Properties

Label 50.28.a.d.1.1
Level $50$
Weight $28$
Character 50.1
Self dual yes
Analytic conductor $230.928$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,28,Mod(1,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(230.927787419\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{12929}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3232 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{3}\cdot 5\cdot 7 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(57.3529\) of defining polynomial
Character \(\chi\) \(=\) 50.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8192.00 q^{2} -1.45602e6 q^{3} +6.71089e7 q^{4} -1.19278e10 q^{6} +3.42070e11 q^{7} +5.49756e11 q^{8} -5.50559e12 q^{9} +1.20755e13 q^{11} -9.77122e13 q^{12} +1.02154e14 q^{13} +2.80224e15 q^{14} +4.50360e15 q^{16} -1.63337e16 q^{17} -4.51018e16 q^{18} -2.21733e15 q^{19} -4.98063e17 q^{21} +9.89228e16 q^{22} +1.90828e17 q^{23} -8.00458e17 q^{24} +8.36847e17 q^{26} +1.91193e19 q^{27} +2.29560e19 q^{28} -6.52176e19 q^{29} +4.50679e19 q^{31} +3.68935e19 q^{32} -1.75823e19 q^{33} -1.33806e20 q^{34} -3.69474e20 q^{36} -2.51294e21 q^{37} -1.81644e19 q^{38} -1.48739e20 q^{39} +6.73990e20 q^{41} -4.08013e21 q^{42} +1.21806e21 q^{43} +8.10376e20 q^{44} +1.56326e21 q^{46} -4.88526e22 q^{47} -6.55735e21 q^{48} +5.12997e22 q^{49} +2.37823e22 q^{51} +6.85545e21 q^{52} -9.75271e21 q^{53} +1.56626e23 q^{54} +1.88055e23 q^{56} +3.22849e21 q^{57} -5.34263e23 q^{58} +1.09826e24 q^{59} +9.88829e23 q^{61} +3.69197e23 q^{62} -1.88330e24 q^{63} +3.02231e23 q^{64} -1.44034e23 q^{66} -8.13848e24 q^{67} -1.09614e24 q^{68} -2.77850e23 q^{69} -1.38068e25 q^{71} -3.02673e24 q^{72} +2.27541e25 q^{73} -2.05860e25 q^{74} -1.48803e23 q^{76} +4.13068e24 q^{77} -1.21847e24 q^{78} +2.55487e24 q^{79} +1.41452e25 q^{81} +5.52132e24 q^{82} +9.67997e25 q^{83} -3.34244e25 q^{84} +9.97833e24 q^{86} +9.49584e25 q^{87} +6.63860e24 q^{88} +3.24368e26 q^{89} +3.49439e25 q^{91} +1.28062e25 q^{92} -6.56200e25 q^{93} -4.00200e26 q^{94} -5.37178e25 q^{96} -4.91800e26 q^{97} +4.20247e26 q^{98} -6.64830e25 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16384 q^{2} + 2245644 q^{3} + 134217728 q^{4} + 18396315648 q^{6} + 120196732292 q^{7} + 1099511627776 q^{8} + 571163616594 q^{9} + 7112122732704 q^{11} + 150702617788416 q^{12} + 323114990355404 q^{13}+ \cdots - 96\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8192.00 0.707107
\(3\) −1.45602e6 −0.527268 −0.263634 0.964623i \(-0.584921\pi\)
−0.263634 + 0.964623i \(0.584921\pi\)
\(4\) 6.71089e7 0.500000
\(5\) 0 0
\(6\) −1.19278e10 −0.372835
\(7\) 3.42070e11 1.33442 0.667209 0.744871i \(-0.267489\pi\)
0.667209 + 0.744871i \(0.267489\pi\)
\(8\) 5.49756e11 0.353553
\(9\) −5.50559e12 −0.721988
\(10\) 0 0
\(11\) 1.20755e13 0.105464 0.0527321 0.998609i \(-0.483207\pi\)
0.0527321 + 0.998609i \(0.483207\pi\)
\(12\) −9.77122e13 −0.263634
\(13\) 1.02154e14 0.0935451 0.0467725 0.998906i \(-0.485106\pi\)
0.0467725 + 0.998906i \(0.485106\pi\)
\(14\) 2.80224e15 0.943576
\(15\) 0 0
\(16\) 4.50360e15 0.250000
\(17\) −1.63337e16 −0.399968 −0.199984 0.979799i \(-0.564089\pi\)
−0.199984 + 0.979799i \(0.564089\pi\)
\(18\) −4.51018e16 −0.510523
\(19\) −2.21733e15 −0.0120964 −0.00604822 0.999982i \(-0.501925\pi\)
−0.00604822 + 0.999982i \(0.501925\pi\)
\(20\) 0 0
\(21\) −4.98063e17 −0.703596
\(22\) 9.89228e16 0.0745745
\(23\) 1.90828e17 0.0789434 0.0394717 0.999221i \(-0.487433\pi\)
0.0394717 + 0.999221i \(0.487433\pi\)
\(24\) −8.00458e17 −0.186418
\(25\) 0 0
\(26\) 8.36847e17 0.0661463
\(27\) 1.91193e19 0.907950
\(28\) 2.29560e19 0.667209
\(29\) −6.52176e19 −1.18030 −0.590149 0.807294i \(-0.700931\pi\)
−0.590149 + 0.807294i \(0.700931\pi\)
\(30\) 0 0
\(31\) 4.50679e19 0.331501 0.165750 0.986168i \(-0.446995\pi\)
0.165750 + 0.986168i \(0.446995\pi\)
\(32\) 3.68935e19 0.176777
\(33\) −1.75823e19 −0.0556080
\(34\) −1.33806e20 −0.282820
\(35\) 0 0
\(36\) −3.69474e20 −0.360994
\(37\) −2.51294e21 −1.69613 −0.848063 0.529895i \(-0.822231\pi\)
−0.848063 + 0.529895i \(0.822231\pi\)
\(38\) −1.81644e19 −0.00855347
\(39\) −1.48739e20 −0.0493234
\(40\) 0 0
\(41\) 6.73990e20 0.113781 0.0568907 0.998380i \(-0.481881\pi\)
0.0568907 + 0.998380i \(0.481881\pi\)
\(42\) −4.08013e21 −0.497518
\(43\) 1.21806e21 0.108104 0.0540522 0.998538i \(-0.482786\pi\)
0.0540522 + 0.998538i \(0.482786\pi\)
\(44\) 8.10376e20 0.0527321
\(45\) 0 0
\(46\) 1.56326e21 0.0558214
\(47\) −4.88526e22 −1.30487 −0.652434 0.757846i \(-0.726252\pi\)
−0.652434 + 0.757846i \(0.726252\pi\)
\(48\) −6.55735e21 −0.131817
\(49\) 5.12997e22 0.780671
\(50\) 0 0
\(51\) 2.37823e22 0.210891
\(52\) 6.85545e21 0.0467725
\(53\) −9.75271e21 −0.0514519 −0.0257259 0.999669i \(-0.508190\pi\)
−0.0257259 + 0.999669i \(0.508190\pi\)
\(54\) 1.56626e23 0.642018
\(55\) 0 0
\(56\) 1.88055e23 0.471788
\(57\) 3.22849e21 0.00637807
\(58\) −5.34263e23 −0.834597
\(59\) 1.09826e24 1.36208 0.681042 0.732245i \(-0.261527\pi\)
0.681042 + 0.732245i \(0.261527\pi\)
\(60\) 0 0
\(61\) 9.88829e23 0.781931 0.390966 0.920405i \(-0.372141\pi\)
0.390966 + 0.920405i \(0.372141\pi\)
\(62\) 3.69197e23 0.234407
