Properties

Label 50.26.b.f.49.3
Level $50$
Weight $26$
Character 50.49
Analytic conductor $197.998$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,26,Mod(49,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.49");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(197.998389976\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 13801761x^{2} + 47622144774400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{6}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.3
Root \(2627.45i\) of defining polynomial
Character \(\chi\) \(=\) 50.49
Dual form 50.26.b.f.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4096.00i q^{2} -1.63785e6i q^{3} -1.67772e7 q^{4} +6.70863e9 q^{6} +2.07876e10i q^{7} -6.87195e10i q^{8} -1.83526e12 q^{9} +4.14605e12 q^{11} +2.74785e13i q^{12} -1.30955e14i q^{13} -8.51459e13 q^{14} +2.81475e14 q^{16} +4.62477e15i q^{17} -7.51722e15i q^{18} +5.62727e15 q^{19} +3.40469e16 q^{21} +1.69822e16i q^{22} -2.45654e16i q^{23} -1.12552e17 q^{24} +5.36390e17 q^{26} +1.61815e18i q^{27} -3.48758e17i q^{28} +1.86225e18 q^{29} +7.10276e17 q^{31} +1.15292e18i q^{32} -6.79060e18i q^{33} -1.89431e19 q^{34} +3.07905e19 q^{36} -5.29105e19i q^{37} +2.30493e19i q^{38} -2.14484e20 q^{39} -2.57715e20 q^{41} +1.39456e20i q^{42} -1.94678e19i q^{43} -6.95591e19 q^{44} +1.00620e20 q^{46} -1.05479e21i q^{47} -4.61013e20i q^{48} +9.08945e20 q^{49} +7.57467e21 q^{51} +2.19705e21i q^{52} +1.71922e21i q^{53} -6.62792e21 q^{54} +1.42851e21 q^{56} -9.21661e21i q^{57} +7.62780e21i q^{58} +2.29629e22 q^{59} -9.00207e20 q^{61} +2.90929e21i q^{62} -3.81506e22i q^{63} -4.72237e21 q^{64} +2.78143e22 q^{66} +1.50272e22i q^{67} -7.75908e22i q^{68} -4.02345e22 q^{69} +2.23447e23 q^{71} +1.26118e23i q^{72} -3.25252e23i q^{73} +2.16721e23 q^{74} -9.44099e22 q^{76} +8.61863e22i q^{77} -8.78525e23i q^{78} -6.06979e23 q^{79} +1.09528e24 q^{81} -1.05560e24i q^{82} -7.26128e23i q^{83} -5.71212e23 q^{84} +7.97403e22 q^{86} -3.05009e24i q^{87} -2.84914e23i q^{88} -1.91182e24 q^{89} +2.72223e24 q^{91} +4.12140e23i q^{92} -1.16332e24i q^{93} +4.32043e24 q^{94} +1.88831e24 q^{96} +1.71656e24i q^{97} +3.72304e24i q^{98} -7.60907e24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 67108864 q^{4} + 3592912896 q^{6} - 4852391719572 q^{9} + 38689365583968 q^{11} - 278598423642112 q^{14} + 11\!\cdots\!24 q^{16} - 27069564790640 q^{19} + 36\!\cdots\!68 q^{21} - 60\!\cdots\!36 q^{24}+ \cdots - 33\!\cdots\!24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4096.00i 0.707107i
\(3\) − 1.63785e6i − 1.77934i −0.456608 0.889668i \(-0.650936\pi\)
0.456608 0.889668i \(-0.349064\pi\)
\(4\) −1.67772e7 −0.500000
\(5\) 0 0
\(6\) 6.70863e9 1.25818
\(7\) 2.07876e10i 0.567647i 0.958877 + 0.283824i \(0.0916030\pi\)
−0.958877 + 0.283824i \(0.908397\pi\)
\(8\) − 6.87195e10i − 0.353553i
\(9\) −1.83526e12 −2.16604
\(10\) 0 0
\(11\) 4.14605e12 0.398314 0.199157 0.979968i \(-0.436180\pi\)
0.199157 + 0.979968i \(0.436180\pi\)
\(12\) 2.74785e13i 0.889668i
\(13\) − 1.30955e14i − 1.55894i −0.626441 0.779469i \(-0.715489\pi\)
0.626441 0.779469i \(-0.284511\pi\)
\(14\) −8.51459e13 −0.401387
\(15\) 0 0
\(16\) 2.81475e14 0.250000
\(17\) 4.62477e15i 1.92521i 0.270904 + 0.962606i \(0.412677\pi\)
−0.270904 + 0.962606i \(0.587323\pi\)
\(18\) − 7.51722e15i − 1.53162i
\(19\) 5.62727e15 0.583280 0.291640 0.956528i \(-0.405799\pi\)
0.291640 + 0.956528i \(0.405799\pi\)
\(20\) 0 0
\(21\) 3.40469e16 1.01004
\(22\) 1.69822e16i 0.281651i
\(23\) − 2.45654e16i − 0.233737i −0.993147 0.116868i \(-0.962714\pi\)
0.993147 0.116868i \(-0.0372855\pi\)
\(24\) −1.12552e17 −0.629090
\(25\) 0 0
\(26\) 5.36390e17 1.10234
\(27\) 1.61815e18i 2.07477i
\(28\) − 3.48758e17i − 0.283824i
\(29\) 1.86225e18 0.977382 0.488691 0.872457i \(-0.337475\pi\)
0.488691 + 0.872457i \(0.337475\pi\)
\(30\) 0 0
\(31\) 7.10276e17 0.161959 0.0809796 0.996716i \(-0.474195\pi\)
0.0809796 + 0.996716i \(0.474195\pi\)
\(32\) 1.15292e18i 0.176777i
\(33\) − 6.79060e18i − 0.708735i
\(34\) −1.89431e19 −1.36133
\(35\) 0 0
\(36\) 3.07905e19 1.08302
\(37\) − 5.29105e19i − 1.32136i −0.750669 0.660679i \(-0.770269\pi\)
0.750669 0.660679i \(-0.229731\pi\)
\(38\) 2.30493e19i 0.412442i
\(39\) −2.14484e20 −2.77387
\(40\) 0 0
\(41\) −2.57715e20 −1.78378 −0.891892 0.452249i \(-0.850622\pi\)
−0.891892 + 0.452249i \(0.850622\pi\)
\(42\) 1.39456e20i 0.714203i
\(43\) − 1.94678e19i − 0.0742954i −0.999310 0.0371477i \(-0.988173\pi\)
0.999310 0.0371477i \(-0.0118272\pi\)
\(44\) −6.95591e19 −0.199157
\(45\) 0 0
\(46\) 1.00620e20 0.165277
\(47\) − 1.05479e21i − 1.32417i −0.749428 0.662085i \(-0.769672\pi\)
0.749428 0.662085i \(-0.230328\pi\)
\(48\) − 4.61013e20i − 0.444834i
\(49\) 9.08945e20 0.677777
\(50\) 0 0
\(51\) 7.57467e21 3.42560
\(52\) 2.19705e21i 0.779469i
\(53\) 1.71922e21i 0.480709i 0.970685 + 0.240354i \(0.0772636\pi\)
−0.970685 + 0.240354i \(0.922736\pi\)
\(54\) −6.62792e21 −1.46709
\(55\) 0 0
\(56\) 1.42851e21 0.200694
\(57\) − 9.21661e21i − 1.03785i
\(58\) 7.62780e21i 0.691113i
\(59\) 2.29629e22 1.68026 0.840130 0.542386i \(-0.182479\pi\)
0.840130 + 0.542386i \(0.182479\pi\)
\(60\) 0 0
\(61\) −9.00207e20 −0.0434230 −0.0217115 0.999764i \(-0.506912\pi\)
−0.0217115 + 0.999764i \(0.506912\pi\)
\(62\) 2.90929e21i 0.114523i
