Properties

Label 5000.2.a.r.1.2
Level $5000$
Weight $2$
Character 5000.1
Self dual yes
Analytic conductor $39.925$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5000,2,Mod(1,5000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5000 = 2^{3} \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.9252010106\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 26 x^{14} + 110 x^{13} + 250 x^{12} - 1154 x^{11} - 1074 x^{10} + 5784 x^{9} + \cdots + 80 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 5^{3} \)
Twist minimal: no (minimal twist has level 200)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.71029\) of defining polynomial
Character \(\chi\) \(=\) 5000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.71029 q^{3} -0.760910 q^{7} +4.34569 q^{9} -6.48670 q^{11} +5.73162 q^{13} -2.72868 q^{17} -5.57409 q^{19} +2.06229 q^{21} -2.90834 q^{23} -3.64722 q^{27} -1.51092 q^{29} -2.16780 q^{31} +17.5809 q^{33} -1.49315 q^{37} -15.5344 q^{39} +4.49950 q^{41} -0.0184418 q^{43} +8.54996 q^{47} -6.42102 q^{49} +7.39552 q^{51} -5.28679 q^{53} +15.1074 q^{57} -7.91593 q^{59} +3.63893 q^{61} -3.30668 q^{63} +4.87160 q^{67} +7.88246 q^{69} -7.29823 q^{71} -11.2129 q^{73} +4.93580 q^{77} +4.77881 q^{79} -3.15204 q^{81} -4.71005 q^{83} +4.09502 q^{87} -9.86350 q^{89} -4.36124 q^{91} +5.87537 q^{93} +0.763267 q^{97} -28.1892 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{3} + 8 q^{7} + 20 q^{9} - 12 q^{11} + 10 q^{13} + 8 q^{17} - 12 q^{19} + 8 q^{21} + 12 q^{23} + 22 q^{27} + 16 q^{29} - 2 q^{31} + 24 q^{33} + 22 q^{37} - 4 q^{39} + 20 q^{41} + 26 q^{43} + 24 q^{47}+ \cdots - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.71029 −1.56479 −0.782394 0.622783i \(-0.786002\pi\)
−0.782394 + 0.622783i \(0.786002\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.760910 −0.287597 −0.143798 0.989607i \(-0.545932\pi\)
−0.143798 + 0.989607i \(0.545932\pi\)
\(8\) 0 0
\(9\) 4.34569 1.44856
\(10\) 0 0
\(11\) −6.48670 −1.95581 −0.977907 0.209040i \(-0.932966\pi\)
−0.977907 + 0.209040i \(0.932966\pi\)
\(12\) 0 0
\(13\) 5.73162 1.58966 0.794832 0.606829i \(-0.207559\pi\)
0.794832 + 0.606829i \(0.207559\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.72868 −0.661802 −0.330901 0.943666i \(-0.607353\pi\)
−0.330901 + 0.943666i \(0.607353\pi\)
\(18\) 0 0
\(19\) −5.57409 −1.27878 −0.639392 0.768881i \(-0.720814\pi\)
−0.639392 + 0.768881i \(0.720814\pi\)
\(20\) 0 0
\(21\) 2.06229 0.450028
\(22\) 0 0
\(23\) −2.90834 −0.606431 −0.303216 0.952922i \(-0.598060\pi\)
−0.303216 + 0.952922i \(0.598060\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3.64722 −0.701908
\(28\) 0 0
\(29\) −1.51092 −0.280570 −0.140285 0.990111i \(-0.544802\pi\)
−0.140285 + 0.990111i \(0.544802\pi\)
\(30\) 0 0
\(31\) −2.16780 −0.389348 −0.194674 0.980868i \(-0.562365\pi\)
−0.194674 + 0.980868i \(0.562365\pi\)
\(32\) 0 0
\(33\) 17.5809 3.06044
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.49315 −0.245473 −0.122737 0.992439i \(-0.539167\pi\)
−0.122737 + 0.992439i \(0.539167\pi\)
\(38\) 0 0
\(39\) −15.5344 −2.48749
\(40\) 0 0
\(41\) 4.49950 0.702704 0.351352 0.936243i \(-0.385722\pi\)
0.351352 + 0.936243i \(0.385722\pi\)
\(42\) 0 0
\(43\) −0.0184418 −0.00281235 −0.00140617 0.999999i \(-0.500448\pi\)
−0.00140617 + 0.999999i \(0.500448\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.54996 1.24714 0.623570 0.781767i \(-0.285682\pi\)
0.623570 + 0.781767i \(0.285682\pi\)
\(48\) 0 0
\(49\) −6.42102 −0.917288
\(50\) 0 0
\(51\) 7.39552 1.03558
\(52\) 0 0
\(53\) −5.28679 −0.726196 −0.363098 0.931751i \(-0.618281\pi\)
−0.363098 + 0.931751i \(0.618281\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 15.1074 2.00103
\(58\) 0 0
\(59\) −7.91593 −1.03057 −0.515283 0.857020i \(-0.672313\pi\)
−0.515283 + 0.857020i \(0.672313\pi\)
\(60\) 0 0
\(61\) 3.63893 0.465918 0.232959 0.972487i \(-0.425159\pi\)
0.232959 + 0.972487i \(0.425159\pi\)
\(62\) 0 0
\(63\) −3.30668 −0.416602
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.87160 0.595161 0.297581 0.954697i \(-0.403820\pi\)
0.297581 + 0.954697i \(0.403820\pi\)
\(68\) 0 0
\(69\) 7.88246 0.948937
\(70\) 0 0