\(63\) −1.88330e24 −0.963434
\(64\) 3.02231e23 0.125000
\(65\) 0 0
\(66\) −1.44034e23 −0.0393208
\(67\) −8.13848e24 −1.81357 −0.906784 0.421597i \(-0.861470\pi\)
−0.906784 + 0.421597i \(0.861470\pi\)
\(68\) −1.09614e24 −0.199984
\(69\) −2.77850e23 −0.0416244
\(70\) 0 0
\(71\) −1.38068e25 −1.40638 −0.703192 0.711000i \(-0.748243\pi\)
−0.703192 + 0.711000i \(0.748243\pi\)
\(72\) −3.02673e24 −0.255261
\(73\) 2.27541e25 1.59294 0.796471 0.604676i \(-0.206698\pi\)
0.796471 + 0.604676i \(0.206698\pi\)
\(74\) −2.05860e25 −1.19934
\(75\) 0 0
\(76\) −1.48803e23 −0.00604822
\(77\) 4.13068e24 0.140733
\(78\) −1.21847e24 −0.0348769
\(79\) 2.55487e24 0.0615748 0.0307874 0.999526i \(-0.490199\pi\)
0.0307874 + 0.999526i \(0.490199\pi\)
\(80\) 0 0
\(81\) 1.41452e25 0.243255
\(82\) 5.52132e24 0.0804556
\(83\) 9.67997e25 1.19762 0.598811 0.800891i \(-0.295640\pi\)
0.598811 + 0.800891i \(0.295640\pi\)
\(84\) −3.34244e25 −0.351798
\(85\) 0 0
\(86\) 9.97833e24 0.0764414
\(87\) 9.49584e25 0.622334
\(88\) 6.63860e24 0.0372872
\(89\) 3.24368e26 1.56413 0.782064 0.623198i \(-0.214167\pi\)
0.782064 + 0.623198i \(0.214167\pi\)
\(90\) 0 0
\(91\) 3.49439e25 0.124828
\(92\) 1.28062e25 0.0394717
\(93\) −6.56200e25 −0.174790
\(94\) −4.00200e26 −0.922681
\(95\) 0 0
\(96\) −5.37178e25 −0.0932088
\(97\) −4.91800e26 −0.741943 −0.370971 0.928644i \(-0.620975\pi\)
−0.370971 + 0.928644i \(0.620975\pi\)
\(98\) 4.20247e26 0.552018
\(99\) −6.64830e25 −0.0761439
\(100\) 0 0
\(101\) 2.12114e27 1.85452 0.927259 0.374421i \(-0.122159\pi\)
0.927259 + 0.374421i \(0.122159\pi\)
\(102\) 1.94825e26 0.149122
\(103\) −3.47783e25 −0.0233349 −0.0116675 0.999932i \(-0.503714\pi\)
−0.0116675 + 0.999932i \(0.503714\pi\)
\(104\) 5.61599e25 0.0330732
\(105\) 0 0
\(106\) −7.98942e25 −0.0363820
\(107\) −4.84969e27 −1.94551 −0.972754 0.231841i \(-0.925525\pi\)
−0.972754 + 0.231841i \(0.925525\pi\)
\(108\) 1.28308e27 0.453975
\(109\) −1.76094e27 −0.550158 −0.275079 0.961422i \(-0.588704\pi\)
−0.275079 + 0.961422i \(0.588704\pi\)
\(110\) 0 0
\(111\) 3.65890e27 0.894314
\(112\) 1.54055e27 0.333604
\(113\) −3.51618e27 −0.675324 −0.337662 0.941268i \(-0.609636\pi\)
−0.337662 + 0.941268i \(0.609636\pi\)
\(114\) 2.64478e25 0.00450997
\(115\) 0 0
\(116\) −4.37668e27 −0.590149
\(117\) −5.62419e26 −0.0675384
\(118\) 8.99696e27 0.963138
\(119\) −5.58729e27 −0.533725
\(120\) 0 0
\(121\) −1.29642e28 −0.988877
\(122\) 8.10049e27 0.552909
\(123\) −9.81346e26 −0.0599933
\(124\) 3.02446e27 0.165750
\(125\) 0 0
\(126\) −1.54280e28 −0.681250
\(127\) −8.77438e27 −0.348230 −0.174115 0.984725i \(-0.555706\pi\)
−0.174115 + 0.984725i \(0.555706\pi\)
\(128\) 2.47588e27 0.0883883
\(129\) −1.77352e27 −0.0570001
\(130\) 0 0
\(131\) −3.38485e28 −0.883846 −0.441923 0.897053i \(-0.645703\pi\)
−0.441923 + 0.897053i \(0.645703\pi\)
\(132\) −1.17993e27 −0.0278040
\(133\) −7.58484e26 −0.0161417
\(134\) −6.66705e28 −1.28239
\(135\) 0 0
\(136\) −8.97957e27 −0.141410
\(137\) −1.01883e29 −1.45337 −0.726683 0.686973i \(-0.758939\pi\)
−0.726683 + 0.686973i \(0.758939\pi\)
\(138\) −2.27615e27 −0.0294329
\(139\) −4.45983e28 −0.523141 −0.261571 0.965184i \(-0.584240\pi\)
−0.261571 + 0.965184i \(0.584240\pi\)
\(140\) 0 0
\(141\) 7.11306e28 0.688015
\(142\) −1.13105e29 −0.994463
\(143\) 1.23357e27 0.00986566
\(144\) −2.47950e28 −0.180497
\(145\) 0 0
\(146\) 1.86401e29 1.12638
\(147\) −7.46937e28 −0.411623
\(148\) −1.68640e29 −0.848063
\(149\) −5.58786e28 −0.256585 −0.128292 0.991736i \(-0.540950\pi\)
−0.128292 + 0.991736i \(0.540950\pi\)
\(150\) 0 0
\(151\) −2.68196e29 −1.02864 −0.514320 0.857598i \(-0.671956\pi\)
−0.514320 + 0.857598i \(0.671956\pi\)
\(152\) −1.21899e27 −0.00427673
\(153\) 8.99269e28 0.288772
\(154\) 3.38386e28 0.0995135
\(155\) 0 0
\(156\) −9.98171e27 −0.0246617
\(157\) 3.96402e28 0.0898443 0.0449222 0.998990i \(-0.485696\pi\)
0.0449222 + 0.998990i \(0.485696\pi\)
\(158\) 2.09295e28 0.0435400
\(159\) 1.42002e28 0.0271289
\(160\) 0 0
\(161\) 6.52765e28 0.105343
\(162\) 1.15877e29 0.172007
\(163\) 7.23256e29 0.988005 0.494003 0.869460i \(-0.335533\pi\)
0.494003 + 0.869460i \(0.335533\pi\)
\(164\) 4.52307e28 0.0568907
\(165\) 0 0
\(166\) 7.92983e29 0.846846
\(167\) 9.65355e28 0.0950637 0.0475318 0.998870i \(-0.484864\pi\)
0.0475318 + 0.998870i \(0.484864\pi\)
\(168\) −2.73813e29 −0.248759
\(169\) −1.18210e30 −0.991249
\(170\) 0 0
\(171\) 1.22077e28 0.00873348
\(172\) 8.17424e28 0.0540522
\(173\) 6.03771e29 0.369190 0.184595 0.982815i \(-0.440903\pi\)
0.184595 + 0.982815i \(0.440903\pi\)
\(174\) 7.77900e29 0.440057
\(175\) 0 0
\(176\) 5.43834e28 0.0263661
\(177\) −1.59910e30 −0.718184
\(178\) 2.65722e30 1.10601
\(179\) −3.15544e30 −1.21771 −0.608854 0.793282i \(-0.708371\pi\)
−0.608854 + 0.793282i \(0.708371\pi\)
\(180\) 0 0
\(181\) −2.41563e30 −0.802362 −0.401181 0.915999i \(-0.631400\pi\)
−0.401181 + 0.915999i \(0.631400\pi\)
\(182\) 2.86261e29 0.0882669
\(183\) −1.43976e30 −0.412288
\(184\) 1.04909e29 0.0279107
\(185\) 0 0
\(186\) −5.37559e29 −0.123595
\(187\) −1.97239e29 −0.0421824
\(188\) −3.27844e30 −0.652434
\(189\) 6.54016e30 1.21158
\(190\) 0 0
\(191\) 1.23727e30 0.198845 0.0994227 0.995045i \(-0.468300\pi\)