\(63\) − 3.81506e22i − 1.22955i
\(64\) −4.72237e21 −0.125000
\(65\) 0 0
\(66\) 2.78143e22 0.501151
\(67\) 1.50272e22i 0.224358i 0.993688 + 0.112179i \(0.0357831\pi\)
−0.993688 + 0.112179i \(0.964217\pi\)
\(68\) − 7.75908e22i − 0.962606i
\(69\) −4.02345e22 −0.415896
\(70\) 0 0
\(71\) 2.23447e23 1.61602 0.808008 0.589172i \(-0.200546\pi\)
0.808008 + 0.589172i \(0.200546\pi\)
\(72\) 1.26118e23i 0.765810i
\(73\) − 3.25252e23i − 1.66220i −0.556122 0.831101i \(-0.687711\pi\)
0.556122 0.831101i \(-0.312289\pi\)
\(74\) 2.16721e23 0.934341
\(75\) 0 0
\(76\) −9.44099e22 −0.291640
\(77\) 8.61863e22i 0.226102i
\(78\) − 8.78525e23i − 1.96142i
\(79\) −6.06979e23 −1.15567 −0.577837 0.816152i \(-0.696103\pi\)
−0.577837 + 0.816152i \(0.696103\pi\)
\(80\) 0 0
\(81\) 1.09528e24 1.52568
\(82\) − 1.05560e24i − 1.26133i
\(83\) − 7.26128e23i − 0.745653i −0.927901 0.372827i \(-0.878389\pi\)
0.927901 0.372827i \(-0.121611\pi\)
\(84\) −5.71212e23 −0.505018
\(85\) 0 0
\(86\) 7.97403e22 0.0525348
\(87\) − 3.05009e24i − 1.73909i
\(88\) − 2.84914e23i − 0.140825i
\(89\) −1.91182e24 −0.820488 −0.410244 0.911976i \(-0.634556\pi\)
−0.410244 + 0.911976i \(0.634556\pi\)
\(90\) 0 0
\(91\) 2.72223e24 0.884926
\(92\) 4.12140e23i 0.116868i
\(93\) − 1.16332e24i − 0.288180i
\(94\) 4.32043e24 0.936330
\(95\) 0 0
\(96\) 1.88831e24 0.314545
\(97\) 1.71656e24i 0.251195i 0.992081 + 0.125598i \(0.0400849\pi\)
−0.992081 + 0.125598i \(0.959915\pi\)
\(98\) 3.72304e24i 0.479260i
\(99\) −7.60907e24 −0.862763
\(100\) 0 0
\(101\) 1.34215e25 1.18518 0.592590 0.805504i \(-0.298105\pi\)
0.592590 + 0.805504i \(0.298105\pi\)
\(102\) 3.10259e25i 2.42227i
\(103\) 2.08010e25i 1.43754i 0.695249 + 0.718769i \(0.255294\pi\)
−0.695249 + 0.718769i \(0.744706\pi\)
\(104\) −8.99913e24 −0.551168
\(105\) 0 0
\(106\) −7.04191e24 −0.339912
\(107\) − 2.98949e25i − 1.28322i −0.767032 0.641609i \(-0.778267\pi\)
0.767032 0.641609i \(-0.221733\pi\)
\(108\) − 2.71480e25i − 1.03739i
\(109\) −5.99753e24 −0.204240 −0.102120 0.994772i \(-0.532563\pi\)
−0.102120 + 0.994772i \(0.532563\pi\)
\(110\) 0 0
\(111\) −8.66594e25 −2.35114
\(112\) 5.85118e24i 0.141912i
\(113\) − 3.21651e25i − 0.698080i −0.937108 0.349040i \(-0.886508\pi\)
0.937108 0.349040i \(-0.113492\pi\)
\(114\) 3.77512e25 0.733872
\(115\) 0 0
\(116\) −3.12435e25 −0.488691
\(117\) 2.40335e26i 3.37672i
\(118\) 9.40560e25i 1.18812i
\(119\) −9.61378e25 −1.09284
\(120\) 0 0
\(121\) −9.11573e25 −0.841346
\(122\) − 3.68725e24i − 0.0307047i
\(123\) 4.22099e26i 3.17395i
\(124\) −1.19165e25 −0.0809796
\(125\) 0 0
\(126\) 1.56265e26 0.869420
\(127\) 1.12460e26i 0.566829i 0.958998 + 0.283414i \(0.0914671\pi\)
−0.958998 + 0.283414i \(0.908533\pi\)
\(128\) − 1.93428e25i − 0.0883883i
\(129\) −3.18854e25 −0.132197
\(130\) 0 0
\(131\) 2.26749e26 0.775630 0.387815 0.921737i \(-0.373230\pi\)
0.387815 + 0.921737i \(0.373230\pi\)
\(132\) 1.13927e26i 0.354367i
\(133\) 1.16977e26i 0.331098i
\(134\) −6.15513e25 −0.158645
\(135\) 0 0
\(136\) 3.17812e26 0.680665
\(137\) − 6.81423e26i − 1.33171i −0.746081 0.665855i \(-0.768067\pi\)
0.746081 0.665855i \(-0.231933\pi\)
\(138\) − 1.64800e26i − 0.294083i
\(139\) −5.03091e26 −0.820279 −0.410140 0.912023i \(-0.634520\pi\)
−0.410140 + 0.912023i \(0.634520\pi\)
\(140\) 0 0
\(141\) −1.72759e27 −2.35614
\(142\) 9.15240e26i 1.14270i
\(143\) − 5.42944e26i − 0.620947i
\(144\) −5.16579e26 −0.541509
\(145\) 0 0
\(146\) 1.33223e27 1.17535
\(147\) − 1.48871e27i − 1.20599i
\(148\) 8.87691e26i 0.660679i
\(149\) −7.27393e26 −0.497669 −0.248835 0.968546i \(-0.580048\pi\)
−0.248835 + 0.968546i \(0.580048\pi\)
\(150\) 0 0
\(151\) 9.92827e25 0.0574992 0.0287496 0.999587i \(-0.490847\pi\)
0.0287496 + 0.999587i \(0.490847\pi\)
\(152\) − 3.86703e26i − 0.206221i
\(153\) − 8.48765e27i − 4.17008i
\(154\) −3.53019e26 −0.159878
\(155\) 0 0
\(156\) 3.59844e27 1.38694
\(157\) 2.27168e26i 0.0808355i 0.999183 + 0.0404177i \(0.0128689\pi\)
−0.999183 + 0.0404177i \(0.987131\pi\)
\(158\) − 2.48619e27i − 0.817184i
\(159\) 2.81581e27 0.855342
\(160\) 0 0
\(161\) 5.10656e26 0.132680
\(162\) 4.48628e27i 1.07882i
\(163\) 5.17654e27i 1.15264i 0.817223 + 0.576322i \(0.195512\pi\)
−0.817223 + 0.576322i \(0.804488\pi\)
\(164\) 4.32375e27 0.891892
\(165\) 0 0
\(166\) 2.97422e27 0.527256
\(167\) − 1.02965e27i − 0.169330i −0.996409 0.0846652i \(-0.973018\pi\)
0.996409 0.0846652i \(-0.0269821\pi\)
\(168\) − 2.33969e27i − 0.357101i
\(169\) −1.00927e28 −1.43029
\(170\) 0 0
\(171\) −1.03275e28 −1.26341
\(172\) 3.26616e26i 0.0371477i
\(173\) 1.24548e28i 1.31753i 0.752348 + 0.658766i \(0.228921\pi\)
−0.752348 + 0.658766i \(0.771079\pi\)
\(174\) 1.24932e28 1.22972
\(175\) 0 0
\(176\) 1.16701e27 0.0995785
\(177\) − 3.76097e28i − 2.98975i
\(178\) − 7.83082e27i − 0.580173i
\(179\) −4.58615e27 −0.316800 −0.158400 0.987375i \(-0.550634\pi\)
−0.158400 + 0.987375i \(0.550634\pi\)
\(180\) 0 0
\(181\) −1.24754e28 −0.750019 −0.375010 0.927021i \(-0.622361\pi\)
−0.375010 + 0.927021i \(0.622361\pi\)
\(182\) 1.11502e28i 0.625737i
\(183\) 1.47440e27i 0.0772641i
\(184\) −1.68812e27 −0.0826384
\(185\) 0 0
\(186\) 4.76498e27 0.203774
\(187\) 1.91745e28i 0.766839i
\(188\) 1.76965e28i 0.662085i
\(189\) −3.36373e28 −1.17774
\(190\) 0 0
\(191\) −5.82809e28 −1.78900 −0.894498 0.447072i \(-0.852467\pi\)