\(71\) −7.29823 −0.866141 −0.433070 0.901360i \(-0.642570\pi\)
−0.433070 + 0.901360i \(0.642570\pi\)
\(72\) 0 0
\(73\) −11.2129 −1.31237 −0.656184 0.754600i \(-0.727831\pi\)
−0.656184 + 0.754600i \(0.727831\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.93580 0.562486
\(78\) 0 0
\(79\) 4.77881 0.537659 0.268829 0.963188i \(-0.413363\pi\)
0.268829 + 0.963188i \(0.413363\pi\)
\(80\) 0 0
\(81\) −3.15204 −0.350227
\(82\) 0 0
\(83\) −4.71005 −0.516995 −0.258498 0.966012i \(-0.583227\pi\)
−0.258498 + 0.966012i \(0.583227\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 4.09502 0.439033
\(88\) 0 0
\(89\) −9.86350 −1.04553 −0.522764 0.852477i \(-0.675099\pi\)
−0.522764 + 0.852477i \(0.675099\pi\)
\(90\) 0 0
\(91\) −4.36124 −0.457183
\(92\) 0 0
\(93\) 5.87537 0.609247
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.763267 0.0774981 0.0387490 0.999249i \(-0.487663\pi\)
0.0387490 + 0.999249i \(0.487663\pi\)
\(98\) 0 0
\(99\) −28.1892 −2.83312
\(100\) 0 0
\(101\) −16.8574 −1.67737 −0.838685 0.544617i \(-0.816675\pi\)
−0.838685 + 0.544617i \(0.816675\pi\)
\(102\) 0 0
\(103\) 3.01118 0.296701 0.148350 0.988935i \(-0.452604\pi\)
0.148350 + 0.988935i \(0.452604\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.8596 1.14651 0.573255 0.819377i \(-0.305680\pi\)
0.573255 + 0.819377i \(0.305680\pi\)
\(108\) 0 0
\(109\) −14.0958 −1.35014 −0.675068 0.737756i \(-0.735886\pi\)
−0.675068 + 0.737756i \(0.735886\pi\)
\(110\) 0 0
\(111\) 4.04689 0.384113
\(112\) 0 0
\(113\) 5.92783 0.557643 0.278822 0.960343i \(-0.410056\pi\)
0.278822 + 0.960343i \(0.410056\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 24.9078 2.30273
\(118\) 0 0
\(119\) 2.07628 0.190332
\(120\) 0 0
\(121\) 31.0773 2.82521
\(122\) 0 0
\(123\) −12.1950 −1.09958
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 9.08189 0.805888 0.402944 0.915225i \(-0.367987\pi\)
0.402944 + 0.915225i \(0.367987\pi\)
\(128\) 0 0
\(129\) 0.0499827 0.00440073
\(130\) 0 0
\(131\) 6.22054 0.543491 0.271745 0.962369i \(-0.412399\pi\)
0.271745 + 0.962369i \(0.412399\pi\)
\(132\) 0 0
\(133\) 4.24138 0.367774
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.2460 1.38799 0.693995 0.719980i \(-0.255849\pi\)
0.693995 + 0.719980i \(0.255849\pi\)
\(138\) 0 0
\(139\) −10.1343 −0.859578 −0.429789 0.902929i \(-0.641412\pi\)
−0.429789 + 0.902929i \(0.641412\pi\)
\(140\) 0 0
\(141\) −23.1729 −1.95151
\(142\) 0 0
\(143\) −37.1793 −3.10909
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 17.4028 1.43536
\(148\) 0 0
\(149\) −12.0280 −0.985371 −0.492686 0.870207i \(-0.663985\pi\)
−0.492686 + 0.870207i \(0.663985\pi\)
\(150\) 0 0
\(151\) 12.4820 1.01577 0.507884 0.861425i \(-0.330428\pi\)
0.507884 + 0.861425i \(0.330428\pi\)
\(152\) 0 0
\(153\) −11.8580 −0.958662
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −21.7736 −1.73772 −0.868861 0.495056i \(-0.835148\pi\)
−0.868861 + 0.495056i \(0.835148\pi\)
\(158\) 0 0
\(159\) 14.3287 1.13634
\(160\) 0 0
\(161\) 2.21299 0.174408
\(162\) 0 0
\(163\) 6.47354 0.507047 0.253524 0.967329i \(-0.418410\pi\)
0.253524 + 0.967329i \(0.418410\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −15.2070 −1.17675 −0.588377 0.808587i \(-0.700233\pi\)
−0.588377 + 0.808587i \(0.700233\pi\)
\(168\) 0 0
\(169\) 19.8514 1.52703
\(170\) 0 0
\(171\) −24.2233 −1.85240
\(172\) 0 0
\(173\) −0.110462 −0.00839828 −0.00419914 0.999991i \(-0.501337\pi\)
−0.00419914 + 0.999991i \(0.501337\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 21.4545 1.61262
\(178\) 0 0
\(179\) −8.39526 −0.627491 −0.313746 0.949507i \(-0.601584\pi\)
−0.313746 + 0.949507i \(0.601584\pi\)
\(180\) 0 0
\(181\) 5.18226 0.385194 0.192597 0.981278i \(-0.438309\pi\)
0.192597 + 0.981278i \(0.438309\pi\)
\(182\) 0 0
\(183\) −9.86258 −0.729063
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 17.7001 1.29436
\(188\) 0 0
\(189\) 2.77520 0.201866
\(190\) 0 0
\(191\) 26.6183 1.92603 0.963017 0.269441i \(-0.0868388\pi\)
0.963017 + 0.269441i \(0.0868388\pi\)
\(192\) 0 0
\(193\) 21.8300 1.57136 0.785678 0.618635i \(-0.212314\pi\)
0.785678 + 0.618635i \(0.212314\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.53464 −0.323080 −0.161540 0.986866i \(-0.551646\pi\)