0.0994227 + 0.995045i \(0.468300\pi\)
\(192\) −4.40056e29 −0.0659086
\(193\) −9.55053e30 −1.33353 −0.666766 0.745267i \(-0.732322\pi\)
−0.666766 + 0.745267i \(0.732322\pi\)
\(194\) −4.02883e30 −0.524633
\(195\) 0 0
\(196\) 3.44267e30 0.390336
\(197\) 5.01468e30 0.530822 0.265411 0.964135i \(-0.414492\pi\)
0.265411 + 0.964135i \(0.414492\pi\)
\(198\) −5.44629e29 −0.0538419
\(199\) 1.64461e31 1.51896 0.759481 0.650530i \(-0.225453\pi\)
0.759481 + 0.650530i \(0.225453\pi\)
\(200\) 0 0
\(201\) 1.18498e31 0.956237
\(202\) 1.73764e31 1.31134
\(203\) −2.23090e31 −1.57501
\(204\) 1.59601e30 0.105445
\(205\) 0 0
\(206\) −2.84904e29 −0.0165003
\(207\) −1.05062e30 −0.0569962
\(208\) 4.60062e29 0.0233863
\(209\) −2.67755e28 −0.00127574
\(210\) 0 0
\(211\) −1.40300e31 −0.587820 −0.293910 0.955833i \(-0.594957\pi\)
−0.293910 + 0.955833i \(0.594957\pi\)
\(212\) −6.54493e29 −0.0257259
\(213\) 2.01030e31 0.741542
\(214\) −3.97286e31 −1.37568
\(215\) 0 0
\(216\) 1.05110e31 0.321009
\(217\) 1.54164e31 0.442361
\(218\) −1.44256e31 −0.389021
\(219\) −3.31305e31 −0.839908
\(220\) 0 0
\(221\) −1.66856e30 −0.0374150
\(222\) 2.99737e31 0.632376
\(223\) −1.89499e31 −0.376264 −0.188132 0.982144i \(-0.560243\pi\)
−0.188132 + 0.982144i \(0.560243\pi\)
\(224\) 1.26202e31 0.235894
\(225\) 0 0
\(226\) −2.88045e31 −0.477526
\(227\) −2.62637e31 −0.410211 −0.205106 0.978740i \(-0.565754\pi\)
−0.205106 + 0.978740i \(0.565754\pi\)
\(228\) 2.16660e29 0.00318903
\(229\) −1.17074e32 −1.62436 −0.812182 0.583405i \(-0.801720\pi\)
−0.812182 + 0.583405i \(0.801720\pi\)
\(230\) 0 0
\(231\) −6.01438e30 −0.0742043
\(232\) −3.58538e31 −0.417299
\(233\) −4.74248e31 −0.520835 −0.260418 0.965496i \(-0.583860\pi\)
−0.260418 + 0.965496i \(0.583860\pi\)
\(234\) −4.60734e30 −0.0477569
\(235\) 0 0
\(236\) 7.37031e31 0.681042
\(237\) −3.71995e30 −0.0324664
\(238\) −4.57711e31 −0.377400
\(239\) −4.45355e31 −0.347004 −0.173502 0.984834i \(-0.555508\pi\)
−0.173502 + 0.984834i \(0.555508\pi\)
\(240\) 0 0
\(241\) 1.62097e32 1.12861 0.564307 0.825565i \(-0.309144\pi\)
0.564307 + 0.825565i \(0.309144\pi\)
\(242\) −1.06203e32 −0.699242
\(243\) −1.66392e32 −1.03621
\(244\) 6.63592e31 0.390966
\(245\) 0 0
\(246\) −8.03918e30 −0.0424217
\(247\) −2.26510e29 −0.00113156
\(248\) 2.47764e31 0.117203
\(249\) −1.40943e32 −0.631468
\(250\) 0 0
\(251\) 6.55019e31 0.263426 0.131713 0.991288i \(-0.457952\pi\)
0.131713 + 0.991288i \(0.457952\pi\)
\(252\) −1.26386e32 −0.481717
\(253\) 2.30435e30 0.00832571
\(254\) −7.18797e31 −0.246236
\(255\) 0 0
\(256\) 2.02824e31 0.0625000
\(257\) −3.76002e32 −1.09924 −0.549621 0.835414i \(-0.685228\pi\)
−0.549621 + 0.835414i \(0.685228\pi\)
\(258\) −1.45287e31 −0.0403051
\(259\) −8.59601e32 −2.26334
\(260\) 0 0
\(261\) 3.59061e32 0.852161
\(262\) −2.77287e32 −0.624973
\(263\) −1.47130e32 −0.314992 −0.157496 0.987520i \(-0.550342\pi\)
−0.157496 + 0.987520i \(0.550342\pi\)
\(264\) −9.66596e30 −0.0196604
\(265\) 0 0
\(266\) −6.21350e30 −0.0114139
\(267\) −4.72287e32 −0.824715
\(268\) −5.46164e32 −0.906784
\(269\) −1.09666e33 −1.73148 −0.865738 0.500498i \(-0.833150\pi\)
−0.865738 + 0.500498i \(0.833150\pi\)
\(270\) 0 0
\(271\) −7.97318e32 −1.13906 −0.569530 0.821971i \(-0.692875\pi\)
−0.569530 + 0.821971i \(0.692875\pi\)
\(272\) −7.35607e31 −0.0999920
\(273\) −5.08792e31 −0.0658180
\(274\) −8.34627e32 −1.02768
\(275\) 0 0
\(276\) −1.86462e31 −0.0208122
\(277\) 1.37742e33 1.46416 0.732081 0.681218i \(-0.238549\pi\)
0.732081 + 0.681218i \(0.238549\pi\)
\(278\) −3.65350e32 −0.369917
\(279\) −2.48126e32 −0.239340
\(280\) 0 0
\(281\) 1.94855e33 1.70677 0.853387 0.521277i \(-0.174544\pi\)
0.853387 + 0.521277i \(0.174544\pi\)
\(282\) 5.82702e32 0.486500
\(283\) −2.07385e33 −1.65067 −0.825336 0.564642i \(-0.809014\pi\)
−0.825336 + 0.564642i \(0.809014\pi\)
\(284\) −9.26555e32 −0.703192
\(285\) 0 0
\(286\) 1.01054e31 0.00697608
\(287\) 2.30552e32 0.151832
\(288\) −2.03120e32 −0.127631
\(289\) −1.40092e33 −0.840025
\(290\) 0 0
\(291\) 7.16073e32 0.391203
\(292\) 1.52700e33 0.796471
\(293\) −1.62146e33 −0.807596 −0.403798 0.914848i \(-0.632310\pi\)
−0.403798 + 0.914848i \(0.632310\pi\)
\(294\) −6.11891e32 −0.291062
\(295\) 0 0
\(296\) −1.38150e33 −0.599671
\(297\) 2.30876e32 0.0957563
\(298\) −4.57758e32 −0.181433
\(299\) 1.94939e31 0.00738476
\(300\) 0 0
\(301\) 4.16661e32 0.144257
\(302\) −2.19706e33 −0.727358
\(303\) −3.08843e33 −0.977828
\(304\) −9.98598e30 −0.00302411
\(305\) 0 0
\(306\) 7.36681e32 0.204193
\(307\) −4.28458e33 −1.13642 −0.568212 0.822882i \(-0.692365\pi\)
−0.568212 + 0.822882i \(0.692365\pi\)
\(308\) 2.77206e32 0.0703667
\(309\) 5.06381e31 0.0123038
\(310\) 0 0
\(311\) 1.87537e33 0.417658 0.208829 0.977952i \(-0.433035\pi\)
0.208829 + 0.977952i \(0.433035\pi\)
\(312\) −8.17701e31 −0.0174384
\(313\) −7.71677e33 −1.57611 −0.788056 0.615604i \(-0.788912\pi\)
−0.788056 + 0.615604i \(0.788912\pi\)
\(314\) 3.24733e32 0.0635295
\(315\) 0 0
\(316\) 1.71454e32 0.0307874
\(317\) 3.06539e32 0.0527455 0.0263728 0.999652i \(-0.491604\pi\)
0.0263728 + 0.999652i \(0.491604\pi\)
\(318\) 1.16328e32 0.0191831