−0.894498 + 0.447072i \(0.852467\pi\)
\(192\) 7.73452e27i 0.222417i
\(193\) − 2.07224e28i − 0.558437i −0.960228 0.279218i \(-0.909925\pi\)
0.960228 0.279218i \(-0.0900753\pi\)
\(194\) −7.03102e27 −0.177622
\(195\) 0 0
\(196\) −1.52496e28 −0.338888
\(197\) − 2.21753e28i − 0.462425i −0.972903 0.231213i \(-0.925731\pi\)
0.972903 0.231213i \(-0.0742693\pi\)
\(198\) − 3.11668e28i − 0.610066i
\(199\) 2.56881e28 0.472138 0.236069 0.971736i \(-0.424141\pi\)
0.236069 + 0.971736i \(0.424141\pi\)
\(200\) 0 0
\(201\) 2.46122e28 0.399209
\(202\) 5.49745e28i 0.838049i
\(203\) 3.87118e28i 0.554808i
\(204\) −1.27082e29 −1.71280
\(205\) 0 0
\(206\) −8.52010e28 −1.01649
\(207\) 4.50839e28i 0.506282i
\(208\) − 3.68604e28i − 0.389734i
\(209\) 2.33309e28 0.232329
\(210\) 0 0
\(211\) −1.69750e29 −1.50065 −0.750323 0.661072i \(-0.770102\pi\)
−0.750323 + 0.661072i \(0.770102\pi\)
\(212\) − 2.88437e28i − 0.240354i
\(213\) − 3.65973e29i − 2.87543i
\(214\) 1.22450e29 0.907372
\(215\) 0 0
\(216\) 1.11198e29 0.733543
\(217\) 1.47649e28i 0.0919357i
\(218\) − 2.45659e28i − 0.144420i
\(219\) −5.32713e29 −2.95762
\(220\) 0 0
\(221\) 6.05635e29 3.00129
\(222\) − 3.54957e29i − 1.66251i
\(223\) − 1.64686e29i − 0.729197i −0.931165 0.364598i \(-0.881206\pi\)
0.931165 0.364598i \(-0.118794\pi\)
\(224\) −2.39665e28 −0.100347
\(225\) 0 0
\(226\) 1.31748e29 0.493617
\(227\) 5.10933e29i 1.81151i 0.423803 + 0.905754i \(0.360695\pi\)
−0.423803 + 0.905754i \(0.639305\pi\)
\(228\) 1.54629e29i 0.518926i
\(229\) −1.25023e29 −0.397235 −0.198617 0.980077i \(-0.563645\pi\)
−0.198617 + 0.980077i \(0.563645\pi\)
\(230\) 0 0
\(231\) 1.41160e29 0.402311
\(232\) − 1.27973e29i − 0.345557i
\(233\) − 5.70548e29i − 1.45997i −0.683464 0.729984i \(-0.739528\pi\)
0.683464 0.729984i \(-0.260472\pi\)
\(234\) −9.84414e29 −2.38770
\(235\) 0 0
\(236\) −3.85253e29 −0.840130
\(237\) 9.94140e29i 2.05633i
\(238\) − 3.93780e29i − 0.772756i
\(239\) −6.05498e29 −1.12756 −0.563780 0.825925i \(-0.690653\pi\)
−0.563780 + 0.825925i \(0.690653\pi\)
\(240\) 0 0
\(241\) −5.11295e29 −0.857943 −0.428972 0.903318i \(-0.641124\pi\)
−0.428972 + 0.903318i \(0.641124\pi\)
\(242\) − 3.73380e29i − 0.594921i
\(243\) − 4.22872e29i − 0.639927i
\(244\) 1.51030e28 0.0217115
\(245\) 0 0
\(246\) −1.72892e30 −2.24432
\(247\) − 7.36916e29i − 0.909298i
\(248\) − 4.88098e28i − 0.0572613i
\(249\) −1.18929e30 −1.32677
\(250\) 0 0
\(251\) 2.51767e29 0.254142 0.127071 0.991894i \(-0.459442\pi\)
0.127071 + 0.991894i \(0.459442\pi\)
\(252\) 6.40061e29i 0.614773i
\(253\) − 1.01850e29i − 0.0931006i
\(254\) −4.60636e29 −0.400808
\(255\) 0 0
\(256\) 7.92282e28 0.0625000
\(257\) − 4.32516e29i − 0.324967i −0.986711 0.162483i \(-0.948050\pi\)
0.986711 0.162483i \(-0.0519503\pi\)
\(258\) − 1.30603e29i − 0.0934771i
\(259\) 1.09988e30 0.750065
\(260\) 0 0
\(261\) −3.41772e30 −2.11705
\(262\) 9.28765e29i 0.548454i
\(263\) 3.00951e30i 1.69453i 0.531171 + 0.847265i \(0.321752\pi\)
−0.531171 + 0.847265i \(0.678248\pi\)
\(264\) −4.66646e29 −0.250576
\(265\) 0 0
\(266\) −4.79139e29 −0.234121
\(267\) 3.13127e30i 1.45992i
\(268\) − 2.52114e29i − 0.112179i
\(269\) −5.09495e29 −0.216390 −0.108195 0.994130i \(-0.534507\pi\)
−0.108195 + 0.994130i \(0.534507\pi\)
\(270\) 0 0
\(271\) 1.05937e30 0.410140 0.205070 0.978747i \(-0.434258\pi\)
0.205070 + 0.978747i \(0.434258\pi\)
\(272\) 1.30176e30i 0.481303i
\(273\) − 4.45860e30i − 1.57458i
\(274\) 2.79111e30 0.941661
\(275\) 0 0
\(276\) 6.75022e29 0.207948
\(277\) − 5.67674e30i − 1.67148i −0.549124 0.835741i \(-0.685039\pi\)
0.549124 0.835741i \(-0.314961\pi\)
\(278\) − 2.06066e30i − 0.580025i
\(279\) −1.30354e30 −0.350810
\(280\) 0 0
\(281\) −1.50424e30 −0.370245 −0.185122 0.982715i \(-0.559268\pi\)
−0.185122 + 0.982715i \(0.559268\pi\)
\(282\) − 7.07621e30i − 1.66605i
\(283\) − 4.46973e30i − 1.00682i −0.864048 0.503409i \(-0.832079\pi\)
0.864048 0.503409i \(-0.167921\pi\)
\(284\) −3.74882e30 −0.808008
\(285\) 0 0
\(286\) 2.22390e30 0.439076
\(287\) − 5.35728e30i − 1.01256i
\(288\) − 2.11591e30i − 0.382905i
\(289\) −1.56179e31 −2.70644
\(290\) 0 0
\(291\) 2.81146e30 0.446961
\(292\) 5.45682e30i 0.831101i
\(293\) 4.32602e30i 0.631311i 0.948874 + 0.315655i \(0.102224\pi\)
−0.948874 + 0.315655i \(0.897776\pi\)
\(294\) 6.09777e30 0.852766
\(295\) 0 0
\(296\) −3.63598e30 −0.467170
\(297\) 6.70891e30i 0.826411i
\(298\) − 2.97940e30i − 0.351905i
\(299\) −3.21696e30 −0.364381
\(300\) 0 0
\(301\) 4.04689e29 0.0421736
\(302\) 4.06662e29i 0.0406581i
\(303\) − 2.19824e31i − 2.10883i
\(304\) 1.58393e30 0.145820
\(305\) 0 0
\(306\) 3.47654e31 2.94869
\(307\) − 1.40982e31i − 1.14798i −0.818862 0.573991i \(-0.805395\pi\)
0.818862 0.573991i \(-0.194605\pi\)
\(308\) − 1.44597e30i − 0.113051i
\(309\) 3.40689e31 2.55786
\(310\) 0 0
\(311\) −4.30946e30 −0.298482 −0.149241 0.988801i \(-0.547683\pi\)
−0.149241 + 0.988801i \(0.547683\pi\)
\(312\) 1.47392e31i 0.980712i
\(313\) − 2.24958e30i − 0.143813i −0.997411 0.0719065i \(-0.977092\pi\)
0.997411 0.0719065i \(-0.0229083\pi\)
\(314\) −9.30481e29 −0.0571593
\(315\) 0 0
\(316\) 1.01834e31 0.577837
\(317\) − 7.47129e30i − 0.407525i −0.979020 0.203763i \(-0.934683\pi\)
0.979020 0.203763i \(-0.0653171\pi\)
\(318\) 1.15336e31i 0.604818i
\(319\) 7.72100e30 0.389305