−0.161540 + 0.986866i \(0.551646\pi\)
\(198\) 0 0
\(199\) 15.5338 1.10116 0.550582 0.834781i \(-0.314406\pi\)
0.550582 + 0.834781i \(0.314406\pi\)
\(200\) 0 0
\(201\) −13.2035 −0.931302
\(202\) 0 0
\(203\) 1.14967 0.0806910
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −12.6388 −0.878455
\(208\) 0 0
\(209\) 36.1575 2.50106
\(210\) 0 0
\(211\) 10.2158 0.703284 0.351642 0.936135i \(-0.385623\pi\)
0.351642 + 0.936135i \(0.385623\pi\)
\(212\) 0 0
\(213\) 19.7803 1.35533
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.64950 0.111975
\(218\) 0 0
\(219\) 30.3902 2.05358
\(220\) 0 0
\(221\) −15.6397 −1.05204
\(222\) 0 0
\(223\) 16.8138 1.12593 0.562967 0.826479i \(-0.309660\pi\)
0.562967 + 0.826479i \(0.309660\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.59655 −0.105966 −0.0529832 0.998595i \(-0.516873\pi\)
−0.0529832 + 0.998595i \(0.516873\pi\)
\(228\) 0 0
\(229\) 6.63184 0.438244 0.219122 0.975697i \(-0.429681\pi\)
0.219122 + 0.975697i \(0.429681\pi\)
\(230\) 0 0
\(231\) −13.3775 −0.880172
\(232\) 0 0
\(233\) −21.5364 −1.41090 −0.705449 0.708761i \(-0.749255\pi\)
−0.705449 + 0.708761i \(0.749255\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −12.9520 −0.841322
\(238\) 0 0
\(239\) 3.52263 0.227860 0.113930 0.993489i \(-0.463656\pi\)
0.113930 + 0.993489i \(0.463656\pi\)
\(240\) 0 0
\(241\) 5.20231 0.335110 0.167555 0.985863i \(-0.446413\pi\)
0.167555 + 0.985863i \(0.446413\pi\)
\(242\) 0 0
\(243\) 19.4846 1.24994
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −31.9486 −2.03284
\(248\) 0 0
\(249\) 12.7656 0.808988
\(250\) 0 0
\(251\) 10.9106 0.688669 0.344335 0.938847i \(-0.388105\pi\)
0.344335 + 0.938847i \(0.388105\pi\)
\(252\) 0 0
\(253\) 18.8656 1.18607
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.2429 0.826069 0.413034 0.910715i \(-0.364469\pi\)
0.413034 + 0.910715i \(0.364469\pi\)
\(258\) 0 0
\(259\) 1.13616 0.0705973
\(260\) 0 0
\(261\) −6.56597 −0.406423
\(262\) 0 0
\(263\) −15.7116 −0.968820 −0.484410 0.874841i \(-0.660966\pi\)
−0.484410 + 0.874841i \(0.660966\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 26.7330 1.63603
\(268\) 0 0
\(269\) 21.8907 1.33470 0.667348 0.744746i \(-0.267429\pi\)
0.667348 + 0.744746i \(0.267429\pi\)
\(270\) 0 0
\(271\) 3.58346 0.217680 0.108840 0.994059i \(-0.465286\pi\)
0.108840 + 0.994059i \(0.465286\pi\)
\(272\) 0 0
\(273\) 11.8202 0.715394
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −10.3940 −0.624516 −0.312258 0.949997i \(-0.601085\pi\)
−0.312258 + 0.949997i \(0.601085\pi\)
\(278\) 0 0
\(279\) −9.42058 −0.563995
\(280\) 0 0
\(281\) 23.9989 1.43166 0.715828 0.698276i \(-0.246049\pi\)
0.715828 + 0.698276i \(0.246049\pi\)
\(282\) 0 0
\(283\) 3.39388 0.201745 0.100873 0.994899i \(-0.467837\pi\)
0.100873 + 0.994899i \(0.467837\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.42372 −0.202096
\(288\) 0 0
\(289\) −9.55432 −0.562019
\(290\) 0 0
\(291\) −2.06868 −0.121268
\(292\) 0 0
\(293\) 0.853181 0.0498434 0.0249217 0.999689i \(-0.492066\pi\)
0.0249217 + 0.999689i \(0.492066\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 23.6584 1.37280
\(298\) 0 0
\(299\) −16.6695 −0.964022
\(300\) 0 0
\(301\) 0.0140325 0.000808822 0
\(302\) 0 0
\(303\) 45.6884 2.62473
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 32.9825 1.88241 0.941207 0.337832i \(-0.109693\pi\)
0.941207 + 0.337832i \(0.109693\pi\)
\(308\) 0 0
\(309\) −8.16119 −0.464274
\(310\) 0 0
\(311\) 3.26183 0.184961 0.0924807 0.995714i \(-0.470520\pi\)
0.0924807 + 0.995714i \(0.470520\pi\)
\(312\) 0 0
\(313\) 5.23551 0.295928 0.147964 0.988993i \(-0.452728\pi\)
0.147964 + 0.988993i \(0.452728\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −21.5986 −1.21310 −0.606548 0.795047i \(-0.707446\pi\)
−0.606548 + 0.795047i \(0.707446\pi\)
\(318\) 0 0
\(319\) 9.80086 0.548743
\(320\) 0 0
\(321\) −32.1430 −1.79405
\(322\) 0 0
\(323\) 15.2099 0.846301
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 38.2038 2.11268
\(328\) 0 0
\(329\) −6.50575 −0.358674
\(330\) 0 0
\(331\) 6.08386 0.334399 0.167200 0.985923i \(-0.446528\pi\)
0.167200 + 0.985923i \(0.446528\pi\)
\(332\) 0 0