\(319\) −7.87538e32 −0.124479
\(320\) 0 0
\(321\) 7.06127e33 1.02580
\(322\) 5.34745e32 0.0744891
\(323\) 3.62174e31 0.00483819
\(324\) 9.49268e32 0.121627
\(325\) 0 0
\(326\) 5.92491e33 0.698625
\(327\) 2.56398e33 0.290081
\(328\) 3.70530e32 0.0402278
\(329\) −1.67110e34 −1.74124
\(330\) 0 0
\(331\) −1.08931e34 −1.04586 −0.522930 0.852375i \(-0.675161\pi\)
−0.522930 + 0.852375i \(0.675161\pi\)
\(332\) 6.49612e33 0.598811
\(333\) 1.38352e34 1.22458
\(334\) 7.90819e32 0.0672202
\(335\) 0 0
\(336\) −2.24308e33 −0.175899
\(337\) 2.14689e34 1.61736 0.808680 0.588249i \(-0.200183\pi\)
0.808680 + 0.588249i \(0.200183\pi\)
\(338\) −9.68375e33 −0.700919
\(339\) 5.11964e33 0.356077
\(340\) 0 0
\(341\) 5.44220e32 0.0349615
\(342\) 1.00006e32 0.00617550
\(343\) −4.93013e33 −0.292676
\(344\) 6.69634e32 0.0382207
\(345\) 0 0
\(346\) 4.94609e33 0.261057
\(347\) −2.88990e34 −1.46702 −0.733509 0.679680i \(-0.762119\pi\)
−0.733509 + 0.679680i \(0.762119\pi\)
\(348\) 6.37255e33 0.311167
\(349\) −4.64738e33 −0.218306 −0.109153 0.994025i \(-0.534814\pi\)
−0.109153 + 0.994025i \(0.534814\pi\)
\(350\) 0 0
\(351\) 1.95312e33 0.0849342
\(352\) 4.45509e32 0.0186436
\(353\) 2.34595e34 0.944845 0.472422 0.881372i \(-0.343380\pi\)
0.472422 + 0.881372i \(0.343380\pi\)
\(354\) −1.30998e34 −0.507832
\(355\) 0 0
\(356\) 2.17679e34 0.782064
\(357\) 8.13523e33 0.281416
\(358\) −2.58493e34 −0.861050
\(359\) 2.11955e34 0.679937 0.339968 0.940437i \(-0.389584\pi\)
0.339968 + 0.940437i \(0.389584\pi\)
\(360\) 0 0
\(361\) −3.35957e34 −0.999854
\(362\) −1.97889e34 −0.567356
\(363\) 1.88762e34 0.521404
\(364\) 2.34505e33 0.0624141
\(365\) 0 0
\(366\) −1.17945e34 −0.291531
\(367\) −5.17652e34 −1.23323 −0.616617 0.787263i \(-0.711497\pi\)
−0.616617 + 0.787263i \(0.711497\pi\)
\(368\) 8.59412e32 0.0197358
\(369\) −3.71071e33 −0.0821488
\(370\) 0 0
\(371\) −3.33611e33 −0.0686583
\(372\) −4.40369e33 −0.0873950
\(373\) −2.59719e34 −0.497089 −0.248545 0.968620i \(-0.579952\pi\)
−0.248545 + 0.968620i \(0.579952\pi\)
\(374\) −1.61578e33 −0.0298274
\(375\) 0 0
\(376\) −2.68570e34 −0.461340
\(377\) −6.66225e33 −0.110411
\(378\) 5.35770e34 0.856720
\(379\) 6.29669e34 0.971590 0.485795 0.874073i \(-0.338530\pi\)
0.485795 + 0.874073i \(0.338530\pi\)
\(380\) 0 0
\(381\) 1.27757e34 0.183611
\(382\) 1.01358e34 0.140605
\(383\) 5.45282e34 0.730193 0.365097 0.930970i \(-0.381036\pi\)
0.365097 + 0.930970i \(0.381036\pi\)
\(384\) −3.60494e33 −0.0466044
\(385\) 0 0
\(386\) −7.82379e34 −0.942950
\(387\) −6.70612e33 −0.0780501
\(388\) −3.30042e34 −0.370971
\(389\) 1.15416e35 1.25299 0.626495 0.779425i \(-0.284489\pi\)
0.626495 + 0.779425i \(0.284489\pi\)
\(390\) 0 0
\(391\) −3.11693e33 −0.0315748
\(392\) 2.82023e34 0.276009
\(393\) 4.92842e34 0.466024
\(394\) 4.10802e34 0.375348
\(395\) 0 0
\(396\) −4.46160e33 −0.0380720
\(397\) 5.65268e34 0.466211 0.233106 0.972451i \(-0.425111\pi\)
0.233106 + 0.972451i \(0.425111\pi\)
\(398\) 1.34727e35 1.07407
\(399\) 1.10437e33 0.00851101
\(400\) 0 0
\(401\) −3.91339e33 −0.0281906 −0.0140953 0.999901i \(-0.504487\pi\)
−0.0140953 + 0.999901i \(0.504487\pi\)
\(402\) 9.70738e34 0.676161
\(403\) 4.60388e33 0.0310103
\(404\) 1.42347e35 0.927259
\(405\) 0 0
\(406\) −1.82755e35 −1.11370
\(407\) −3.03451e34 −0.178881
\(408\) 1.30745e34 0.0745611
\(409\) −2.50975e34 −0.138473 −0.0692366 0.997600i \(-0.522056\pi\)
−0.0692366 + 0.997600i \(0.522056\pi\)
\(410\) 0 0
\(411\) 1.48344e35 0.766314
\(412\) −2.33393e33 −0.0116675
\(413\) 3.75683e35 1.81759
\(414\) −8.60667e33 −0.0403024
\(415\) 0 0
\(416\) 3.76882e33 0.0165366
\(417\) 6.49363e34 0.275836
\(418\) −2.19345e32 −0.000902085 0
\(419\) 4.06859e35 1.62015 0.810073 0.586329i \(-0.199427\pi\)
0.810073 + 0.586329i \(0.199427\pi\)
\(420\) 0 0
\(421\) −2.35168e35 −0.878153 −0.439076 0.898450i \(-0.644694\pi\)
−0.439076 + 0.898450i \(0.644694\pi\)
\(422\) −1.14934e35 −0.415652
\(423\) 2.68962e35 0.942099
\(424\) −5.36161e33 −0.0181910
\(425\) 0 0
\(426\) 1.64684e35 0.524349
\(427\) 3.38249e35 1.04342
\(428\) −3.25457e35 −0.972754
\(429\) −1.79610e33 −0.00520185
\(430\) 0 0
\(431\) 5.93896e35 1.61535 0.807676 0.589626i \(-0.200725\pi\)
0.807676 + 0.589626i \(0.200725\pi\)
\(432\) 8.61058e34 0.226987
\(433\) 5.11209e35 1.30621 0.653104 0.757269i \(-0.273467\pi\)
0.653104 + 0.757269i \(0.273467\pi\)
\(434\) 1.26291e35 0.312796
\(435\) 0 0
\(436\) −1.18175e35 −0.275079
\(437\) −4.23129e32 −0.000954933 0
\(438\) −2.71405e35 −0.593905
\(439\) 6.22583e35 1.32107 0.660536 0.750794i \(-0.270329\pi\)
0.660536 + 0.750794i \(0.270329\pi\)
\(440\) 0 0
\(441\) −2.82435e35 −0.563635
\(442\) −1.36688e34 −0.0264564
\(443\) −7.89880e35 −1.48290 −0.741448 0.671010i \(-0.765861\pi\)
−0.741448 + 0.671010i \(0.765861\pi\)
\(444\) 2.45545e35 0.447157
\(445\) 0 0
\(446\) −1.55238e35 −0.266059
\(447\) 8.13607e34 0.135289
\(448\) 1.03384e35 0.166802
\(449\) 8.32672e35 1.30361 0.651806 0.758385i \(-0.274011\pi\)
0.651806 + 0.758385i \(0.274011\pi\)
\(450\) 0 0
\(451\) 8.13879e33 0.0119999
\(452\) −2.35967e35 −0.337662
\(453\) 3.90500e35 0.542369
\(454\) −2.15152e35 −0.290063
\(455\) 0 0
\(456\) 1.77488e33 0.00225499
