907\) 7.50976e36 0.804516 0.402258 0.915526i \(-0.368225\pi\)
0.402258 + 0.915526i \(0.368225\pi\)
\(908\) 7.55803e36 0.798611
\(909\) −4.67189e36 −0.486905
\(910\) 0 0
\(911\) −9.29828e36 −0.942807 −0.471404 0.881918i \(-0.656252\pi\)
−0.471404 + 0.881918i \(0.656252\pi\)
\(912\) 3.42311e36 0.342362
\(913\) 1.32698e37 1.30912
\(914\) 5.77559e36 0.562042
\(915\) 0 0
\(916\) −5.09869e35 −0.0482798
\(917\) −6.49544e36 −0.606725
\(918\) −9.26971e35 −0.0854147
\(919\) 7.54098e36 0.685463 0.342731 0.939433i \(-0.388648\pi\)
0.342731 + 0.939433i \(0.388648\pi\)
\(920\) 0 0
\(921\) −7.17835e36 −0.635008
\(922\) −4.21093e36 −0.367486
\(923\) −4.81387e36 −0.414451
\(924\) −1.23846e37 −1.05192
\(925\) 0 0
\(926\) 2.09627e35 0.0173305
\(927\) −1.51911e37 −1.23906
\(928\) −1.63399e36 −0.131492
\(929\) −7.02005e36 −0.557370 −0.278685 0.960383i \(-0.589899\pi\)
−0.278685 + 0.960383i \(0.589899\pi\)
\(930\) 0 0
\(931\) −1.96685e36 −0.152020
\(932\) 1.73999e36 0.132693
\(933\) −2.30658e37 −1.73560
\(934\) 6.56894e36 0.487708
\(935\) 0 0
\(936\) 7.07339e36 0.511304
\(937\) 1.69888e37 1.21176 0.605881 0.795555i \(-0.292821\pi\)
0.605881 + 0.795555i \(0.292821\pi\)
\(938\) 7.27960e36 0.512356
\(939\) 2.98437e37 2.07268
\(940\) 0 0
\(941\) −1.18390e36 −0.0800651 −0.0400325 0.999198i \(-0.512746\pi\)
−0.0400325 + 0.999198i \(0.512746\pi\)
\(942\) −2.55198e37 −1.70310
\(943\) 9.48655e36 0.624758
\(944\) −3.12753e36 −0.203260
\(945\) 0 0
\(946\) 7.46049e36 0.472202
\(947\) 3.22631e36 0.201526 0.100763 0.994910i \(-0.467872\pi\)
0.100763 + 0.994910i \(0.467872\pi\)
\(948\) 3.04484e36 0.187698
\(949\) −4.42319e37 −2.69097
\(950\) 0 0
\(951\) −2.54613e36 −0.150877
\(952\) 3.51708e36 0.205693
\(953\) −1.29808e37 −0.749271 −0.374635 0.927172i \(-0.622232\pi\)
−0.374635 + 0.927172i \(0.622232\pi\)
\(954\) 1.97046e37 1.12257
\(955\) 0 0
\(956\) 1.50404e37 0.834708
\(957\) −2.66356e37 −1.45903
\(958\) 1.20528e37 0.651656
\(959\) −1.25943e37 −0.672110
\(960\) 0 0
\(961\) −8.31801e36 −0.432491
\(962\) −3.90073e37 −2.00197
\(963\) −1.62665e36 −0.0824071
\(964\) 2.79909e36 0.139976
\(965\) 0 0
\(966\) −2.02052e37 −0.984576
\(967\) 2.88610e37 1.38829 0.694146 0.719834i \(-0.255782\pi\)
0.694146 + 0.719834i \(0.255782\pi\)
\(968\) 8.16022e36 0.387490
\(969\) −1.58465e37 −0.742824
\(970\) 0 0
\(971\) 1.13134e36 0.0516836 0.0258418 0.999666i \(-0.491773\pi\)
0.0258418 + 0.999666i \(0.491773\pi\)
\(972\) 1.46149e37 0.659126
\(973\) −2.09421e37 −0.932418
\(974\) 2.87611e36 0.126421
\(975\) 0 0
\(976\) −8.86361e36 −0.379741
\(977\) −1.01024e37 −0.427311 −0.213655 0.976909i \(-0.568537\pi\)
−0.213655 + 0.976909i \(0.568537\pi\)
\(978\) 4.99908e35 0.0208763
\(979\) 2.70908e36 0.111696
\(980\) 0 0
\(981\) 1.74357e37 0.700771
\(982\) −2.32420e37 −0.922316
\(983\) 3.32494e37 1.30276 0.651380 0.758752i \(-0.274190\pi\)
0.651380 + 0.758752i \(0.274190\pi\)
\(984\) 8.07331e36 0.312330
\(985\) 0 0
\(986\) 7.56420e36 0.285300
\(987\) 4.34476e37 1.61808
\(988\) −2.37844e37 −0.874643
\(989\) 1.21717e37 0.441973
\(990\) 0 0
\(991\) 2.31893e37 0.821044 0.410522 0.911851i \(-0.365347\pi\)
0.410522 + 0.911851i \(0.365347\pi\)
\(992\) −3.80897e36 −0.133172
\(993\) 2.18762e37 0.755277
\(994\) 5.32726e36 0.181624
\(995\) 0 0
\(996\) 1.84243e37 0.612561
\(997\) −6.52365e36 −0.214191 −0.107096 0.994249i \(-0.534155\pi\)
−0.107096 + 0.994249i \(0.534155\pi\)
\(998\) 9.39530e36 0.304634
\(999\) −1.13773e37 −0.364309
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.26.a.e.1.1 2
5.2 odd 4 50.26.b.c.49.4 4
5.3 odd 4 50.26.b.c.49.1 4
5.4 even 2 10.26.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.26.a.c.1.2 2 5.4 even 2
50.26.a.e.1.1 2 1.1 even 1 trivial
50.26.b.c.49.1 4 5.3 odd 4
50.26.b.c.49.4 4 5.2 odd 4