\(333\) −6.48879 −0.355583
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 9.70193 0.528498 0.264249 0.964455i \(-0.414876\pi\)
0.264249 + 0.964455i \(0.414876\pi\)
\(338\) 0 0
\(339\) −16.0662 −0.872594
\(340\) 0 0
\(341\) 14.0619 0.761492
\(342\) 0 0
\(343\) 10.2122 0.551406
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.90768 −0.102409 −0.0512047 0.998688i \(-0.516306\pi\)
−0.0512047 + 0.998688i \(0.516306\pi\)
\(348\) 0 0
\(349\) −1.02648 −0.0549462 −0.0274731 0.999623i \(-0.508746\pi\)
−0.0274731 + 0.999623i \(0.508746\pi\)
\(350\) 0 0
\(351\) −20.9045 −1.11580
\(352\) 0 0
\(353\) 1.92893 0.102666 0.0513332 0.998682i \(-0.483653\pi\)
0.0513332 + 0.998682i \(0.483653\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −5.62732 −0.297829
\(358\) 0 0
\(359\) −21.9452 −1.15822 −0.579111 0.815249i \(-0.696600\pi\)
−0.579111 + 0.815249i \(0.696600\pi\)
\(360\) 0 0
\(361\) 12.0705 0.635289
\(362\) 0 0
\(363\) −84.2286 −4.42086
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 18.9632 0.989871 0.494936 0.868930i \(-0.335192\pi\)
0.494936 + 0.868930i \(0.335192\pi\)
\(368\) 0 0
\(369\) 19.5534 1.01791
\(370\) 0 0
\(371\) 4.02277 0.208852
\(372\) 0 0
\(373\) 11.0240 0.570801 0.285401 0.958408i \(-0.407873\pi\)
0.285401 + 0.958408i \(0.407873\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.65999 −0.446012
\(378\) 0 0
\(379\) 1.96246 0.100805 0.0504024 0.998729i \(-0.483950\pi\)
0.0504024 + 0.998729i \(0.483950\pi\)
\(380\) 0 0
\(381\) −24.6146 −1.26104
\(382\) 0 0
\(383\) −27.4873 −1.40454 −0.702268 0.711913i \(-0.747829\pi\)
−0.702268 + 0.711913i \(0.747829\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.0801423 −0.00407386
\(388\) 0 0
\(389\) 32.2764 1.63648 0.818239 0.574878i \(-0.194951\pi\)
0.818239 + 0.574878i \(0.194951\pi\)
\(390\) 0 0
\(391\) 7.93593 0.401337
\(392\) 0 0
\(393\) −16.8595 −0.850448
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 24.6152 1.23540 0.617701 0.786413i \(-0.288064\pi\)
0.617701 + 0.786413i \(0.288064\pi\)
\(398\) 0 0
\(399\) −11.4954 −0.575489
\(400\) 0 0
\(401\) 18.5748 0.927581 0.463791 0.885945i \(-0.346489\pi\)
0.463791 + 0.885945i \(0.346489\pi\)
\(402\) 0 0
\(403\) −12.4250 −0.618933
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.68565 0.480100
\(408\) 0 0
\(409\) 25.1825 1.24520 0.622598 0.782542i \(-0.286077\pi\)
0.622598 + 0.782542i \(0.286077\pi\)
\(410\) 0 0
\(411\) −44.0314 −2.17191
\(412\) 0 0
\(413\) 6.02331 0.296388
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 27.4669 1.34506
\(418\) 0 0
\(419\) −11.5811 −0.565772 −0.282886 0.959154i \(-0.591292\pi\)
−0.282886 + 0.959154i \(0.591292\pi\)
\(420\) 0 0
\(421\) 23.3236 1.13672 0.568362 0.822778i \(-0.307577\pi\)
0.568362 + 0.822778i \(0.307577\pi\)
\(422\) 0 0
\(423\) 37.1555 1.80656
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.76890 −0.133997
\(428\) 0 0
\(429\) 100.767 4.86507
\(430\) 0 0
\(431\) 9.97368 0.480415 0.240208 0.970722i \(-0.422784\pi\)
0.240208 + 0.970722i \(0.422784\pi\)
\(432\) 0 0
\(433\) 1.21527 0.0584021 0.0292010 0.999574i \(-0.490704\pi\)
0.0292010 + 0.999574i \(0.490704\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 16.2114 0.775495
\(438\) 0 0
\(439\) −22.3661 −1.06748 −0.533739 0.845650i \(-0.679213\pi\)
−0.533739 + 0.845650i \(0.679213\pi\)
\(440\) 0 0
\(441\) −27.9038 −1.32875
\(442\) 0 0
\(443\) 7.44696 0.353816 0.176908 0.984227i \(-0.443390\pi\)
0.176908 + 0.984227i \(0.443390\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 32.5994 1.54190
\(448\) 0 0
\(449\) 7.86162 0.371013 0.185506 0.982643i \(-0.440607\pi\)
0.185506 + 0.982643i \(0.440607\pi\)
\(450\) 0 0
\(451\) −29.1869 −1.37436
\(452\) 0 0
\(453\) −33.8298 −1.58946
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 29.4630 1.37822 0.689109 0.724657i \(-0.258002\pi\)
0.689109 + 0.724657i \(0.258002\pi\)
\(458\) 0 0
\(459\) 9.95208 0.464523
\(460\) 0 0
\(461\) 11.3422 0.528260 0.264130 0.964487i \(-0.414915\pi\)
0.264130 + 0.964487i \(0.414915\pi\)
\(462\) 0 0
\(463\) −18.5740 −0.863206 −0.431603 0.902064i \(-0.642052\pi\)
−0.431603 + 0.902064i \(0.642052\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9.20296 −0.425862 −0.212931 0.977067i \(-0.568301\pi\)