\(320\) 0 0
\(321\) −4.89634e31 −2.28328
\(322\) 2.09165e30i 0.0938189i
\(323\) 2.60248e31i 1.12294i
\(324\) −1.83758e31 −0.762840
\(325\) 0 0
\(326\) −2.12031e31 −0.815042
\(327\) 9.82304e30i 0.363412i
\(328\) 1.77101e31i 0.630663i
\(329\) 2.19266e31 0.751662
\(330\) 0 0
\(331\) −1.01412e31 −0.322286 −0.161143 0.986931i \(-0.551518\pi\)
−0.161143 + 0.986931i \(0.551518\pi\)
\(332\) 1.21824e31i 0.372827i
\(333\) 9.71045e31i 2.86211i
\(334\) 4.21746e30 0.119735
\(335\) 0 0
\(336\) 9.58335e30 0.252509
\(337\) 4.27054e31i 1.08420i 0.840315 + 0.542099i \(0.182370\pi\)
−0.840315 + 0.542099i \(0.817630\pi\)
\(338\) − 4.13396e31i − 1.01136i
\(339\) −5.26816e31 −1.24212
\(340\) 0 0
\(341\) 2.94484e30 0.0645107
\(342\) − 4.23014e31i − 0.893364i
\(343\) 4.67723e31i 0.952385i
\(344\) −1.33782e30 −0.0262674
\(345\) 0 0
\(346\) −5.10149e31 −0.931636
\(347\) − 1.42992e30i − 0.0251880i −0.999921 0.0125940i \(-0.995991\pi\)
0.999921 0.0125940i \(-0.00400890\pi\)
\(348\) 5.11720e31i 0.869545i
\(349\) −3.55571e30 −0.0582920 −0.0291460 0.999575i \(-0.509279\pi\)
−0.0291460 + 0.999575i \(0.509279\pi\)
\(350\) 0 0
\(351\) 2.11903e32 3.23444
\(352\) 4.78007e30i 0.0704127i
\(353\) 6.63973e31i 0.943988i 0.881602 + 0.471994i \(0.156466\pi\)
−0.881602 + 0.471994i \(0.843534\pi\)
\(354\) 1.54049e32 2.11407
\(355\) 0 0
\(356\) 3.20750e31 0.410244
\(357\) 1.57459e32i 1.94453i
\(358\) − 1.87849e31i − 0.224012i
\(359\) 1.86335e31 0.214593 0.107296 0.994227i \(-0.465781\pi\)
0.107296 + 0.994227i \(0.465781\pi\)
\(360\) 0 0
\(361\) −6.14104e31 −0.659784
\(362\) − 5.10992e31i − 0.530344i
\(363\) 1.49302e32i 1.49704i
\(364\) −4.56714e31 −0.442463
\(365\) 0 0
\(366\) −6.03915e30 −0.0546339
\(367\) − 8.66272e31i − 0.757406i −0.925518 0.378703i \(-0.876370\pi\)
0.925518 0.378703i \(-0.123630\pi\)
\(368\) − 6.91456e30i − 0.0584341i
\(369\) 4.72975e32 3.86374
\(370\) 0 0
\(371\) −3.57383e31 −0.272873
\(372\) 1.95173e31i 0.144090i
\(373\) − 2.52885e32i − 1.80536i −0.430316 0.902678i \(-0.641598\pi\)
0.430316 0.902678i \(-0.358402\pi\)
\(374\) −7.85388e31 −0.542237
\(375\) 0 0
\(376\) −7.24848e31 −0.468165
\(377\) − 2.43871e32i − 1.52368i
\(378\) − 1.37779e32i − 0.832787i
\(379\) 7.89983e31 0.461985 0.230992 0.972956i \(-0.425803\pi\)
0.230992 + 0.972956i \(0.425803\pi\)
\(380\) 0 0
\(381\) 1.84192e32 1.00858
\(382\) − 2.38719e32i − 1.26501i
\(383\) 2.10109e32i 1.07761i 0.842432 + 0.538803i \(0.181123\pi\)
−0.842432 + 0.538803i \(0.818877\pi\)
\(384\) −3.16806e31 −0.157273
\(385\) 0 0
\(386\) 8.48790e31 0.394874
\(387\) 3.57285e31i 0.160927i
\(388\) − 2.87991e31i − 0.125598i
\(389\) −1.39534e32 −0.589264 −0.294632 0.955611i \(-0.595197\pi\)
−0.294632 + 0.955611i \(0.595197\pi\)
\(390\) 0 0
\(391\) 1.13610e32 0.449993
\(392\) − 6.24622e31i − 0.239630i
\(393\) − 3.71381e32i − 1.38011i
\(394\) 9.08300e31 0.326984
\(395\) 0 0
\(396\) 1.27659e32 0.431382
\(397\) 1.58963e32i 0.520494i 0.965542 + 0.260247i \(0.0838040\pi\)
−0.965542 + 0.260247i \(0.916196\pi\)
\(398\) 1.05219e32i 0.333852i
\(399\) 1.91591e32 0.589134
\(400\) 0 0
\(401\) 4.43370e32 1.28074 0.640371 0.768066i \(-0.278781\pi\)
0.640371 + 0.768066i \(0.278781\pi\)
\(402\) 1.00812e32i 0.282283i
\(403\) − 9.30138e31i − 0.252484i
\(404\) −2.25176e32 −0.592590
\(405\) 0 0
\(406\) −1.58563e32 −0.392308
\(407\) − 2.19369e32i − 0.526315i
\(408\) − 5.20528e32i − 1.21113i
\(409\) 1.41371e32 0.319021 0.159510 0.987196i \(-0.449008\pi\)
0.159510 + 0.987196i \(0.449008\pi\)
\(410\) 0 0
\(411\) −1.11607e33 −2.36956
\(412\) − 3.48983e32i − 0.718769i
\(413\) 4.77343e32i 0.953795i
\(414\) −1.84664e32 −0.357996
\(415\) 0 0
\(416\) 1.50980e32 0.275584
\(417\) 8.23987e32i 1.45955i
\(418\) 9.55634e31i 0.164281i
\(419\) −5.65693e32 −0.943856 −0.471928 0.881637i \(-0.656442\pi\)
−0.471928 + 0.881637i \(0.656442\pi\)
\(420\) 0 0
\(421\) −9.28896e32 −1.46030 −0.730148 0.683289i \(-0.760549\pi\)
−0.730148 + 0.683289i \(0.760549\pi\)
\(422\) − 6.95294e32i − 1.06112i
\(423\) 1.93582e33i 2.86820i
\(424\) 1.18144e32 0.169956
\(425\) 0 0
\(426\) 1.49902e33 2.03324
\(427\) − 1.87131e31i − 0.0246489i
\(428\) 5.01554e32i 0.641609i
\(429\) −8.89260e32 −1.10487
\(430\) 0 0
\(431\) −1.00278e33 −1.17555 −0.587773 0.809026i \(-0.699995\pi\)
−0.587773 + 0.809026i \(0.699995\pi\)
\(432\) 4.55467e32i 0.518693i
\(433\) − 5.32205e31i − 0.0588817i −0.999567 0.0294408i \(-0.990627\pi\)
0.999567 0.0294408i \(-0.00937266\pi\)
\(434\) −6.04771e31 −0.0650084
\(435\) 0 0
\(436\) 1.00622e32 0.102120
\(437\) − 1.38236e32i − 0.136334i
\(438\) − 2.18199e33i − 2.09135i
\(439\) 4.95347e32 0.461427 0.230714 0.973022i \(-0.425894\pi\)
0.230714 + 0.973022i \(0.425894\pi\)
\(440\) 0 0
\(441\) −1.66815e33 −1.46809
\(442\) 2.48068e33i 2.12223i
\(443\) − 6.00200e32i − 0.499171i −0.968353 0.249585i \(-0.919706\pi\)
0.968353 0.249585i \(-0.0802943\pi\)
\(444\) 1.45390e33 1.17557
\(445\) 0 0
\(446\) 6.74552e32 0.515620
\(447\) 1.19136e33i 0.885521i
\(448\) − 9.81666e31i − 0.0709559i
\(449\) −2.44542e31 −0.0171899 −0.00859497 0.999963i \(-0.502736\pi\)
−0.00859497 + 0.999963i \(0.502736\pi\)
\(450\) 0 0
\(451\) −1.06850e33 −0.710506
\(452\) 5.39642e32i 0.349040i
\(453\) − 1.62610e32i − 0.102310i
\(454\) −2.09278e33 −1.28093
\(455\) 0 0
\(456\) −6.33361e32 −0.366936