\(457\) 3.61787e35 0.446257 0.223128 0.974789i \(-0.428373\pi\)
0.223128 + 0.974789i \(0.428373\pi\)
\(458\) −9.59074e35 −1.14860
\(459\) −3.12290e35 −0.363151
\(460\) 0 0
\(461\) −4.32462e35 −0.474226 −0.237113 0.971482i \(-0.576201\pi\)
−0.237113 + 0.971482i \(0.576201\pi\)
\(462\) −4.92698e34 −0.0524704
\(463\) 5.74369e35 0.594084 0.297042 0.954864i \(-0.404000\pi\)
0.297042 + 0.954864i \(0.404000\pi\)
\(464\) −2.93714e35 −0.295075
\(465\) 0 0
\(466\) −3.88504e35 −0.368286
\(467\) −8.79293e35 −0.809759 −0.404879 0.914370i \(-0.632686\pi\)
−0.404879 + 0.914370i \(0.632686\pi\)
\(468\) −3.77433e34 −0.0337692
\(469\) −2.78393e36 −2.42006
\(470\) 0 0
\(471\) −5.77171e34 −0.0473721
\(472\) 6.03776e35 0.481569
\(473\) 1.47087e34 0.0114012
\(474\) −3.04739e34 −0.0229572
\(475\) 0 0
\(476\) −3.74957e35 −0.266862
\(477\) 5.36944e34 0.0371476
\(478\) −3.64835e35 −0.245369
\(479\) −1.32449e36 −0.866001 −0.433000 0.901394i \(-0.642545\pi\)
−0.433000 + 0.901394i \(0.642545\pi\)
\(480\) 0 0
\(481\) −2.56707e35 −0.158664
\(482\) 1.32790e36 0.798050
\(483\) −9.50442e34 −0.0555443
\(484\) −8.70011e35 −0.494439
\(485\) 0 0
\(486\) −1.36308e36 −0.732711
\(487\) −2.77661e36 −1.45169 −0.725844 0.687859i \(-0.758551\pi\)
−0.725844 + 0.687859i \(0.758551\pi\)
\(488\) 5.43615e35 0.276454
\(489\) −1.05308e36 −0.520944
\(490\) 0 0
\(491\) 3.83404e36 1.79497 0.897485 0.441046i \(-0.145392\pi\)
0.897485 + 0.441046i \(0.145392\pi\)
\(492\) −6.58570e34 −0.0299967
\(493\) 1.06525e36 0.472082
\(494\) −1.85557e33 −0.000800135 0
\(495\) 0 0
\(496\) 2.02968e35 0.0828752
\(497\) −4.72288e36 −1.87670
\(498\) −1.15460e36 −0.446515
\(499\) −1.37412e35 −0.0517210 −0.0258605 0.999666i \(-0.508233\pi\)
−0.0258605 + 0.999666i \(0.508233\pi\)
\(500\) 0 0
\(501\) −1.40558e35 −0.0501241
\(502\) 5.36591e35 0.186270
\(503\) −4.60357e36 −1.55570 −0.777852 0.628447i \(-0.783691\pi\)
−0.777852 + 0.628447i \(0.783691\pi\)
\(504\) −1.03535e36 −0.340625
\(505\) 0 0
\(506\) 1.88772e34 0.00588716
\(507\) 1.72116e36 0.522654
\(508\) −5.88839e35 −0.174115
\(509\) 1.03517e36 0.298071 0.149035 0.988832i \(-0.452383\pi\)
0.149035 + 0.988832i \(0.452383\pi\)
\(510\) 0 0
\(511\) 7.78349e36 2.12565
\(512\) 1.66153e35 0.0441942
\(513\) −4.23939e34 −0.0109830
\(514\) −3.08021e36 −0.777281
\(515\) 0 0
\(516\) −1.19019e35 −0.0285000
\(517\) −5.89921e35 −0.137617
\(518\) −7.04185e36 −1.60042
\(519\) −8.79106e35 −0.194662
\(520\) 0 0
\(521\) 5.78940e36 1.21709 0.608547 0.793518i \(-0.291753\pi\)
0.608547 + 0.793518i \(0.291753\pi\)
\(522\) 2.94143e36 0.602569
\(523\) 5.79695e36 1.15725 0.578625 0.815594i \(-0.303590\pi\)
0.578625 + 0.815594i \(0.303590\pi\)
\(524\) −2.27153e36 −0.441923
\(525\) 0 0
\(526\) −1.20529e36 −0.222733
\(527\) −7.36128e35 −0.132590
\(528\) −7.91836e34 −0.0139020
\(529\) −5.80680e36 −0.993768
\(530\) 0 0
\(531\) −6.04658e36 −0.983408
\(532\) −5.09010e34 −0.00807085
\(533\) 6.88509e34 0.0106437
\(534\) −3.86898e36 −0.583162
\(535\) 0 0
\(536\) −4.47418e36 −0.641193
\(537\) 4.59439e36 0.642059
\(538\) −8.98384e36 −1.22434
\(539\) 6.19472e35 0.0823329
\(540\) 0 0
\(541\) 4.55675e35 0.0576093 0.0288046 0.999585i \(-0.490830\pi\)
0.0288046 + 0.999585i \(0.490830\pi\)
\(542\) −6.53163e36 −0.805436
\(543\) 3.51722e36 0.423060
\(544\) −6.02609e35 −0.0707051
\(545\) 0 0
\(546\) −4.16802e35 −0.0465403
\(547\) −7.34964e36 −0.800640 −0.400320 0.916375i \(-0.631101\pi\)
−0.400320 + 0.916375i \(0.631101\pi\)
\(548\) −6.83726e36 −0.726683
\(549\) −5.44409e36 −0.564545
\(550\) 0 0
\(551\) 1.44609e35 0.0142774
\(552\) −1.52750e35 −0.0147164
\(553\) 8.73945e35 0.0821665
\(554\) 1.12838e37 1.03532
\(555\) 0 0
\(556\) −2.99294e36 −0.261571
\(557\) 1.11649e37 0.952381 0.476191 0.879342i \(-0.342017\pi\)
0.476191 + 0.879342i \(0.342017\pi\)
\(558\) −2.03264e36 −0.169239
\(559\) 1.24430e35 0.0101126
\(560\) 0 0
\(561\) 2.87185e35 0.0222414
\(562\) 1.59625e37 1.20687
\(563\) 1.14995e37 0.848820 0.424410 0.905470i \(-0.360482\pi\)
0.424410 + 0.905470i \(0.360482\pi\)
\(564\) 4.77349e36 0.344008
\(565\) 0 0
\(566\) −1.69890e37 −1.16720
\(567\) 4.83865e36 0.324603
\(568\) −7.59034e36 −0.497232
\(569\) 4.14930e36 0.265436 0.132718 0.991154i \(-0.457630\pi\)
0.132718 + 0.991154i \(0.457630\pi\)
\(570\) 0 0
\(571\) 1.01000e37 0.616220 0.308110 0.951351i \(-0.400304\pi\)
0.308110 + 0.951351i \(0.400304\pi\)
\(572\) 8.27833e34 0.00493283
\(573\) −1.80150e36 −0.104845
\(574\) 1.88868e36 0.107361
\(575\) 0 0
\(576\) −1.66396e36 −0.0902485
\(577\) 1.31282e37 0.695557 0.347779 0.937577i \(-0.386936\pi\)
0.347779 + 0.937577i \(0.386936\pi\)
\(578\) −1.14763e37 −0.593988
\(579\) 1.39058e37 0.703130
\(580\) 0 0
\(581\) 3.31123e37 1.59813
\(582\) 5.86607e36 0.276622
\(583\) −1.17769e35 −0.00542633
\(584\) 1.25092e37 0.563190
\(585\) 0 0
\(586\) −1.32830e37 −0.571056
\(587\) −9.82196e36 −0.412652 −0.206326 0.978483i \(-0.566151\pi\)
−0.206326 + 0.978483i \(0.566151\pi\)
\(588\) −5.01261e36 −0.205812
\(589\) −9.99306e34 −0.00400998
\(590\) 0 0
\(591\) −7.30149e36 −0.279886
\(592\) −1.13173e37 −0.424032
\(593\) 1.06673e37 0.390676 0.195338 0.980736i \(-0.437420\pi\)