−0.212931 + 0.977067i \(0.568301\pi\)
\(468\) 0 0
\(469\) −3.70685 −0.171166
\(470\) 0 0
\(471\) 59.0128 2.71917
\(472\) 0 0
\(473\) 0.119626 0.00550043
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −22.9747 −1.05194
\(478\) 0 0
\(479\) 27.5266 1.25772 0.628862 0.777517i \(-0.283521\pi\)
0.628862 + 0.777517i \(0.283521\pi\)
\(480\) 0 0
\(481\) −8.55819 −0.390220
\(482\) 0 0
\(483\) −5.99784 −0.272911
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −4.52343 −0.204976 −0.102488 0.994734i \(-0.532680\pi\)
−0.102488 + 0.994734i \(0.532680\pi\)
\(488\) 0 0
\(489\) −17.5452 −0.793422
\(490\) 0 0
\(491\) −30.1404 −1.36022 −0.680108 0.733112i \(-0.738067\pi\)
−0.680108 + 0.733112i \(0.738067\pi\)
\(492\) 0 0
\(493\) 4.12280 0.185682
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.55329 0.249099
\(498\) 0 0
\(499\) −15.3588 −0.687556 −0.343778 0.939051i \(-0.611707\pi\)
−0.343778 + 0.939051i \(0.611707\pi\)
\(500\) 0 0
\(501\) 41.2154 1.84137
\(502\) 0 0
\(503\) −24.2687 −1.08209 −0.541043 0.840995i \(-0.681970\pi\)
−0.541043 + 0.840995i \(0.681970\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −53.8032 −2.38948
\(508\) 0 0
\(509\) 33.4276 1.48165 0.740827 0.671696i \(-0.234434\pi\)
0.740827 + 0.671696i \(0.234434\pi\)
\(510\) 0 0
\(511\) 8.53199 0.377433
\(512\) 0 0
\(513\) 20.3299 0.897588
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −55.4611 −2.43918
\(518\) 0 0
\(519\) 0.299385 0.0131415
\(520\) 0 0
\(521\) −12.1739 −0.533347 −0.266674 0.963787i \(-0.585925\pi\)
−0.266674 + 0.963787i \(0.585925\pi\)
\(522\) 0 0
\(523\) 33.7025 1.47371 0.736854 0.676052i \(-0.236310\pi\)
0.736854 + 0.676052i \(0.236310\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.91522 0.257671
\(528\) 0 0
\(529\) −14.5415 −0.632241
\(530\) 0 0
\(531\) −34.4002 −1.49284
\(532\) 0 0
\(533\) 25.7894 1.11706
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 22.7536 0.981892
\(538\) 0 0
\(539\) 41.6512 1.79405
\(540\) 0 0
\(541\) −14.1486 −0.608296 −0.304148 0.952625i \(-0.598372\pi\)
−0.304148 + 0.952625i \(0.598372\pi\)
\(542\) 0 0
\(543\) −14.0454 −0.602748
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −15.3479 −0.656229 −0.328114 0.944638i \(-0.606413\pi\)
−0.328114 + 0.944638i \(0.606413\pi\)
\(548\) 0 0
\(549\) 15.8137 0.674912
\(550\) 0 0
\(551\) 8.42198 0.358788
\(552\) 0 0
\(553\) −3.63625 −0.154629
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 27.6553 1.17179 0.585896 0.810386i \(-0.300743\pi\)
0.585896 + 0.810386i \(0.300743\pi\)
\(558\) 0 0
\(559\) −0.105701 −0.00447069
\(560\) 0 0
\(561\) −47.9725 −2.02540
\(562\) 0 0
\(563\) 17.5714 0.740547 0.370273 0.928923i \(-0.379264\pi\)
0.370273 + 0.928923i \(0.379264\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.39842 0.100724
\(568\) 0 0
\(569\) −8.20625 −0.344024 −0.172012 0.985095i \(-0.555027\pi\)
−0.172012 + 0.985095i \(0.555027\pi\)
\(570\) 0 0
\(571\) 13.0085 0.544387 0.272193 0.962243i \(-0.412251\pi\)
0.272193 + 0.962243i \(0.412251\pi\)
\(572\) 0 0
\(573\) −72.1435 −3.01384
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 41.7137 1.73656 0.868281 0.496073i \(-0.165225\pi\)
0.868281 + 0.496073i \(0.165225\pi\)
\(578\) 0 0
\(579\) −59.1657 −2.45884
\(580\) 0 0
\(581\) 3.58392 0.148686
\(582\) 0 0
\(583\) 34.2938 1.42030
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.2971 −0.796478 −0.398239 0.917282i \(-0.630379\pi\)
−0.398239 + 0.917282i \(0.630379\pi\)
\(588\) 0 0
\(589\) 12.0835 0.497892
\(590\) 0 0
\(591\) 12.2902 0.505552
\(592\) 0 0
\(593\) −22.3316 −0.917049 −0.458525 0.888682i \(-0.651622\pi\)
−0.458525 + 0.888682i \(0.651622\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −42.1012 −1.72309
\(598\) 0 0
\(599\) −23.3783 −0.955212 −0.477606 0.878574i \(-0.658495\pi\)
−0.477606 + 0.878574i \(0.658495\pi\)
\(600\) 0 0
\(601\) 21.1044 0.860866 0.430433 0.902623i \(-0.358361\pi\)
0.430433 + 0.902623i \(0.358361\pi\)
\(602\) 0 0
\(603\) 21.1705 0.862129
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 27.5146 1.11678 0.558391 0.829578i \(-0.311419\pi\)
0.558391 + 0.829578i \(0.311419\pi\)
\(608\) 0 0