\(457\) 1.65246e33i 0.931492i 0.884918 + 0.465746i \(0.154214\pi\)
−0.884918 + 0.465746i \(0.845786\pi\)
\(458\) − 5.12095e32i − 0.280887i
\(459\) −7.48355e33 −3.99438
\(460\) 0 0
\(461\) 1.16768e33 0.590284 0.295142 0.955453i \(-0.404633\pi\)
0.295142 + 0.955453i \(0.404633\pi\)
\(462\) 5.78192e32i 0.284477i
\(463\) − 2.39229e33i − 1.14565i −0.819679 0.572823i \(-0.805848\pi\)
0.819679 0.572823i \(-0.194152\pi\)
\(464\) 5.24178e32 0.244345
\(465\) 0 0
\(466\) 2.33697e33 1.03235
\(467\) − 4.47360e33i − 1.92396i −0.273116 0.961981i \(-0.588054\pi\)
0.273116 0.961981i \(-0.411946\pi\)
\(468\) − 4.03216e33i − 1.68836i
\(469\) −3.12379e32 −0.127356
\(470\) 0 0
\(471\) 3.72067e32 0.143834
\(472\) − 1.57800e33i − 0.594061i
\(473\) − 8.07146e31i − 0.0295929i
\(474\) −4.07200e33 −1.45405
\(475\) 0 0
\(476\) 1.61292e33 0.546421
\(477\) − 3.15521e33i − 1.04123i
\(478\) − 2.48012e33i − 0.797305i
\(479\) −2.33765e33 −0.732127 −0.366064 0.930590i \(-0.619295\pi\)
−0.366064 + 0.930590i \(0.619295\pi\)
\(480\) 0 0
\(481\) −6.92887e33 −2.05991
\(482\) − 2.09426e33i − 0.606657i
\(483\) − 8.36377e32i − 0.236082i
\(484\) 1.52937e33 0.420673
\(485\) 0 0
\(486\) 1.73208e33 0.452496
\(487\) 1.27777e33i 0.325343i 0.986680 + 0.162672i \(0.0520111\pi\)
−0.986680 + 0.162672i \(0.947989\pi\)
\(488\) 6.18618e31i 0.0153523i
\(489\) 8.47839e33 2.05094
\(490\) 0 0
\(491\) 5.48118e33 1.25996 0.629978 0.776613i \(-0.283064\pi\)
0.629978 + 0.776613i \(0.283064\pi\)
\(492\) − 7.08164e33i − 1.58698i
\(493\) 8.61250e33i 1.88167i
\(494\) 3.01841e33 0.642970
\(495\) 0 0
\(496\) 1.99925e32 0.0404898
\(497\) 4.64493e33i 0.917327i
\(498\) − 4.87132e33i − 0.938167i
\(499\) −3.23941e33 −0.608429 −0.304214 0.952604i \(-0.598394\pi\)
−0.304214 + 0.952604i \(0.598394\pi\)
\(500\) 0 0
\(501\) −1.68642e33 −0.301296
\(502\) 1.03124e33i 0.179706i
\(503\) − 4.70148e33i − 0.799162i −0.916698 0.399581i \(-0.869156\pi\)
0.916698 0.399581i \(-0.130844\pi\)
\(504\) −2.62169e33 −0.434710
\(505\) 0 0
\(506\) 4.17176e32 0.0658321
\(507\) 1.65303e34i 2.54496i
\(508\) − 1.88677e33i − 0.283414i
\(509\) 7.74677e32 0.113540 0.0567699 0.998387i \(-0.481920\pi\)
0.0567699 + 0.998387i \(0.481920\pi\)
\(510\) 0 0
\(511\) 6.76120e33 0.943544
\(512\) 3.24519e32i 0.0441942i
\(513\) 9.10574e33i 1.21017i
\(514\) 1.77159e33 0.229786
\(515\) 0 0
\(516\) 5.34948e32 0.0660983
\(517\) − 4.37322e33i − 0.527436i
\(518\) 4.50512e33i 0.530376i
\(519\) 2.03991e34 2.34433
\(520\) 0 0
\(521\) −7.09925e33 −0.777573 −0.388786 0.921328i \(-0.627106\pi\)
−0.388786 + 0.921328i \(0.627106\pi\)
\(522\) − 1.39990e34i − 1.49698i
\(523\) − 8.65615e33i − 0.903761i −0.892079 0.451880i \(-0.850753\pi\)
0.892079 0.451880i \(-0.149247\pi\)
\(524\) −3.80422e33 −0.387815
\(525\) 0 0
\(526\) −1.23270e34 −1.19821
\(527\) 3.28486e33i 0.311806i
\(528\) − 1.91138e33i − 0.177184i
\(529\) 1.04423e34 0.945367
\(530\) 0 0
\(531\) −4.21428e34 −3.63950
\(532\) − 1.96255e33i − 0.165549i
\(533\) 3.37490e34i 2.78081i
\(534\) −1.28257e34 −1.03232
\(535\) 0 0
\(536\) 1.03266e33 0.0793226
\(537\) 7.51142e33i 0.563694i
\(538\) − 2.08689e33i − 0.153011i
\(539\) 3.76853e33 0.269968
\(540\) 0 0
\(541\) 2.82575e34 1.93272 0.966358 0.257202i \(-0.0828007\pi\)
0.966358 + 0.257202i \(0.0828007\pi\)
\(542\) 4.33918e33i 0.290013i
\(543\) 2.04328e34i 1.33454i
\(544\) −5.33200e33 −0.340333
\(545\) 0 0
\(546\) 1.82624e34 1.11340
\(547\) − 1.70002e34i − 1.01300i −0.862239 0.506502i \(-0.830938\pi\)
0.862239 0.506502i \(-0.169062\pi\)
\(548\) 1.14324e34i 0.665855i
\(549\) 1.65211e33 0.0940558
\(550\) 0 0
\(551\) 1.04794e34 0.570088
\(552\) 2.76489e33i 0.147041i
\(553\) − 1.26176e34i − 0.656015i
\(554\) 2.32519e34 1.18192
\(555\) 0 0
\(556\) 8.44047e33 0.410140
\(557\) − 1.04504e34i − 0.496529i −0.968692 0.248264i \(-0.920140\pi\)
0.968692 0.248264i \(-0.0798602\pi\)
\(558\) − 5.33930e33i − 0.248060i
\(559\) −2.54940e33 −0.115822
\(560\) 0 0
\(561\) 3.14050e34 1.36447
\(562\) − 6.16138e33i − 0.261803i
\(563\) − 1.28118e34i − 0.532421i −0.963915 0.266211i \(-0.914228\pi\)
0.963915 0.266211i \(-0.0857717\pi\)
\(564\) 2.89842e34 1.17807
\(565\) 0 0
\(566\) 1.83080e34 0.711927
\(567\) 2.27683e34i 0.866048i
\(568\) − 1.53552e34i − 0.571348i
\(569\) 6.19441e33 0.225474 0.112737 0.993625i \(-0.464038\pi\)
0.112737 + 0.993625i \(0.464038\pi\)
\(570\) 0 0
\(571\) 5.43372e32 0.0189298 0.00946490 0.999955i \(-0.496987\pi\)
0.00946490 + 0.999955i \(0.496987\pi\)
\(572\) 9.10908e33i 0.310473i
\(573\) 9.54553e34i 3.18322i
\(574\) 2.19434e34 0.715988
\(575\) 0 0
\(576\) 8.66677e33 0.270755
\(577\) − 1.51288e34i − 0.462495i −0.972895 0.231248i \(-0.925719\pi\)
0.972895 0.231248i \(-0.0742808\pi\)
\(578\) − 6.39708e34i − 1.91374i
\(579\) −3.39402e34 −0.993646
\(580\) 0 0
\(581\) 1.50944e34 0.423268
\(582\) 1.15157e34i 0.316049i
\(583\) 7.12795e33i 0.191473i
\(584\) −2.23511e34 −0.587677
\(585\) 0 0
\(586\) −1.77194e34 −0.446404
\(587\) 3.71765e33i 0.0916837i 0.998949 + 0.0458418i \(0.0145970\pi\)
−0.998949 + 0.0458418i \(0.985403\pi\)
\(588\) 2.49765e34i 0.602996i
\(589\) 3.99691e33 0.0944677
\(590\) 0 0
\(591\) −3.63198e34 −0.822810
\(592\) − 1.48930e34i − 0.330339i
\(593\) − 4.27000e34i − 0.927351i −0.886005 0.463676i \(-0.846530\pi\)
0.886005 0.463676i \(-0.153470\pi\)