0.195338 + 0.980736i \(0.437420\pi\)
\(594\) 1.89134e36 0.0677099
\(595\) 0 0
\(596\) −3.74995e36 −0.128292
\(597\) −2.39459e37 −0.800900
\(598\) 1.59694e35 0.00522182
\(599\) 1.34901e37 0.431274 0.215637 0.976474i \(-0.430817\pi\)
0.215637 + 0.976474i \(0.430817\pi\)
\(600\) 0 0
\(601\) 3.52554e37 1.07751 0.538754 0.842463i \(-0.318895\pi\)
0.538754 + 0.842463i \(0.318895\pi\)
\(602\) 3.41329e36 0.102005
\(603\) 4.48071e37 1.30937
\(604\) −1.79983e37 −0.514320
\(605\) 0 0
\(606\) −2.53004e37 −0.691429
\(607\) −2.43922e37 −0.651934 −0.325967 0.945381i \(-0.605690\pi\)
−0.325967 + 0.945381i \(0.605690\pi\)
\(608\) −8.18051e34 −0.00213837
\(609\) 3.24825e37 0.830454
\(610\) 0 0
\(611\) −4.99050e36 −0.122064
\(612\) 6.03489e36 0.144386
\(613\) 5.62323e37 1.31604 0.658020 0.753000i \(-0.271394\pi\)
0.658020 + 0.753000i \(0.271394\pi\)
\(614\) −3.50993e37 −0.803573
\(615\) 0 0
\(616\) 2.27087e36 0.0497568
\(617\) −4.80049e37 −1.02905 −0.514525 0.857476i \(-0.672032\pi\)
−0.514525 + 0.857476i \(0.672032\pi\)
\(618\) 4.14827e35 0.00870007
\(619\) 2.24910e37 0.461513 0.230757 0.973011i \(-0.425880\pi\)
0.230757 + 0.973011i \(0.425880\pi\)
\(620\) 0 0
\(621\) 3.64850e36 0.0716766
\(622\) 1.53630e37 0.295329
\(623\) 1.10956e38 2.08720
\(624\) −6.69861e35 −0.0123308
\(625\) 0 0
\(626\) −6.32158e37 −1.11448
\(627\) 3.89858e34 0.000672658 0
\(628\) 2.66021e36 0.0449222
\(629\) 4.10457e37 0.678397
\(630\) 0 0
\(631\) −1.02822e38 −1.62814 −0.814068 0.580770i \(-0.802751\pi\)
−0.814068 + 0.580770i \(0.802751\pi\)
\(632\) 1.40455e36 0.0217700
\(633\) 2.04280e37 0.309939
\(634\) 2.51117e36 0.0372967
\(635\) 0 0
\(636\) 9.52958e35 0.0135645
\(637\) 5.24048e36 0.0730279
\(638\) −6.45151e36 −0.0880202
\(639\) 7.60143e37 1.01539
\(640\) 0 0
\(641\) 6.67226e37 0.854456 0.427228 0.904144i \(-0.359490\pi\)
0.427228 + 0.904144i \(0.359490\pi\)
\(642\) 5.78459e37 0.725353
\(643\) 2.92763e37 0.359474 0.179737 0.983715i \(-0.442475\pi\)
0.179737 + 0.983715i \(0.442475\pi\)
\(644\) 4.38063e36 0.0526717
\(645\) 0 0
\(646\) 2.96693e35 0.00342112
\(647\) 6.89266e37 0.778357 0.389179 0.921162i \(-0.372759\pi\)
0.389179 + 0.921162i \(0.372759\pi\)
\(648\) 7.77640e36 0.0860035
\(649\) 1.32621e37 0.143651
\(650\) 0 0
\(651\) −2.24467e37 −0.233243
\(652\) 4.85369e37 0.494003
\(653\) 6.00351e37 0.598518 0.299259 0.954172i \(-0.403260\pi\)
0.299259 + 0.954172i \(0.403260\pi\)
\(654\) 2.10041e37 0.205118
\(655\) 0 0
\(656\) 3.03538e36 0.0284454
\(657\) −1.25274e38 −1.15009
\(658\) −1.36897e38 −1.23124
\(659\) −3.15651e37 −0.278134 −0.139067 0.990283i \(-0.544410\pi\)
−0.139067 + 0.990283i \(0.544410\pi\)
\(660\) 0 0
\(661\) −5.72052e37 −0.483855 −0.241928 0.970294i \(-0.577780\pi\)
−0.241928 + 0.970294i \(0.577780\pi\)
\(662\) −8.92363e37 −0.739535
\(663\) 2.42947e36 0.0197278
\(664\) 5.32162e37 0.423423
\(665\) 0 0
\(666\) 1.13338e38 0.865911
\(667\) −1.24453e37 −0.0931768
\(668\) 6.47839e36 0.0475318
\(669\) 2.75916e37 0.198392
\(670\) 0 0
\(671\) 1.19407e37 0.0824658
\(672\) −1.83753e37 −0.124379
\(673\) −2.84152e38 −1.88516 −0.942578 0.333987i \(-0.891606\pi\)
−0.942578 + 0.333987i \(0.891606\pi\)
\(674\) 1.75873e38 1.14365
\(675\) 0 0
\(676\) −7.93292e37 −0.495625
\(677\) −1.71997e37 −0.105336 −0.0526678 0.998612i \(-0.516772\pi\)
−0.0526678 + 0.998612i \(0.516772\pi\)
\(678\) 4.19401e37 0.251784
\(679\) −1.68230e38 −0.990062
\(680\) 0 0
\(681\) 3.82406e37 0.216291
\(682\) 4.45825e36 0.0247215
\(683\) 7.22090e37 0.392565 0.196283 0.980547i \(-0.437113\pi\)
0.196283 + 0.980547i \(0.437113\pi\)
\(684\) 8.19247e35 0.00436674
\(685\) 0 0
\(686\) −4.03876e37 −0.206953
\(687\) 1.70463e38 0.856475
\(688\) 5.48564e36 0.0270261
\(689\) −9.96280e35 −0.00481307
\(690\) 0 0
\(691\) 8.09519e37 0.376074 0.188037 0.982162i \(-0.439787\pi\)
0.188037 + 0.982162i \(0.439787\pi\)
\(692\) 4.05184e37 0.184595
\(693\) −2.27419e37 −0.101608
\(694\) −2.36741e38 −1.03734
\(695\) 0 0
\(696\) 5.22040e37 0.220028
\(697\) −1.10088e37 −0.0455089
\(698\) −3.80714e37 −0.154366
\(699\) 6.90517e37 0.274620
\(700\) 0 0
\(701\) 5.38842e37 0.206190 0.103095 0.994671i \(-0.467125\pi\)
0.103095 + 0.994671i \(0.467125\pi\)
\(702\) 1.60000e37 0.0600576
\(703\) 5.57202e36 0.0205171
\(704\) 3.64961e36 0.0131830
\(705\) 0 0
\(706\) 1.92180e38 0.668106
\(707\) 7.25579e38 2.47470
\(708\) −1.07314e38 −0.359092
\(709\) −6.64239e37 −0.218072 −0.109036 0.994038i \(-0.534776\pi\)
−0.109036 + 0.994038i \(0.534776\pi\)
\(710\) 0 0
\(711\) −1.40661e37 −0.0444563
\(712\) 1.78323e38 0.553003
\(713\) 8.60021e36 0.0261698
\(714\) 6.66438e37 0.198991
\(715\) 0 0
\(716\) −2.11758e38 −0.608854
\(717\) 6.48448e37 0.182964
\(718\) 1.73633e38 0.480788
\(719\) −2.15626e38 −0.585950 −0.292975 0.956120i \(-0.594645\pi\)
−0.292975 + 0.956120i \(0.594645\pi\)
\(720\) 0 0
\(721\) −1.18966e37 −0.0311385
\(722\) −2.75216e38 −0.707003
\(723\) −2.36017e38 −0.595082
\(724\) −1.62111e38 −0.401181
\(725\) 0 0
\(726\) 1.54633e38 0.368688
\(727\) −7.29285e38 −1.70680 −0.853401 0.521255i \(-0.825464\pi\)
−0.853401 + 0.521255i \(0.825464\pi\)
\(728\) 1.92106e37 0.0441334
\(729\) 1.34405e38 0.303106
\(730\) 0 0