\(609\) −3.11594 −0.126264
\(610\) 0 0
\(611\) 49.0051 1.98253
\(612\) 0 0
\(613\) −22.8425 −0.922602 −0.461301 0.887244i \(-0.652617\pi\)
−0.461301 + 0.887244i \(0.652617\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 26.3212 1.05965 0.529826 0.848106i \(-0.322257\pi\)
0.529826 + 0.848106i \(0.322257\pi\)
\(618\) 0 0
\(619\) −39.0155 −1.56817 −0.784083 0.620656i \(-0.786866\pi\)
−0.784083 + 0.620656i \(0.786866\pi\)
\(620\) 0 0
\(621\) 10.6074 0.425659
\(622\) 0 0
\(623\) 7.50523 0.300691
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −97.9974 −3.91364
\(628\) 0 0
\(629\) 4.07434 0.162454
\(630\) 0 0
\(631\) 6.04499 0.240647 0.120324 0.992735i \(-0.461607\pi\)
0.120324 + 0.992735i \(0.461607\pi\)
\(632\) 0 0
\(633\) −27.6878 −1.10049
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −36.8028 −1.45818
\(638\) 0 0
\(639\) −31.7159 −1.25466
\(640\) 0 0
\(641\) 31.9890 1.26349 0.631744 0.775177i \(-0.282339\pi\)
0.631744 + 0.775177i \(0.282339\pi\)
\(642\) 0 0
\(643\) 9.81465 0.387052 0.193526 0.981095i \(-0.438008\pi\)
0.193526 + 0.981095i \(0.438008\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.0186 1.02290 0.511448 0.859314i \(-0.329109\pi\)
0.511448 + 0.859314i \(0.329109\pi\)
\(648\) 0 0
\(649\) 51.3483 2.01560
\(650\) 0 0
\(651\) −4.47063 −0.175218
\(652\) 0 0
\(653\) −38.0226 −1.48794 −0.743970 0.668213i \(-0.767060\pi\)
−0.743970 + 0.668213i \(0.767060\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −48.7277 −1.90105
\(658\) 0 0
\(659\) 8.33138 0.324544 0.162272 0.986746i \(-0.448118\pi\)
0.162272 + 0.986746i \(0.448118\pi\)
\(660\) 0 0
\(661\) −26.1090 −1.01552 −0.507762 0.861497i \(-0.669527\pi\)
−0.507762 + 0.861497i \(0.669527\pi\)
\(662\) 0 0
\(663\) 42.3883 1.64622
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.39426 0.170146
\(668\) 0 0
\(669\) −45.5703 −1.76185
\(670\) 0 0
\(671\) −23.6047 −0.911249
\(672\) 0 0
\(673\) −48.6360 −1.87478 −0.937390 0.348283i \(-0.886765\pi\)
−0.937390 + 0.348283i \(0.886765\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −31.4149 −1.20737 −0.603687 0.797221i \(-0.706302\pi\)
−0.603687 + 0.797221i \(0.706302\pi\)
\(678\) 0 0
\(679\) −0.580778 −0.0222882
\(680\) 0 0
\(681\) 4.32711 0.165815
\(682\) 0 0
\(683\) 33.8482 1.29516 0.647582 0.761996i \(-0.275780\pi\)
0.647582 + 0.761996i \(0.275780\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −17.9742 −0.685760
\(688\) 0 0
\(689\) −30.3018 −1.15441
\(690\) 0 0
\(691\) −45.3013 −1.72334 −0.861672 0.507466i \(-0.830582\pi\)
−0.861672 + 0.507466i \(0.830582\pi\)
\(692\) 0 0
\(693\) 21.4494 0.814797
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −12.2777 −0.465051
\(698\) 0 0
\(699\) 58.3700 2.20776
\(700\) 0 0
\(701\) 3.00762 0.113596 0.0567982 0.998386i \(-0.481911\pi\)
0.0567982 + 0.998386i \(0.481911\pi\)
\(702\) 0 0
\(703\) 8.32298 0.313907
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.8269 0.482406
\(708\) 0 0
\(709\) −27.3379 −1.02670 −0.513349 0.858180i \(-0.671595\pi\)
−0.513349 + 0.858180i \(0.671595\pi\)
\(710\) 0 0
\(711\) 20.7673 0.778833
\(712\) 0 0
\(713\) 6.30470 0.236113
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −9.54736 −0.356553
\(718\) 0 0
\(719\) −6.96333 −0.259688 −0.129844 0.991534i \(-0.541448\pi\)
−0.129844 + 0.991534i \(0.541448\pi\)
\(720\) 0 0
\(721\) −2.29124 −0.0853302
\(722\) 0 0
\(723\) −14.0998 −0.524377
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 39.4766 1.46411 0.732054 0.681247i \(-0.238562\pi\)
0.732054 + 0.681247i \(0.238562\pi\)
\(728\) 0 0
\(729\) −43.3529 −1.60566
\(730\) 0 0
\(731\) 0.0503217 0.00186121
\(732\) 0 0
\(733\) −1.45690 −0.0538119 −0.0269059 0.999638i \(-0.508565\pi\)
−0.0269059 + 0.999638i \(0.508565\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −31.6006 −1.16402
\(738\) 0 0
\(739\) 11.3945 0.419154 0.209577 0.977792i \(-0.432791\pi\)
0.209577 + 0.977792i \(0.432791\pi\)
\(740\) 0 0
\(741\) 86.5900 3.18096
\(742\) 0 0
\(743\) 38.1536 1.39972 0.699860 0.714280i \(-0.253246\pi\)
0.699860 + 0.714280i \(0.253246\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −20.4684 −0.748900
\(748\) 0 0
\(749\) −9.02408 −0.329733
\(750\) 0 0