\(594\) −2.74797e34 −0.584361
\(595\) 0 0
\(596\) 1.22036e34 0.248835
\(597\) − 4.20733e34i − 0.840093i
\(598\) − 1.31767e34i − 0.257656i
\(599\) 3.95633e34 0.757631 0.378816 0.925472i \(-0.376331\pi\)
0.378816 + 0.925472i \(0.376331\pi\)
\(600\) 0 0
\(601\) −5.03622e33 −0.0925069 −0.0462535 0.998930i \(-0.514728\pi\)
−0.0462535 + 0.998930i \(0.514728\pi\)
\(602\) 1.65761e33i 0.0298212i
\(603\) − 2.75787e34i − 0.485969i
\(604\) −1.66569e33 −0.0287496
\(605\) 0 0
\(606\) 9.00400e34 1.49117
\(607\) 1.09922e35i 1.78331i 0.452716 + 0.891655i \(0.350455\pi\)
−0.452716 + 0.891655i \(0.649545\pi\)
\(608\) 6.48780e33i 0.103110i
\(609\) 6.34040e34 0.987190
\(610\) 0 0
\(611\) −1.38130e35 −2.06430
\(612\) 1.42399e35i 2.08504i
\(613\) − 7.49713e34i − 1.07557i −0.843082 0.537786i \(-0.819261\pi\)
0.843082 0.537786i \(-0.180739\pi\)
\(614\) 5.77463e34 0.811745
\(615\) 0 0
\(616\) 5.92268e33 0.0799391
\(617\) − 9.19873e34i − 1.21664i −0.793691 0.608321i \(-0.791843\pi\)
0.793691 0.608321i \(-0.208157\pi\)
\(618\) 1.39546e35i 1.80868i
\(619\) −1.17365e35 −1.49075 −0.745375 0.666646i \(-0.767729\pi\)
−0.745375 + 0.666646i \(0.767729\pi\)
\(620\) 0 0
\(621\) 3.97505e34 0.484950
\(622\) − 1.76515e34i − 0.211058i
\(623\) − 3.97422e34i − 0.465748i
\(624\) −6.03718e34 −0.693468
\(625\) 0 0
\(626\) 9.21430e33 0.101691
\(627\) − 3.82125e34i − 0.413391i
\(628\) − 3.81125e33i − 0.0404177i
\(629\) 2.44699e35 2.54389
\(630\) 0 0
\(631\) −5.93583e34 −0.593082 −0.296541 0.955020i \(-0.595833\pi\)
−0.296541 + 0.955020i \(0.595833\pi\)
\(632\) 4.17113e34i 0.408592i
\(633\) 2.78024e35i 2.67015i
\(634\) 3.06024e34 0.288164
\(635\) 0 0
\(636\) −4.72415e34 −0.427671
\(637\) − 1.19030e35i − 1.05661i
\(638\) 3.16252e34i 0.275280i
\(639\) −4.10083e35 −3.50035
\(640\) 0 0
\(641\) −6.98225e34 −0.573152 −0.286576 0.958058i \(-0.592517\pi\)
−0.286576 + 0.958058i \(0.592517\pi\)
\(642\) − 2.00554e35i − 1.61452i
\(643\) 4.37990e34i 0.345802i 0.984939 + 0.172901i \(0.0553141\pi\)
−0.984939 + 0.172901i \(0.944686\pi\)
\(644\) −8.56739e33 −0.0663400
\(645\) 0 0
\(646\) −1.06598e35 −0.794038
\(647\) − 2.19963e35i − 1.60711i −0.595231 0.803555i \(-0.702939\pi\)
0.595231 0.803555i \(-0.297061\pi\)
\(648\) − 7.52673e34i − 0.539410i
\(649\) 9.52052e34 0.669271
\(650\) 0 0
\(651\) 2.41827e34 0.163585
\(652\) − 8.68480e34i − 0.576322i
\(653\) − 5.77474e34i − 0.375939i −0.982175 0.187970i \(-0.939809\pi\)
0.982175 0.187970i \(-0.0601907\pi\)
\(654\) −4.02352e34 −0.256971
\(655\) 0 0
\(656\) −7.25404e34 −0.445946
\(657\) 5.96921e35i 3.60039i
\(658\) 8.98113e34i 0.531505i
\(659\) 2.55494e34 0.148359 0.0741793 0.997245i \(-0.476366\pi\)
0.0741793 + 0.997245i \(0.476366\pi\)
\(660\) 0 0
\(661\) 1.14583e35 0.640623 0.320312 0.947312i \(-0.396212\pi\)
0.320312 + 0.947312i \(0.396212\pi\)
\(662\) − 4.15385e34i − 0.227890i
\(663\) − 9.91938e35i − 5.34030i
\(664\) −4.98991e34 −0.263628
\(665\) 0 0
\(666\) −3.97740e35 −2.02382
\(667\) − 4.57471e34i − 0.228450i
\(668\) 1.72747e34i 0.0846652i
\(669\) −2.69730e35 −1.29749
\(670\) 0 0
\(671\) −3.73230e33 −0.0172960
\(672\) 3.92534e34i 0.178551i
\(673\) 1.32743e34i 0.0592683i 0.999561 + 0.0296342i \(0.00943423\pi\)
−0.999561 + 0.0296342i \(0.990566\pi\)
\(674\) −1.74921e35 −0.766644
\(675\) 0 0
\(676\) 1.69327e35 0.715143
\(677\) 1.09080e35i 0.452257i 0.974098 + 0.226128i \(0.0726069\pi\)
−0.974098 + 0.226128i \(0.927393\pi\)
\(678\) − 2.15784e35i − 0.878310i
\(679\) −3.56831e34 −0.142590
\(680\) 0 0
\(681\) 8.36830e35 3.22328
\(682\) 1.20621e34i 0.0456159i
\(683\) − 2.56303e35i − 0.951690i −0.879529 0.475845i \(-0.842142\pi\)
0.879529 0.475845i \(-0.157858\pi\)
\(684\) 1.73267e35 0.631704
\(685\) 0 0
\(686\) −1.91580e35 −0.673438
\(687\) 2.04769e35i 0.706814i
\(688\) − 5.47971e33i − 0.0185739i
\(689\) 2.25139e35 0.749395
\(690\) 0 0
\(691\) 1.27544e35 0.409436 0.204718 0.978821i \(-0.434372\pi\)
0.204718 + 0.978821i \(0.434372\pi\)
\(692\) − 2.08957e35i − 0.658766i
\(693\) − 1.58174e35i − 0.489745i
\(694\) 5.85696e33 0.0178106
\(695\) 0 0
\(696\) −2.09601e35 −0.614861
\(697\) − 1.19187e36i − 3.43416i
\(698\) − 1.45642e34i − 0.0412187i
\(699\) −9.34471e35 −2.59777
\(700\) 0 0
\(701\) −3.29520e35 −0.883907 −0.441953 0.897038i \(-0.645714\pi\)
−0.441953 + 0.897038i \(0.645714\pi\)
\(702\) 8.67957e35i 2.28709i
\(703\) − 2.97742e35i − 0.770722i
\(704\) −1.95792e34 −0.0497893
\(705\) 0 0
\(706\) −2.71963e35 −0.667500
\(707\) 2.79001e35i 0.672764i
\(708\) 6.30987e35i 1.49487i
\(709\) 3.54372e35 0.824863 0.412432 0.910989i \(-0.364680\pi\)
0.412432 + 0.910989i \(0.364680\pi\)
\(710\) 0 0
\(711\) 1.11396e36 2.50323
\(712\) 1.31379e35i 0.290086i
\(713\) − 1.74482e34i − 0.0378558i
\(714\) −6.44953e35 −1.37499
\(715\) 0 0
\(716\) 7.69429e34 0.158400
\(717\) 9.91715e35i 2.00631i
\(718\) 7.63230e34i 0.151740i
\(719\) −8.25549e34 −0.161299 −0.0806495 0.996743i \(-0.525699\pi\)
−0.0806495 + 0.996743i \(0.525699\pi\)
\(720\) 0 0
\(721\) −4.32403e35 −0.816014
\(722\) − 2.51537e35i − 0.466538i
\(723\) 8.37424e35i 1.52657i
\(724\) 2.09302e35 0.375010
\(725\) 0 0
\(726\) −6.11541e35 −1.05857
\(727\) − 8.59682e35i − 1.46271i −0.681998 0.731354i \(-0.738889\pi\)
0.681998 0.731354i \(-0.261111\pi\)
\(728\) − 1.87070e35i − 0.312869i
\(729\) 2.35421e35 0.387036
