Properties

Label 50.7.c
Level $50$
Weight $7$
Character orbit 50.c
Rep. character $\chi_{50}(7,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $18$
Newform subspaces $6$
Sturm bound $52$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 50.c (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(52\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(50, [\chi])\).

Total New Old
Modular forms 102 18 84
Cusp forms 78 18 60
Eisenstein series 24 0 24

Trace form

\( 18 q - 8 q^{2} + 64 q^{3} - 448 q^{6} + 696 q^{7} + 256 q^{8} - 944 q^{11} + 2048 q^{12} + 4614 q^{13} - 18432 q^{16} - 17554 q^{17} - 12152 q^{18} + 15056 q^{21} + 20544 q^{22} - 39616 q^{23} - 1488 q^{26}+ \cdots + 1286072 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(50, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
50.7.c.a 50.c 5.c $2$ $11.503$ \(\Q(\sqrt{-1}) \) None 50.7.c.a \(-8\) \(-6\) \(0\) \(-234\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-4 i-4)q^{2}+(3 i-3)q^{3}+32 i q^{4}+\cdots\)
50.7.c.b 50.c 5.c $2$ $11.503$ \(\Q(\sqrt{-1}) \) None 50.7.c.a \(8\) \(6\) \(0\) \(234\) $\mathrm{SU}(2)[C_{4}]$ \(q+(4 i+4)q^{2}+(-3 i+3)q^{3}+32 i q^{4}+\cdots\)
50.7.c.c 50.c 5.c $2$ $11.503$ \(\Q(\sqrt{-1}) \) None 10.7.c.a \(8\) \(46\) \(0\) \(494\) $\mathrm{SU}(2)[C_{4}]$ \(q+(4 i+4)q^{2}+(-23 i+23)q^{3}+\cdots\)
50.7.c.d 50.c 5.c $4$ $11.503$ \(\Q(i, \sqrt{129})\) None 10.7.c.b \(-16\) \(18\) \(0\) \(202\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-4+4\beta _{1})q^{2}+(5+5\beta _{1}-\beta _{2})q^{3}+\cdots\)
50.7.c.e 50.c 5.c $4$ $11.503$ \(\Q(i, \sqrt{6})\) None 50.7.c.e \(-16\) \(48\) \(0\) \(672\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-4-4\beta _{2})q^{2}+(12-12\beta _{2}-\beta _{3})q^{3}+\cdots\)
50.7.c.f 50.c 5.c $4$ $11.503$ \(\Q(i, \sqrt{6})\) None 50.7.c.e \(16\) \(-48\) \(0\) \(-672\) $\mathrm{SU}(2)[C_{4}]$ \(q+(4+4\beta _{2})q^{2}+(-12+12\beta _{2}-\beta _{3})q^{3}+\cdots\)

Decomposition of \(S_{7}^{\mathrm{old}}(50, [\chi])\) into lower level spaces

\( S_{7}^{\mathrm{old}}(50, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)