\(751\) −47.6723 −1.73959 −0.869794 0.493415i \(-0.835749\pi\)
−0.869794 + 0.493415i \(0.835749\pi\)
\(752\) 0 0
\(753\) −29.5709 −1.07762
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 11.0241 0.400676 0.200338 0.979727i \(-0.435796\pi\)
0.200338 + 0.979727i \(0.435796\pi\)
\(758\) 0 0
\(759\) −51.1312 −1.85594
\(760\) 0 0
\(761\) 50.9538 1.84707 0.923537 0.383509i \(-0.125284\pi\)
0.923537 + 0.383509i \(0.125284\pi\)
\(762\) 0 0
\(763\) 10.7257 0.388295
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −45.3711 −1.63826
\(768\) 0 0
\(769\) 31.8537 1.14867 0.574337 0.818619i \(-0.305260\pi\)
0.574337 + 0.818619i \(0.305260\pi\)
\(770\) 0 0
\(771\) −35.8921 −1.29262
\(772\) 0 0
\(773\) 15.2598 0.548857 0.274428 0.961608i \(-0.411511\pi\)
0.274428 + 0.961608i \(0.411511\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −3.07932 −0.110470
\(778\) 0 0
\(779\) −25.0806 −0.898607
\(780\) 0 0
\(781\) 47.3414 1.69401
\(782\) 0 0
\(783\) 5.51064 0.196934
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 6.42204 0.228921 0.114461 0.993428i \(-0.463486\pi\)
0.114461 + 0.993428i \(0.463486\pi\)
\(788\) 0 0
\(789\) 42.5831 1.51600
\(790\) 0 0
\(791\) −4.51054 −0.160376
\(792\) 0 0
\(793\) 20.8570 0.740653
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −19.7061 −0.698027 −0.349014 0.937118i \(-0.613483\pi\)
−0.349014 + 0.937118i \(0.613483\pi\)
\(798\) 0 0
\(799\) −23.3301 −0.825360
\(800\) 0 0
\(801\) −42.8637 −1.51451
\(802\) 0 0
\(803\) 72.7346 2.56675
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −59.3301 −2.08852
\(808\) 0 0
\(809\) −17.2003 −0.604732 −0.302366 0.953192i \(-0.597776\pi\)
−0.302366 + 0.953192i \(0.597776\pi\)
\(810\) 0 0
\(811\) −40.4792 −1.42142 −0.710709 0.703486i \(-0.751626\pi\)
−0.710709 + 0.703486i \(0.751626\pi\)
\(812\) 0 0
\(813\) −9.71223 −0.340623
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.102796 0.00359638
\(818\) 0 0
\(819\) −18.9526 −0.662258
\(820\) 0 0
\(821\) −14.0464 −0.490222 −0.245111 0.969495i \(-0.578824\pi\)
−0.245111 + 0.969495i \(0.578824\pi\)
\(822\) 0 0
\(823\) −15.5496 −0.542026 −0.271013 0.962576i \(-0.587359\pi\)
−0.271013 + 0.962576i \(0.587359\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −5.65592 −0.196676 −0.0983378 0.995153i \(-0.531353\pi\)
−0.0983378 + 0.995153i \(0.531353\pi\)
\(828\) 0 0
\(829\) −50.2986 −1.74694 −0.873472 0.486874i \(-0.838137\pi\)
−0.873472 + 0.486874i \(0.838137\pi\)
\(830\) 0 0
\(831\) 28.1709 0.977236
\(832\) 0 0
\(833\) 17.5209 0.607063
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 7.90643 0.273286
\(838\) 0 0
\(839\) 14.3841 0.496596 0.248298 0.968684i \(-0.420129\pi\)
0.248298 + 0.968684i \(0.420129\pi\)
\(840\) 0 0
\(841\) −26.7171 −0.921281
\(842\) 0 0
\(843\) −65.0442 −2.24024
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −23.6470 −0.812521
\(848\) 0 0
\(849\) −9.19842 −0.315689
\(850\) 0 0
\(851\) 4.34261 0.148863
\(852\) 0 0
\(853\) 19.7582 0.676507 0.338254 0.941055i \(-0.390164\pi\)
0.338254 + 0.941055i \(0.390164\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −22.9746 −0.784798 −0.392399 0.919795i \(-0.628355\pi\)
−0.392399 + 0.919795i \(0.628355\pi\)
\(858\) 0 0
\(859\) −16.1697 −0.551704 −0.275852 0.961200i \(-0.588960\pi\)
−0.275852 + 0.961200i \(0.588960\pi\)
\(860\) 0 0
\(861\) 9.27927 0.316237
\(862\) 0 0
\(863\) 18.0901 0.615793 0.307896 0.951420i \(-0.400375\pi\)
0.307896 + 0.951420i \(0.400375\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 25.8950 0.879441
\(868\) 0 0
\(869\) −30.9987 −1.05156
\(870\) 0 0
\(871\) 27.9222 0.946107
\(872\) 0 0
\(873\) 3.31692 0.112261
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 5.26062 0.177639 0.0888193 0.996048i \(-0.471691\pi\)
0.0888193 + 0.996048i \(0.471691\pi\)
\(878\) 0 0
\(879\) −2.31237 −0.0779944
\(880\) 0 0
\(881\) −40.8212 −1.37530 −0.687651 0.726042i \(-0.741358\pi\)
−0.687651 + 0.726042i \(0.741358\pi\)
\(882\) 0 0
\(883\) 24.4931 0.824259 0.412130 0.911125i \(-0.364785\pi\)
0.412130 + 0.911125i \(0.364785\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 26.6217 0.893869 0.446935 0.894567i \(-0.352516\pi\)
0.446935 + 0.894567i \(0.352516\pi\)