\(730\) 0 0
\(731\) 9.00343e34 0.143035
\(732\) − 2.47364e34i − 0.0386320i
\(733\) 1.11362e36i 1.70977i 0.518821 + 0.854883i \(0.326371\pi\)
−0.518821 + 0.854883i \(0.673629\pi\)
\(734\) 3.54825e35 0.535567
\(735\) 0 0
\(736\) 2.83220e34 0.0413192
\(737\) 6.23034e34i 0.0893651i
\(738\) 1.93730e36i 2.73208i
\(739\) −8.39662e34 −0.116426 −0.0582129 0.998304i \(-0.518540\pi\)
−0.0582129 + 0.998304i \(0.518540\pi\)
\(740\) 0 0
\(741\) −1.20696e36 −1.61795
\(742\) − 1.46384e35i − 0.192950i
\(743\) − 8.61824e35i − 1.11701i −0.829500 0.558506i \(-0.811375\pi\)
0.829500 0.558506i \(-0.188625\pi\)
\(744\) −7.99430e34 −0.101887
\(745\) 0 0
\(746\) 1.03582e36 1.27658
\(747\) 1.33263e36i 1.61511i
\(748\) − 3.21695e35i − 0.383420i
\(749\) 6.21444e35 0.728415
\(750\) 0 0
\(751\) −8.00202e35 −0.907195 −0.453597 0.891207i \(-0.649860\pi\)
−0.453597 + 0.891207i \(0.649860\pi\)
\(752\) − 2.96898e35i − 0.331043i
\(753\) − 4.12356e35i − 0.452204i
\(754\) 9.98894e35 1.07740
\(755\) 0 0
\(756\) 5.64341e35 0.588869
\(757\) 7.91448e35i 0.812314i 0.913803 + 0.406157i \(0.133131\pi\)
−0.913803 + 0.406157i \(0.866869\pi\)
\(758\) 3.23577e35i 0.326673i
\(759\) −1.66814e35 −0.165657
\(760\) 0 0
\(761\) 2.09934e34 0.0201732 0.0100866 0.999949i \(-0.496789\pi\)
0.0100866 + 0.999949i \(0.496789\pi\)
\(762\) 7.54452e35i 0.713173i
\(763\) − 1.24674e35i − 0.115936i
\(764\) 9.77792e35 0.894498
\(765\) 0 0
\(766\) −8.60607e35 −0.761983
\(767\) − 3.00709e36i − 2.61942i
\(768\) − 1.29764e35i − 0.111209i
\(769\) 7.23123e35 0.609723 0.304862 0.952397i \(-0.401390\pi\)
0.304862 + 0.952397i \(0.401390\pi\)
\(770\) 0 0
\(771\) −7.08396e35 −0.578225
\(772\) 3.47664e35i 0.279218i
\(773\) − 1.19333e36i − 0.943014i −0.881862 0.471507i \(-0.843710\pi\)
0.881862 0.471507i \(-0.156290\pi\)
\(774\) −1.46344e35 −0.113792
\(775\) 0 0
\(776\) 1.17961e35 0.0888110
\(777\) − 1.80144e36i − 1.33462i
\(778\) − 5.71531e35i − 0.416672i
\(779\) −1.45023e36 −1.04045
\(780\) 0 0
\(781\) 9.26423e35 0.643682
\(782\) 4.65345e35i 0.318193i
\(783\) 3.01340e36i 2.02784i
\(784\) 2.55845e35 0.169444
\(785\) 0 0
\(786\) 1.52118e36 0.975883
\(787\) − 4.78974e35i − 0.302432i −0.988501 0.151216i \(-0.951681\pi\)
0.988501 0.151216i \(-0.0483189\pi\)
\(788\) 3.72040e35i 0.231213i
\(789\) 4.92912e36 3.01514
\(790\) 0 0
\(791\) 6.68636e35 0.396263
\(792\) 5.22891e35i 0.305033i
\(793\) 1.17886e35i 0.0676937i
\(794\) −6.51114e35 −0.368045
\(795\) 0 0
\(796\) −4.30975e35 −0.236069
\(797\) − 2.29881e36i − 1.23958i −0.784769 0.619788i \(-0.787218\pi\)
0.784769 0.619788i \(-0.212782\pi\)
\(798\) 7.84757e35i 0.416581i
\(799\) 4.87818e36 2.54931
\(800\) 0 0
\(801\) 3.50869e36 1.77721
\(802\) 1.81604e36i 0.905621i
\(803\) − 1.34851e36i − 0.662078i
\(804\) −4.12925e35 −0.199604
\(805\) 0 0
\(806\) 3.80985e35 0.178533
\(807\) 8.34476e35i 0.385030i
\(808\) − 9.22320e35i − 0.419025i
\(809\) −1.08839e36 −0.486885 −0.243442 0.969915i \(-0.578277\pi\)
−0.243442 + 0.969915i \(0.578277\pi\)
\(810\) 0 0
\(811\) 4.47699e36 1.94189 0.970946 0.239299i \(-0.0769178\pi\)
0.970946 + 0.239299i \(0.0769178\pi\)
\(812\) − 6.49476e35i − 0.277404i
\(813\) − 1.73509e36i − 0.729776i
\(814\) 8.98537e35 0.372161
\(815\) 0 0
\(816\) 2.13208e36 0.856400
\(817\) − 1.09551e35i − 0.0433351i
\(818\) 5.79056e35i 0.225582i
\(819\) −4.99599e36 −1.91678
\(820\) 0 0
\(821\) 3.35501e36 1.24855 0.624274 0.781206i \(-0.285395\pi\)
0.624274 + 0.781206i \(0.285395\pi\)
\(822\) − 4.57141e36i − 1.67553i
\(823\) − 1.04609e36i − 0.377636i −0.982012 0.188818i \(-0.939534\pi\)
0.982012 0.188818i \(-0.0604655\pi\)
\(824\) 1.42944e36 0.508246
\(825\) 0 0
\(826\) −1.95520e36 −0.674435
\(827\) 1.70274e36i 0.578535i 0.957248 + 0.289267i \(0.0934117\pi\)
−0.957248 + 0.289267i \(0.906588\pi\)
\(828\) − 7.56383e35i − 0.253141i
\(829\) −3.63214e36 −1.19738 −0.598688 0.800983i \(-0.704311\pi\)
−0.598688 + 0.800983i \(0.704311\pi\)
\(830\) 0 0
\(831\) −9.29763e36 −2.97413
\(832\) 6.18415e35i 0.194867i
\(833\) 4.20366e36i 1.30486i
\(834\) −3.37505e36 −1.03206
\(835\) 0 0
\(836\) −3.91428e35 −0.116164
\(837\) 1.14933e36i 0.336029i
\(838\) − 2.31708e36i − 0.667407i
\(839\) 4.10710e36 1.16550 0.582748 0.812653i \(-0.301977\pi\)
0.582748 + 0.812653i \(0.301977\pi\)
\(840\) 0 0
\(841\) −1.62368e35 −0.0447251
\(842\) − 3.80476e36i − 1.03258i
\(843\) 2.46372e36i 0.658790i
\(844\) 2.84793e36 0.750323
\(845\) 0 0
\(846\) −7.92911e36 −2.02813
\(847\) − 1.89494e36i − 0.477588i
\(848\) 4.83916e35i 0.120177i
\(849\) −7.32074e36 −1.79147
\(850\) 0 0
\(851\) −1.29977e36 −0.308850
\(852\) 6.14000e36i 1.43772i
\(853\) 2.01380e36i 0.464680i 0.972635 + 0.232340i \(0.0746383\pi\)
−0.972635 + 0.232340i \(0.925362\pi\)
\(854\) 7.66490e34 0.0174294
\(855\) 0 0
\(856\) −2.05437e36 −0.453686
\(857\) 3.20819e36i 0.698232i 0.937080 + 0.349116i \(0.113518\pi\)
−0.937080 + 0.349116i \(0.886482\pi\)
\(858\) − 3.64241e36i − 0.781263i
\(859\) 1.62270e36 0.343024 0.171512 0.985182i \(-0.445135\pi\)
0.171512 + 0.985182i \(0.445135\pi\)
\(860\) 0 0
\(861\) −8.77441e36 −1.80168
\(862\) − 4.10739e36i − 0.831237i
\(863\) 2.34665e36i 0.468074i 0.972228 + 0.234037i \(0.0751936\pi\)
−0.972228 + 0.234037i \(0.924806\pi\)
\(864\) −1.86559e36 −0.366771
\(865\) 0 0
\(866\) 2.17991e35 0.0416356