\(731\) −1.98954e37 −0.0432383
\(732\) −9.66207e37 −0.206144
\(733\) −8.53218e38 −1.78713 −0.893566 0.448932i \(-0.851805\pi\)
−0.893566 + 0.448932i \(0.851805\pi\)
\(734\) −4.24060e38 −0.872029
\(735\) 0 0
\(736\) 7.04030e36 0.0139553
\(737\) −9.82766e37 −0.191267
\(738\) −3.03981e37 −0.0580880
\(739\) 6.54496e37 0.122802 0.0614012 0.998113i \(-0.480443\pi\)
0.0614012 + 0.998113i \(0.480443\pi\)
\(740\) 0 0
\(741\) 3.29804e35 0.000596637 0
\(742\) −2.73294e37 −0.0485487
\(743\) 1.95541e38 0.341105 0.170553 0.985349i \(-0.445445\pi\)
0.170553 + 0.985349i \(0.445445\pi\)
\(744\) −3.60750e37 −0.0617976
\(745\) 0 0
\(746\) −2.12762e38 −0.351495
\(747\) −5.32939e38 −0.864668
\(748\) −1.32365e37 −0.0210912
\(749\) −1.65893e39 −2.59612
\(750\) 0 0
\(751\) 9.02110e38 1.36182 0.680911 0.732366i \(-0.261584\pi\)
0.680911 + 0.732366i \(0.261584\pi\)
\(752\) −2.20012e38 −0.326217
\(753\) −9.53724e37 −0.138896
\(754\) −5.45772e37 −0.0780724
\(755\) 0 0
\(756\) 4.38902e38 0.605792
\(757\) −7.72330e38 −1.04715 −0.523575 0.851980i \(-0.675402\pi\)
−0.523575 + 0.851980i \(0.675402\pi\)
\(758\) 5.15825e38 0.687018
\(759\) −3.35519e36 −0.00438988
\(760\) 0 0
\(761\) −6.10975e38 −0.771490 −0.385745 0.922605i \(-0.626056\pi\)
−0.385745 + 0.922605i \(0.626056\pi\)
\(762\) 1.04659e38 0.129832
\(763\) −6.02366e38 −0.734141
\(764\) 8.30321e37 0.0994227
\(765\) 0 0
\(766\) 4.46695e38 0.516325
\(767\) 1.12192e38 0.127416
\(768\) −2.95317e37 −0.0329543
\(769\) −7.47622e38 −0.819741 −0.409870 0.912144i \(-0.634426\pi\)
−0.409870 + 0.912144i \(0.634426\pi\)
\(770\) 0 0
\(771\) 5.47468e38 0.579595
\(772\) −6.40925e38 −0.666766
\(773\) −1.33482e39 −1.36458 −0.682288 0.731083i \(-0.739015\pi\)
−0.682288 + 0.731083i \(0.739015\pi\)
\(774\) −5.49366e37 −0.0551898
\(775\) 0 0
\(776\) −2.70370e38 −0.262316
\(777\) 1.25160e39 1.19339
\(778\) 9.45491e38 0.885998
\(779\) −1.49446e36 −0.00137635
\(780\) 0 0
\(781\) −1.66724e38 −0.148323
\(782\) −2.55339e37 −0.0223268
\(783\) −1.24692e39 −1.07165
\(784\) 2.31033e38 0.195168
\(785\) 0 0
\(786\) 4.03736e38 0.329529
\(787\) 1.55203e38 0.124521 0.0622603 0.998060i \(-0.480169\pi\)
0.0622603 + 0.998060i \(0.480169\pi\)
\(788\) 3.36529e38 0.265411
\(789\) 2.14225e38 0.166085
\(790\) 0 0
\(791\) −1.20278e39 −0.901164
\(792\) −3.65494e37 −0.0269209
\(793\) 1.01013e38 0.0731458
\(794\) 4.63068e38 0.329661
\(795\) 0 0
\(796\) 1.10368e39 0.759481
\(797\) 1.19576e39 0.809019 0.404509 0.914534i \(-0.367442\pi\)
0.404509 + 0.914534i \(0.367442\pi\)
\(798\) 9.04701e36 0.00601819
\(799\) 7.97946e38 0.521905
\(800\) 0 0
\(801\) −1.78583e39 −1.12928
\(802\) −3.20585e37 −0.0199337
\(803\) 2.74767e38 0.167999
\(804\) 7.95229e38 0.478118
\(805\) 0 0
\(806\) 3.77150e37 0.0219276
\(807\) 1.59676e39 0.912952
\(808\) 1.16611e39 0.655671
\(809\) −2.75200e39 −1.52175 −0.760874 0.648899i \(-0.775230\pi\)
−0.760874 + 0.648899i \(0.775230\pi\)
\(810\) 0 0
\(811\) −2.91604e39 −1.55960 −0.779798 0.626032i \(-0.784678\pi\)
−0.779798 + 0.626032i \(0.784678\pi\)
\(812\) −1.49713e39 −0.787506
\(813\) 1.16092e39 0.600590
\(814\) −2.48587e38 −0.126488
\(815\) 0 0
\(816\) 1.07106e38 0.0527226
\(817\) −2.70084e36 −0.00130768
\(818\) −2.05599e38 −0.0979154
\(819\) −1.92387e38 −0.0901245
\(820\) 0 0
\(821\) 2.55103e38 0.115633 0.0578165 0.998327i \(-0.481586\pi\)
0.0578165 + 0.998327i \(0.481586\pi\)
\(822\) 1.21524e39 0.541866
\(823\) 2.16576e39 0.949977 0.474989 0.879992i \(-0.342452\pi\)
0.474989 + 0.879992i \(0.342452\pi\)
\(824\) −1.91196e37 −0.00825014
\(825\) 0 0
\(826\) 3.07759e39 1.28523
\(827\) −1.43961e39 −0.591453 −0.295727 0.955273i \(-0.595562\pi\)
−0.295727 + 0.955273i \(0.595562\pi\)
\(828\) −7.05059e37 −0.0284981
\(829\) 3.12334e39 1.24203 0.621016 0.783798i \(-0.286720\pi\)
0.621016 + 0.783798i \(0.286720\pi\)
\(830\) 0 0
\(831\) −2.00555e39 −0.772006
\(832\) 3.08742e37 0.0116931
\(833\) −8.37917e38 −0.312244
\(834\) 5.31958e38 0.195045
\(835\) 0 0
\(836\) −1.79687e36 −0.000637871 0
\(837\) 8.61669e38 0.300986
\(838\) 3.33299e39 1.14562
\(839\) 5.81719e39 1.96755 0.983777 0.179397i \(-0.0574145\pi\)
0.983777 + 0.179397i \(0.0574145\pi\)
\(840\) 0 0
\(841\) 1.20020e39 0.393105
\(842\) −1.92650e39 −0.620948
\(843\) −2.83714e39 −0.899928
\(844\) −9.41537e38 −0.293910
\(845\) 0 0
\(846\) 2.20334e39 0.666164
\(847\) −4.43466e39 −1.31958
\(848\) −4.39223e37 −0.0128630
\(849\) 3.01958e39 0.870347
\(850\) 0 0
\(851\) −4.79538e38 −0.133898
\(852\) 1.34909e39 0.370771
\(853\) 1.88847e39 0.510854 0.255427 0.966828i \(-0.417784\pi\)
0.255427 + 0.966828i \(0.417784\pi\)
\(854\) 2.77094e39 0.737812
\(855\) 0 0
\(856\) −2.66614e39 −0.687841
\(857\) 4.20096e39 1.06686 0.533429 0.845845i \(-0.320903\pi\)
0.533429 + 0.845845i \(0.320903\pi\)
\(858\) −1.47137e37 −0.00367826
\(859\) 7.26089e39 1.78683 0.893413 0.449236i \(-0.148304\pi\)
0.893413 + 0.449236i \(0.148304\pi\)
\(860\) 0 0
\(861\) −3.35689e38 −0.0800562
\(862\) 4.86520e39 1.14223
\(863\) −9.99655e38 −0.231049 −0.115525 0.993305i \(-0.536855\pi\)
−0.115525 + 0.993305i \(0.536855\pi\)
\(864\) 7.05379e38 0.160504
\(865\) 0 0
\(866\) 4.18783e39 0.923628
\(867\) 2.03977e39 0.442919
