Defining parameters
Level: | \( N \) | \(=\) | \( 50 = 2 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 50.c (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(52\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(50, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 102 | 18 | 84 |
Cusp forms | 78 | 18 | 60 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(50, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
50.7.c.a | $2$ | $11.503$ | \(\Q(\sqrt{-1}) \) | None | \(-8\) | \(-6\) | \(0\) | \(-234\) | \(q+(-4 i-4)q^{2}+(3 i-3)q^{3}+32 i q^{4}+\cdots\) |
50.7.c.b | $2$ | $11.503$ | \(\Q(\sqrt{-1}) \) | None | \(8\) | \(6\) | \(0\) | \(234\) | \(q+(4 i+4)q^{2}+(-3 i+3)q^{3}+32 i q^{4}+\cdots\) |
50.7.c.c | $2$ | $11.503$ | \(\Q(\sqrt{-1}) \) | None | \(8\) | \(46\) | \(0\) | \(494\) | \(q+(4 i+4)q^{2}+(-23 i+23)q^{3}+\cdots\) |
50.7.c.d | $4$ | $11.503$ | \(\Q(i, \sqrt{129})\) | None | \(-16\) | \(18\) | \(0\) | \(202\) | \(q+(-4+4\beta _{1})q^{2}+(5+5\beta _{1}-\beta _{2})q^{3}+\cdots\) |
50.7.c.e | $4$ | $11.503$ | \(\Q(i, \sqrt{6})\) | None | \(-16\) | \(48\) | \(0\) | \(672\) | \(q+(-4-4\beta _{2})q^{2}+(12-12\beta _{2}-\beta _{3})q^{3}+\cdots\) |
50.7.c.f | $4$ | $11.503$ | \(\Q(i, \sqrt{6})\) | None | \(16\) | \(-48\) | \(0\) | \(-672\) | \(q+(4+4\beta _{2})q^{2}+(-12+12\beta _{2}-\beta _{3})q^{3}+\cdots\) |
Decomposition of \(S_{7}^{\mathrm{old}}(50, [\chi])\) into lower level spaces
\( S_{7}^{\mathrm{old}}(50, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)