\(867\) 2.55797e37i 4.81567i
\(868\) − 2.47714e35i − 0.0459679i
\(869\) −2.51656e36 −0.460321
\(870\) 0 0
\(871\) 1.96788e36 0.349761
\(872\) 4.12147e35i 0.0722098i
\(873\) − 3.15033e36i − 0.544099i
\(874\) 5.66216e35 0.0964027
\(875\) 0 0
\(876\) 8.93744e36 1.47881
\(877\) 1.82745e36i 0.298092i 0.988830 + 0.149046i \(0.0476202\pi\)
−0.988830 + 0.149046i \(0.952380\pi\)
\(878\) 2.02894e36i 0.326278i
\(879\) 7.08537e36 1.12331
\(880\) 0 0
\(881\) 1.92548e36 0.296715 0.148358 0.988934i \(-0.452601\pi\)
0.148358 + 0.988934i \(0.452601\pi\)
\(882\) − 6.83274e36i − 1.03810i
\(883\) 5.88853e36i 0.882060i 0.897492 + 0.441030i \(0.145387\pi\)
−0.897492 + 0.441030i \(0.854613\pi\)
\(884\) −1.01609e37 −1.50064
\(885\) 0 0
\(886\) 2.45842e36 0.352967
\(887\) − 1.17351e37i − 1.66128i −0.556809 0.830640i \(-0.687975\pi\)
0.556809 0.830640i \(-0.312025\pi\)
\(888\) 5.95519e36i 0.831253i
\(889\) −2.33777e36 −0.321759
\(890\) 0 0
\(891\) 4.54110e36 0.607700
\(892\) 2.76296e36i 0.364598i
\(893\) − 5.93560e36i − 0.772363i
\(894\) −4.87981e36 −0.626158
\(895\) 0 0
\(896\) 4.02090e35 0.0501734
\(897\) 5.26889e36i 0.648356i
\(898\) − 1.00164e35i − 0.0121551i
\(899\) 1.32271e36 0.158296
\(900\) 0 0
\(901\) −7.95098e36 −0.925467
\(902\) − 4.37658e36i − 0.502404i
\(903\) − 6.62820e35i − 0.0750410i
\(904\) −2.21037e36 −0.246808
\(905\) 0 0
\(906\) 6.66051e35 0.0723444
\(907\) − 9.60913e36i − 1.02942i −0.857364 0.514711i \(-0.827899\pi\)
0.857364 0.514711i \(-0.172101\pi\)
\(908\) − 8.57203e36i − 0.905754i
\(909\) −2.46320e37 −2.56715
\(910\) 0 0
\(911\) 3.31132e36 0.335754 0.167877 0.985808i \(-0.446309\pi\)
0.167877 + 0.985808i \(0.446309\pi\)
\(912\) − 2.59424e36i − 0.259463i
\(913\) − 3.01056e36i − 0.297004i
\(914\) −6.76849e36 −0.658665
\(915\) 0 0
\(916\) 2.09754e36 0.198617
\(917\) 4.71357e36i 0.440284i
\(918\) − 3.06526e37i − 2.82445i
\(919\) 6.37787e36 0.579738 0.289869 0.957066i \(-0.406388\pi\)
0.289869 + 0.957066i \(0.406388\pi\)
\(920\) 0 0
\(921\) −2.30908e37 −2.04264
\(922\) 4.78281e36i 0.417394i
\(923\) − 2.92614e37i − 2.51927i
\(924\) −2.36827e36 −0.201156
\(925\) 0 0
\(926\) 9.79880e36 0.810094
\(927\) − 3.81753e37i − 3.11376i
\(928\) 2.14703e36i 0.172778i
\(929\) 1.01760e37 0.807940 0.403970 0.914772i \(-0.367630\pi\)
0.403970 + 0.914772i \(0.367630\pi\)
\(930\) 0 0
\(931\) 5.11488e36 0.395334
\(932\) 9.57221e36i 0.729984i
\(933\) 7.05824e36i 0.531099i
\(934\) 1.83239e37 1.36045
\(935\) 0 0
\(936\) 1.65157e37 1.19385
\(937\) − 5.01714e36i − 0.357859i −0.983862 0.178929i \(-0.942737\pi\)
0.983862 0.178929i \(-0.0572633\pi\)
\(938\) − 1.27950e36i − 0.0900546i
\(939\) −3.68448e36 −0.255892
\(940\) 0 0
\(941\) 1.04889e37 0.709348 0.354674 0.934990i \(-0.384592\pi\)
0.354674 + 0.934990i \(0.384592\pi\)
\(942\) 1.52399e36i 0.101706i
\(943\) 6.33089e36i 0.416936i
\(944\) 6.46348e36 0.420065
\(945\) 0 0
\(946\) 3.30607e35 0.0209254
\(947\) 3.09440e37i 1.93286i 0.256923 + 0.966432i \(0.417291\pi\)
−0.256923 + 0.966432i \(0.582709\pi\)
\(948\) − 1.66789e37i − 1.02817i
\(949\) −4.25932e37 −2.59127
\(950\) 0 0
\(951\) −1.22368e37 −0.725125
\(952\) 6.60654e36i 0.386378i
\(953\) − 2.63074e34i − 0.00151851i −1.00000 0.000759254i \(-0.999758\pi\)
1.00000 0.000759254i \(-0.000241678\pi\)
\(954\) 1.29237e37 0.736263
\(955\) 0 0
\(956\) 1.01586e37 0.563780
\(957\) − 1.26458e37i − 0.692704i
\(958\) − 9.57503e36i − 0.517692i
\(959\) 1.41651e37 0.755941
\(960\) 0 0
\(961\) −1.87283e37 −0.973769
\(962\) − 2.83807e37i − 1.45658i
\(963\) 5.48650e37i 2.77950i
\(964\) 8.57811e36 0.428972
\(965\) 0 0
\(966\) 3.42580e36 0.166935
\(967\) 1.63641e37i 0.787158i 0.919291 + 0.393579i \(0.128763\pi\)
−0.919291 + 0.393579i \(0.871237\pi\)
\(968\) 6.26429e36i 0.297461i
\(969\) 4.26247e37 1.99809
\(970\) 0 0
\(971\) −3.01907e37 −1.37922 −0.689610 0.724181i \(-0.742218\pi\)
−0.689610 + 0.724181i \(0.742218\pi\)
\(972\) 7.09461e36i 0.319963i
\(973\) − 1.04581e37i − 0.465629i
\(974\) −5.23376e36 −0.230053
\(975\) 0 0
\(976\) −2.53386e35 −0.0108557
\(977\) 3.79611e36i 0.160567i 0.996772 + 0.0802837i \(0.0255826\pi\)
−0.996772 + 0.0802837i \(0.974417\pi\)
\(978\) 3.47275e37i 1.45023i
\(979\) −7.92650e36 −0.326812
\(980\) 0 0
\(981\) 1.10070e37 0.442392
\(982\) 2.24509e37i 0.890923i
\(983\) − 6.46957e36i − 0.253487i −0.991936 0.126744i \(-0.959547\pi\)
0.991936 0.126744i \(-0.0404526\pi\)
\(984\) 2.90064e37 1.12216
\(985\) 0 0
\(986\) −3.52768e37 −1.33054
\(987\) − 3.59124e37i − 1.33746i
\(988\) 1.23634e37i 0.454649i
\(989\) −4.78236e35 −0.0173656
\(990\) 0 0
\(991\) −3.19318e37 −1.13058 −0.565291 0.824891i \(-0.691236\pi\)
−0.565291 + 0.824891i \(0.691236\pi\)
\(992\) 8.18892e35i 0.0286306i
\(993\) 1.66098e37i 0.573455i
\(994\) −1.90256e37 −0.648648
\(995\) 0 0
\(996\) 1.99529e37 0.663384
\(997\) − 3.10721e37i − 1.02019i −0.860118 0.510095i \(-0.829610\pi\)
0.860118 0.510095i \(-0.170390\pi\)
\(998\) − 1.32686e37i − 0.430224i
\(999\) 8.56169e37 2.74152
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.26.b.f.49.3 4
5.2 odd 4 10.26.a.b.1.1 2
5.3 odd 4 50.26.a.f.1.2 2
5.4 even 2 inner 50.26.b.f.49.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.26.a.b.1.1 2 5.2 odd 4
50.26.a.f.1.2 2 5.3 odd 4
50.26.b.f.49.2 4 5.4 even 2 inner
50.26.b.f.49.3 4 1.1 even 1 trivial