\(868\) 1.03458e39 0.221180
\(869\) 3.08514e37 0.00649394
\(870\) 0 0
\(871\) −8.31380e38 −0.169650
\(872\) −9.68089e38 −0.194510
\(873\) 2.70765e39 0.535674
\(874\) −3.46627e36 −0.000675240 0
\(875\) 0 0
\(876\) −2.22335e39 −0.419954
\(877\) 4.39906e39 0.818211 0.409105 0.912487i \(-0.365841\pi\)
0.409105 + 0.912487i \(0.365841\pi\)
\(878\) 5.10020e39 0.934139
\(879\) 2.36089e39 0.425820
\(880\) 0 0
\(881\) −2.21444e39 −0.387338 −0.193669 0.981067i \(-0.562039\pi\)
−0.193669 + 0.981067i \(0.562039\pi\)
\(882\) −2.31371e39 −0.398550
\(883\) −3.04198e38 −0.0516044 −0.0258022 0.999667i \(-0.508214\pi\)
−0.0258022 + 0.999667i \(0.508214\pi\)
\(884\) −1.11975e38 −0.0187075
\(885\) 0 0
\(886\) −6.47069e39 −1.04857
\(887\) −3.06989e39 −0.489953 −0.244977 0.969529i \(-0.578780\pi\)
−0.244977 + 0.969529i \(0.578780\pi\)
\(888\) 2.01150e39 0.316188
\(889\) −3.00145e39 −0.464684
\(890\) 0 0
\(891\) 1.70811e38 0.0256547
\(892\) −1.27171e39 −0.188132
\(893\) 1.08322e38 0.0157842
\(894\) 6.66506e38 0.0956639
\(895\) 0 0
\(896\) 8.46925e38 0.117947
\(897\) −2.83835e37 −0.00389375
\(898\) 6.82125e39 0.921793
\(899\) −2.93922e39 −0.391270
\(900\) 0 0
\(901\) 1.59298e38 0.0205791
\(902\) 6.66730e37 0.00848519
\(903\) −6.06669e38 −0.0760619
\(904\) −1.93304e39 −0.238763
\(905\) 0 0
\(906\) 3.19898e39 0.383513
\(907\) 6.69307e39 0.790546 0.395273 0.918564i \(-0.370650\pi\)
0.395273 + 0.918564i \(0.370650\pi\)
\(908\) −1.76253e39 −0.205106
\(909\) −1.16781e40 −1.33894
\(910\) 0 0
\(911\) −2.24684e39 −0.250077 −0.125039 0.992152i \(-0.539905\pi\)
−0.125039 + 0.992152i \(0.539905\pi\)
\(912\) 1.45398e37 0.00159452
\(913\) 1.16891e39 0.126306
\(914\) 2.96376e39 0.315551
\(915\) 0 0
\(916\) −7.85673e39 −0.812182
\(917\) −1.15786e40 −1.17942
\(918\) −2.55828e39 −0.256787
\(919\) −1.71198e40 −1.69332 −0.846662 0.532131i \(-0.821391\pi\)
−0.846662 + 0.532131i \(0.821391\pi\)
\(920\) 0 0
\(921\) 6.23845e39 0.599200
\(922\) −3.54273e39 −0.335328
\(923\) −1.41042e39 −0.131560
\(924\) −4.03618e38 −0.0371021
\(925\) 0 0
\(926\) 4.70523e39 0.420081
\(927\) 1.91475e38 0.0168475
\(928\) −2.40610e39 −0.208649
\(929\) 1.02221e40 0.873632 0.436816 0.899551i \(-0.356106\pi\)
0.436816 + 0.899551i \(0.356106\pi\)
\(930\) 0 0
\(931\) −1.13749e38 −0.00944333
\(932\) −3.18262e39 −0.260418
\(933\) −2.73058e39 −0.220218
\(934\) −7.20317e39 −0.572586
\(935\) 0 0
\(936\) −3.09193e38 −0.0238784
\(937\) −9.74565e39 −0.741868 −0.370934 0.928659i \(-0.620962\pi\)
−0.370934 + 0.928659i \(0.620962\pi\)
\(938\) −2.28060e40 −1.71124
\(939\) 1.12358e40 0.831034
\(940\) 0 0
\(941\) 2.57094e39 0.184771 0.0923853 0.995723i \(-0.470551\pi\)
0.0923853 + 0.995723i \(0.470551\pi\)
\(942\) −4.72819e38 −0.0334971
\(943\) 1.28616e38 0.00898229
\(944\) 4.94613e39 0.340521
\(945\) 0 0
\(946\) 1.20494e38 0.00806183
\(947\) 1.22271e39 0.0806490 0.0403245 0.999187i \(-0.487161\pi\)
0.0403245 + 0.999187i \(0.487161\pi\)
\(948\) −2.49642e38 −0.0162332
\(949\) 2.32442e39 0.149012
\(950\) 0 0
\(951\) −4.46328e38 −0.0278111
\(952\) −3.07165e39 −0.188700
\(953\) −7.65794e39 −0.463829 −0.231914 0.972736i \(-0.574499\pi\)
−0.231914 + 0.972736i \(0.574499\pi\)
\(954\) 4.39865e38 0.0262673
\(955\) 0 0
\(956\) −2.98873e39 −0.173502
\(957\) 1.14667e39 0.0656340
\(958\) −1.08502e40 −0.612355
\(959\) −3.48512e40 −1.93940
\(960\) 0 0
\(961\) −1.64516e40 −0.890107
\(962\) −2.10294e39 −0.112193
\(963\) 2.67004e40 1.40463
\(964\) 1.08781e40 0.564307
\(965\) 0 0
\(966\) −7.78602e38 −0.0392757
\(967\) 2.57889e37 0.00128285 0.000641425 1.00000i \(-0.499796\pi\)
0.000641425 1.00000i \(0.499796\pi\)
\(968\) −7.12713e39 −0.349621
\(969\) −5.27334e37 −0.00255102
\(970\) 0 0
\(971\) 3.64031e40 1.71269 0.856345 0.516404i \(-0.172730\pi\)
0.856345 + 0.516404i \(0.172730\pi\)
\(972\) −1.11664e40 −0.518105
\(973\) −1.52558e40 −0.698089
\(974\) −2.27460e40 −1.02650
\(975\) 0 0
\(976\) 4.45329e39 0.195483
\(977\) −9.13450e39 −0.395465 −0.197733 0.980256i \(-0.563358\pi\)
−0.197733 + 0.980256i \(0.563358\pi\)
\(978\) −8.62682e39 −0.368363
\(979\) 3.91691e39 0.164960
\(980\) 0 0
\(981\) 9.69503e39 0.397208
\(982\) 3.14085e40 1.26923
\(983\) 1.10897e40 0.442025 0.221012 0.975271i \(-0.429064\pi\)
0.221012 + 0.975271i \(0.429064\pi\)
\(984\) −5.39501e38 −0.0212108
\(985\) 0 0
\(986\) 8.72651e39 0.333812
\(987\) 2.43317e40 0.918100
\(988\) −1.52008e37 −0.000565781 0
\(989\) 2.32439e38 0.00853413
\(990\) 0 0
\(991\) 4.45006e40 1.58991 0.794954 0.606670i \(-0.207495\pi\)
0.794954 + 0.606670i \(0.207495\pi\)
\(992\) 1.66271e39 0.0586017
\(993\) 1.58606e40 0.551449
\(994\) −3.86898e40 −1.32703
\(995\) 0 0
\(996\) −9.45850e39 −0.315734
\(997\) −2.41234e40 −0.794427 −0.397213 0.917726i \(-0.630023\pi\)
−0.397213 + 0.917726i \(0.630023\pi\)
\(998\) −1.12568e39 −0.0365723
\(999\) −4.80457e40 −1.54000
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.28.a.d.1.1 2
5.2 odd 4 50.28.b.d.49.4 4
5.3 odd 4 50.28.b.d.49.1 4
5.4 even 2 10.28.a.b.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.28.a.b.1.2 2 5.4 even 2
50.28.a.d.1.1 2 1.1 even 1 trivial
50.28.b.d.49.1 4 5.3 odd 4
50.28.b.d.49.4 4 5.2 odd 4