\(888\) 0 0
\(889\) −6.91050 −0.231771
\(890\) 0 0
\(891\) 20.4463 0.684978
\(892\) 0 0
\(893\) −47.6583 −1.59482
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 45.1793 1.50849
\(898\) 0 0
\(899\) 3.27536 0.109239
\(900\) 0 0
\(901\) 14.4259 0.480598
\(902\) 0 0
\(903\) −0.0380323 −0.00126564
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −12.8213 −0.425723 −0.212862 0.977082i \(-0.568278\pi\)
−0.212862 + 0.977082i \(0.568278\pi\)
\(908\) 0 0
\(909\) −73.2569 −2.42978
\(910\) 0 0
\(911\) −22.4036 −0.742265 −0.371133 0.928580i \(-0.621030\pi\)
−0.371133 + 0.928580i \(0.621030\pi\)
\(912\) 0 0
\(913\) 30.5527 1.01115
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.73327 −0.156306
\(918\) 0 0
\(919\) −60.3521 −1.99083 −0.995416 0.0956372i \(-0.969511\pi\)
−0.995416 + 0.0956372i \(0.969511\pi\)
\(920\) 0 0
\(921\) −89.3924 −2.94558
\(922\) 0 0
\(923\) −41.8307 −1.37687
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 13.0857 0.429790
\(928\) 0 0
\(929\) −29.8340 −0.978821 −0.489411 0.872053i \(-0.662788\pi\)
−0.489411 + 0.872053i \(0.662788\pi\)
\(930\) 0 0
\(931\) 35.7913 1.17301
\(932\) 0 0
\(933\) −8.84051 −0.289425
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.57817 0.0842252 0.0421126 0.999113i \(-0.486591\pi\)
0.0421126 + 0.999113i \(0.486591\pi\)
\(938\) 0 0
\(939\) −14.1898 −0.463065
\(940\) 0 0
\(941\) −8.38161 −0.273233 −0.136616 0.990624i \(-0.543623\pi\)
−0.136616 + 0.990624i \(0.543623\pi\)
\(942\) 0 0
\(943\) −13.0861 −0.426142
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −32.6284 −1.06028 −0.530140 0.847910i \(-0.677861\pi\)
−0.530140 + 0.847910i \(0.677861\pi\)
\(948\) 0 0
\(949\) −64.2680 −2.08623
\(950\) 0 0
\(951\) 58.5384 1.89824
\(952\) 0 0
\(953\) −4.80673 −0.155705 −0.0778527 0.996965i \(-0.524806\pi\)
−0.0778527 + 0.996965i \(0.524806\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −26.5632 −0.858666
\(958\) 0 0
\(959\) −12.3617 −0.399181
\(960\) 0 0
\(961\) −26.3007 −0.848408
\(962\) 0 0
\(963\) 51.5381 1.66079
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −21.8099 −0.701360 −0.350680 0.936495i \(-0.614049\pi\)
−0.350680 + 0.936495i \(0.614049\pi\)
\(968\) 0 0
\(969\) −41.2233 −1.32428
\(970\) 0 0
\(971\) 24.0451 0.771643 0.385821 0.922574i \(-0.373918\pi\)
0.385821 + 0.922574i \(0.373918\pi\)
\(972\) 0 0
\(973\) 7.71127 0.247212
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.92161 −0.0934705 −0.0467352 0.998907i \(-0.514882\pi\)
−0.0467352 + 0.998907i \(0.514882\pi\)
\(978\) 0 0
\(979\) 63.9816 2.04486
\(980\) 0 0
\(981\) −61.2561 −1.95576
\(982\) 0 0
\(983\) 0.843348 0.0268986 0.0134493 0.999910i \(-0.495719\pi\)
0.0134493 + 0.999910i \(0.495719\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 17.6325 0.561249
\(988\) 0 0
\(989\) 0.0536350 0.00170549
\(990\) 0 0
\(991\) 6.22823 0.197846 0.0989231 0.995095i \(-0.468460\pi\)
0.0989231 + 0.995095i \(0.468460\pi\)
\(992\) 0 0
\(993\) −16.4891 −0.523265
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −52.4910 −1.66241 −0.831203 0.555969i \(-0.812347\pi\)
−0.831203 + 0.555969i \(0.812347\pi\)
\(998\) 0 0
\(999\) 5.44586 0.172299
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5000.2.a.r.1.2 16
4.3 odd 2 10000.2.a.bq.1.15 16
5.4 even 2 5000.2.a.q.1.15 16
20.19 odd 2 10000.2.a.br.1.2 16
25.3 odd 20 1000.2.q.c.49.7 32
25.4 even 10 1000.2.m.e.201.8 32
25.6 even 5 1000.2.m.d.801.1 32
25.8 odd 20 200.2.q.a.89.2 yes 32
25.17 odd 20 1000.2.q.c.449.7 32
25.19 even 10 1000.2.m.e.801.8 32
25.21 even 5 1000.2.m.d.201.1 32
25.22 odd 20 200.2.q.a.9.2 32
100.47 even 20 400.2.y.d.209.7 32
100.83 even 20 400.2.y.d.289.7 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.q.a.9.2 32 25.22 odd 20
200.2.q.a.89.2 yes 32 25.8 odd 20
400.2.y.d.209.7 32 100.47 even 20
400.2.y.d.289.7 32 100.83 even 20
1000.2.m.d.201.1 32 25.21 even 5
1000.2.m.d.801.1 32 25.6 even 5
1000.2.m.e.201.8 32 25.4 even 10
1000.2.m.e.801.8 32 25.19 even 10
1000.2.q.c.49.7 32 25.3 odd 20
1000.2.q.c.449.7 32 25.17 odd 20
5000.2.a.q.1.15 16 5.4 even 2
5000.2.a.r.1.2 16 1.1 even 1 trivial
10000.2.a.bq.1.15 16 4.3 odd 2
10000.2.a.br.1.2 16 20.19 odd 2